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• Theorem 3-1 (Luc Nguyen, L. ) (Blow up analysis)
Assume {uk} ∈ C 2(B2),

f (λ(Auk )) = 1, uk > 0, in B2, sup
B1

uk →∞.

Then ∀ ε > 0, after passing to a subsequence,
∃ {x1

k , · · · , xmk } ⊂ B2(0), 1 ≤ m ≤ m̄,

|x ik − x jk | ≥ K−1 > 0, ∀k , i 6= j ,

uk(x ik) = sup
Bδ(x ik )

uk .

K−1 ≤
uk(x ik)

uk(x jk)
≤ K , ∀ i , j , k ,

∣∣uk(x)− Ux ik ,uk (x ik )(x)| ≤ εUx ik ,uk (x ik )(x), ∀ x ∈ Bδ(x
i
k).

1

Kδn−2uk(x1
k )
≤ uk(x) ≤ K

δn−2uk(x1
k )
, in B 3

2
(0)\∪mi=1Bδ(x

i
k), ∀ k .

—– U x̄ ,µ(x) = µU(µ
2

n−2 (x − x̄)),

—– U(x) = (1 + |x |2)
2−n

2 satisfies f (λ(AU)) = 1,
—– m̄,K depend only on (f , Γ), δ depends on (f , Γ) and ε.



Proposition 3-1. (Strengthened Liouville type theorem) Assume
0 < v ∈ C 0(Rn), 0 < vk ∈ C 2(BRk

), Rk →∞,

f (λ(Avk )) = 1 in BRk
, vk → v in C 0

loc(Rn).

Then v(x) =
( a

1 + a2|x − x̄ |2
) n−2

2 , a > 0, x̄ ∈ Rn.

• v satisfies f (λ(Av )) = 1, in Rn in viscosity sense.

Open Problem. Let 0 < v ∈ C 0
loc(Rn) satisfy

f (λ(Av )) = 1, in Rn in viscosity sense.

Is it true that

v(x) =
( a

1 + a2|x − x̄ |2
) n−2

2 , a > 0, x̄ ∈ Rn?



Proof of Proposition 3-1. 0 < v superharmonic, so

|y |n−2v(y) ≥ 2c0 > 0, ∀ |y | ≥ 1.

Passing to subsequence, shrinking Rk , shrinking c0, may assume

|vk(y)− v(y)| ≤ (Rk)−n, vk(y) ≥ c0(Rk)2−n, ∀ |y | ≤ Rk .



• Define for x ∈ Rn, |x |+ 1 ≤ Rk/4,

λ̄k(x) = sup{0 < µ ≤ Rk

4
| (vk)x ,λ ≤ vk in BRk

(0)\Bλ(x), ∀0 < λ < µ},

where (vk)x ,λ(y) := ( λ
|y−x |)

n−2vk(x + λ2(y−x)
|y−x |2 ), the Kelvin

transformation.
• λ̄k(x) well defined and ∃C (x) > 0 such that

0 <
1

C (x)
≤ λ̄k(x) ≤ Rk

4
, ∀ k .

—– Proof based on :
• Local gradient estimates:

u ∈ C 2(B2), f (λ(Au)) = 1, 0 < u ≤ b, in B2

implies
|∇ log u| ≤ C in B1

—– C depends only on (f , Γ) and b.



• Set λ̄(x) =lim inf
k→∞

λ̄k(x) ∈ (0,∞].

• Can prove (maximum principle, Hopf Lemma): either
λ̄(x) ≡ ∞ ∀ x or λ̄(x) <∞ ∀ x .

λ̄(x) ≡ ∞ leads to: v ≡ Constant, which can be ruled out.

λ̄(x) <∞ ∀ x leads to:

lim
|y |→∞

|y |n−2vx ,λ̄(x)(y) = α := lim inf
|y |→∞

|y |n−2v(y) <∞, ∀ x .



• We have arrived at: 0 < v ∈ C 0,1
loc (Rn), ∆v ≤ 0 in Rn, for

every x ∈ Rn, there exists 0 < λ̄(x) <∞ such that

vx ,λ̄(x)(y) ≤ v(y), ∀ |y − x | ≥ λ̄(x),

lim
|y |→∞

|y |n−2vx ,λ̄(x)(y) = α := lim inf
|y |→∞

|y |n−2v(y), ∀ x .

• Claim. We can deduce from the above that

v(x) = b
( a

1 + a2|x − x̄ |2
) n−2

2 , a, b > 0, x̄ ∈ Rn.

Since vk → v in C 0
loc(Rn) and f (λ(Avk )) = 1, can prove that

b = 1.



