Second order conformally invariant elliptic
equations

Yanyan Li
Rutgers University

May 25, 2017. ICTP, Trieste, ltaly



e Theorem 3-1 (Luc Nguyen, L. ) (Blow up analysis)
Assume {ux} € C?(By),

f(MA")) =1, ux >0, in By, supux — oo.

By
Then V € > 0, after passing to a subsequence,
3 {xt, -, x"} C B2(0), 1< m< m,

X —xi| > Kt >0, Yk, i#]j,

Uk(XII;): sup  Ug.

Bs(x;)
K71<uk( )<K Vi j,k,
ue( k)
|uk(x) — U0 (x)] < U D (x), ¥ x € Bs(xf).
1 K . m i
) < uk(x) < m, In Bg(o)\ui:185(xk)a v k.

K& =2u(x}
)

— UM (x) = (7 2 (x = R)),
— U(x) = (1 + |x[2)*2" satisfies F(A(AY)) =
—— m. K depend only on (f.I), 6 depends on (f,I) and .



Proposition 3-1. (Strengthened Liouville type theorem) Assume
0<ve COR™), 0< v € C3Bg,), Rk — o0,

f(AM(A)) =1 in Bg,, vk — vin C2(R").

a n—2
— )7 a>0Xx€cR"
(o) 7 270X

Then v(x) =

e v satisfies f(A(AY)) = 1, in R" in viscosity sense.
Open Problem. Let 0 < v € C2_(R") satisfy
f(AM(AY)) =1, in R" in viscosity sense.

Is it true that

v(x) = (

a n—2
- 2
1+a2\x—>‘<|2) ’

a>0,xeR"



Proof of Proposition 3-1. 0 < v superharmonic, so
YI"2v(y) = 260 > 0, ¥ |y| > 1.
Passing to subsequence, shrinking Ry, shrinking ¢y, may assume

WVe(y) = vyl < (R)™" wi(y) > @o(Re)*™", ¥ |yl < Ru.



e Define for x € R”, |x| +1 < Ry /4,

_ R .
() = sup{0 < 1 < 75 | (e < vicin Br,(0)\Br(x), V0 < A < i},

where (vi)xa(y) := (ﬁ)”*zvk(x + >‘|_2y(f;|)2<)) the Kelvin
transformation.
e \(x) well defined and 3C(x) > 0 such that

1
C(x)

R

—, Vk
4

< M(x) <

—— Proof based on :
e Local gradient estimates:
uc C3(By), f(MAY))=1,0<u<b, in B,
implies
[Vlogu| < C in By
— C depends only on (f,I') and b.



e Set \(x) =liminf A\x(x) € (0, 00].
k—ro0

e Can prove (maximum principle, Hopf Lemma): either
A(x) =00V x or A(x) < 00 V x.

>l

(x) = oo leads to: v = Constant, which can be ruled out.

A(x) < 00 V x leads to:

lim |y|" v, s(y) == liminf|y|"2v(y) < o0, V x.
ly|=o0 ’ ly[—o0



e We have arrived at: 0 < v € CO’I(R”), Av <0 in R", for

loc

every x € R, there exists 0 < A(x) < oo such that

Veipg(Y) S vy), Yy — x| > A(x),

lim |y|"2

|y|—o0

v, ;\(X)(y) = a = liminf |y|"2v(y), V x.
' |y|—o0
e Claim. We can deduce from the above that
a n—2
=bp(———=) 2 b>0,xeR".
v(x) (1_'_32’)(_)_(‘2) , a,b>0,x¢

Since v, — v in C2_(R™) and f(A(A%)) = 1, can prove that

loc
b=1.



e A Lemma. For n > 2, By CR", wi,ws € C%(By), wy, wo
differentiable at 0, u € L1 _(B;\ {0}), Au<0in By \ {0},

loc

u(y) = max{wi(y), wa(y)}, ¥ € B\ {0},
wi(0) = wy(0) = Ii}r/nHIQf u(y).

Then
Vwi(0) = Vws(0).

e Apply the lemma with w) = |:VX75‘(X):|O X u=vp,a.
e For some V € R”, 7

vw(0) =V, V x e R".



e A calculation yields
Vw™(0) = (n - 2)ax + = v(x)ﬁ?Vv(x).

e Thus

n—2 _n _ 2 n—2
2

Vi(

am2y(x) =2 — Ta!xF +V-x)=0,VxeD.

e Consequently, for some x € R” and d € R,

2 2

v(x) 2 = 2 x — X2+ da~ 2.

e Since v > 0, we must have d > 0, so

2
Qn—2 n—2

(d+|x—>'<\2) i

v(x) =



Proposition 3-2. Assume {v,} € C?(Bg,), Rk — o0,
FAAM)) =1, 0<w(y)<w(0)=1, |y[<R. (1)
Then ¥V € > 0, 3 ky = kj(€) and ¢’ = ¢’(€) such that V k > ki,

vi(y) = U(y)| < 2¢U(y), VY |yl <R (2)




By the local gradient estimates and by Proposition 3-1, after
passing to subsequence,

vi = U, in C(R™).
Lemma 1. V € > 0, 3 kg, such that V k > ko,

|nrin vi(y) < (14 ¢€)U(y), VO<r< Ry
yl=r

Proof.

e Facts:
Uoa(y) < U(y), YVO<A<1y|> A,
U071 = U.

Uoa(y) > Uly), YA>1lyl> A



e Contradiction argument: If for some € > 0, 3 ry

min vk(y) > (1 +€)U(y).

lyl=r«

e Then, using the above facts of U, r, — oo, and
(viAY) S wi(y), VO <A <14,y = n.
e Sending k — oc.
Ur(y) S U(y), VO< A <1+ X< |y| < .

Violating the above facts of U. Lemma 1 proved.



Lemma 2. V ¢ > 0, I small §; > 0, large 1 > 0, such that for
large k,
vk(y) > (1= €)U(y),  Vly| < iRk,

n+2
/ v, <e
n<|y|<d1 Ry

(R"), 3 r1 such that for large k

Proof. Since vy — U in C2_

w(y) > 1-)U(y), Vlyl<n,

w(y) > 1 -€)(n)*",  Vlyl=n,

Superharmonicity of v, maximum principle, we have

() =1 =) (IyP"=(R)*),  n<lyl<Re



Thus, for any 6; € (O,eﬁ),

vil(y) = (1—26)|y[>", n <|y| < 61Rx.
The equation of vy implies that 3§ > 0,

n— n+2 .
5Vk( ) -2 inrn < ]y| < 01 Rk.

—Av(y) >

This implies

(y) > (1-28)y)"
01 Ry

1 2—n 42
+EM Svk(x)n=2dx, V |y| = >
2I’1§|X|S51Rk