• A Lemma. For n ≥ 2, B1 ⊂ Rn, w1,w2 ∈ C 0(B1), w1,w2

differentiable at 0, u ∈ L1
loc(B1 \ {0}), ∆u ≤ 0 in B1 \ {0},

u(y) ≥ max{w1(y),w2(y)}, y ∈ B1 \ {0},

w1(0) = w2(0) = lim inf
y→0

u(y).

Then
∇w1(0) = ∇w2(0).

• Apply the lemma with w (x) :=
[
vx ,λ̄(x)

]
0,1

, u = v0,1.

• For some V ∈ Rn,

∇w (x)(0) = V , ∀ x ∈ Rn.



• A calculation yields

∇w (x)(0) = (n − 2)αx + α
n

n−2 v(x)
n

n−2∇v(x).

• Thus

∇x

(n − 2

2
α

n
n−2 v(x)−

2
n−2 − n − 2

2
α|x |2 + V · x

)
= 0, ∀ x ∈ D.

• Consequently, for some x̄ ∈ Rn and d ∈ R,

v(x)−
2

n−2 ≡ α−
2

n−2 |x − x̄ |2 + dα−
2

n−2 .

• Since v > 0, we must have d > 0, so

v(x) ≡
( α

2
n−2

d + |x − x̄ |2
) n−2

2 .



Proposition 3-2. Assume {vk} ∈ C 2(BRk
), Rk →∞,

f (λ(Avk ))(y) = 1, 0 < vk(y) ≤ vk(0) = 1, |y | ≤ Rk . (1)

Then ∀ ε > 0, ∃ k ′0 = k ′0(ε) and δ′ = δ′(ε) such that ∀ k > k ′0,

|vk(y)− U(y)| ≤ 2εU(y), ∀ |y | ≤ δ′Rk . (2)

Recall:

—– U(x) :=
(

1
1+|x |2

) n−2
2

—– AU ≡ 2I , f (λ(AU)) ≡ 1



By the local gradient estimates and by Proposition 3-1, after
passing to subsequence,

vk → U, in C 0
loc(Rn).

Lemma 1. ∀ ε > 0, ∃ k0, such that ∀ k ≥ k0,

min
|y |=r

vk(y) ≤ (1 + ε)U(y), ∀ 0 < r < Rk .

Proof.

• Facts:
U0,λ(y) < U(y), ∀ 0 < λ < 1, |y | > λ,

U0,1 ≡ U.

U0,λ(y) > U(y), ∀ λ > 1, |y | > λ.



• Contradiction argument: If for some ε > 0, ∃ rk

min
|y |=rk

vk(y) > (1 + ε)U(y).

• Then, using the above facts of U, rk →∞, and

(vk)λ(y) ≤ vk(y), ∀ 0 < λ < 1 + ε2, |y | = rk .

• Sending k →∞.

Uλ(y) ≤ U(y), ∀ 0 < λ < 1 + ε2, λ < |y | <∞.

Violating the above facts of U. Lemma 1 proved.



Lemma 2. ∀ ε > 0, ∃ small δ1 > 0, large r1 > 0, such that for
large k,

vk(y) ≥ (1− ε)U(y), ∀ |y | ≤ δ1Rk ,∫
r1≤|y |≤δ1Rk

v
n+2
n−2

k ≤ ε.

Proof. Since vk → U in C 0
loc(Rn), ∃ r1 such that for large k

vk(y) ≥ (1− ε2)U(y), ∀ |y | ≤ r1,

vk(y) ≥ (1− ε2)(r1)2−n, ∀ |y | = r1,

Superharmonicity of vk , maximum principle, we have

vk(y) ≥ (1− ε2)
(
|y |2−n − (Rk)2−n) , r1 ≤ |y | ≤ Rk .



Thus, for any δ1 ∈ (0, ε
2

n−2 ),

vk(y) ≥ (1− 2ε2)|y |2−n, r1 ≤ |y | ≤ δ1Rk .

The equation of vk implies that ∃ δ > 0,

−∆vk(y) ≥ n − 2

2
δvk(y)

n+2
n−2 in r1 ≤ |y | ≤ δ1Rk .

This implies

vk(y) ≥ (1− 2ε2)|y |2−n

+
1

C
|y |2−n

∫
2r1≤|x |≤δ1Rk/8

δvk(x)
n+2
n−2 dx , ∀ |y | =

δ1Rk

2
.

By Lemma 1,

(1 + 2ε2)|y |2−n ≥ vk(y), ∀ |y | =
δ1Rk

2
.

Lemma 2 follows from the above.



Since vk ≤ 1, by Lemma 2, for any ε > 0, we have, for large k ,∫
r1≤|y |≤δ1Rk

v
2n
n−2

k ≤ ε.

• Small energy implies L∞ bound — consequence of Liouville, as
showed before.

Lemma 3. ∃ δ0 > 0 and C0 > 1 such that if 0 < u ∈ C 2(B2),

f (λ(Au)) = 1, in B2,

∫
B2

u
2n
n−2 ≤ δ0,

then
u ≤ C0 in B1.



Lemma 4. ∃ C , δ4 > 0, independent of k , such that

vk(y) ≤ CU(y), ∀ |y | ≤ δ4Rk .

Proof. ∀ 4r1 < r < δ1Rk/4, consider

ṽk(z) = r
n−2

2 vk(rz),
1

4
< |z | < 4.

For large k ,∫
1
4
<|z|<4

ṽk(z)
2n
n−2 =

∫
r
4
<|η|<4r

vk(η)
2n
n−2 ≤ ε := δ0,

where δ0 > 0 is the number in Lemma 3.



• By Lemma 3,

ṽk(z) ≤ C ,
1

3
< |z | < 3,

for some universal constant C .

• By local gradient estimates,

|∇ log ṽk(z)| ≤ C ,
1

2
< |z | < 2.

• Thus
max
|z|=1

ṽk(z) ≤ min
|z|=1

ṽk(z).

i.e.
max
|x |=r

vk(x) ≤ C min
|x |=r

vk(x) ≤ CU(r).

—- used Lemma 1 for last inequality. Lemma 4 follows
immediately.



Proof of Proposition 3-2. Only need to prove that there exists δ′

and k ′0 such that for any k ≥ k ′0,

vk(y) ≤ (1 + 2ε)U(y), ∀ |y | ≤ δ′Rk .

Suppose the contrary, passing to subsequence, ∃ |yk | = δkRk ,

δk → 0+, but

vk(yk) = max
|y |=δkRk

vk(y) ≥ (1 + 2ε)U(yk).

Since vk → v in C 0
loc(Rn), |yk | → ∞.

Consider rescaling of vk :

v̂k(z) := |yk |n−2vk(|yk |z), |z | < δ4Rk

|yk |
→ ∞.

We have

fk(λ(Av̂k ))(z) := |yk |−2f (λ(Avk ))(z) = |yk |−2, |z | < δ4Rk

|yk |
.

Since v̂k ≤ C , we can apply gradient estimates to fk to obtain:



∀ 0 < α < β <∞, ∃ C (α, β) such that for large k,

|∇ log v̂k(z)| ≤ C (α, β), ∀ α < |z | < β.

We know from Lemma 1 and the above

min
|z|=1

v̂k(z) ≤ 1 +
5ε

4
,

and

max
|z|=1

v̂k(z) ≥ 1 +
3ε

2
.

Passing to subsequence, for some 0 < v∗ ∈ C 0,1
loc (Rn \ {0}),

v̂k → v̂∗ in C 1,α
loc (Rn \ {0}), ∀ 0 < α < 1,

and v∗ satisfies in viscosity sense

λ(Av̂∗
) ∈ ∂Γ, Rn \ {0}.



Theorem

u ∈ C 0,1
loc (Rn \ {0}), λ(Au) ∈ ∂Γ in Rn \ {0}, viscosity sense

implies

u radially symmetric about the origin 0.

So v̂∗ radially symmetric.

Remark. If f is not assumed to be homogeneous, v̂∗ does not
necessarily satisfy λ(Av̂∗

) ∈ ∂Γ, Rn \ {0}.
Passing to subsequence,

min
|z|=1

v̂∗(z) ≤ 1 +
5ε

4
,

max
|z|=1

v̂∗(z) ≥ 1 +
3ε

2
.

Contradiction. Proposition 3-2 proved.



Proof of Theorem 1.

• By a previously known energy estimate of,∫
B1.9

u
2n
n−2

k ≤ C .

• ∃ 1.8 < r1 < r2 < 1.9,∫
Br2\Br1

u
2n
n−2

k ≤ δ0.

• ∃ r1 < r3 < r4 < r2 such that

uk ≤ C , in Br4 \ Br3 ,

• Go to a maximum point of uk in Br4 , and apply Proposition 3-2,
...., then apply Proposition 3-2 again in the region ... Since each
time, it takes away a fixed amount of energy, it stops in finite
times (the total energy is bounded by C ).
Theorem 1 is proved.


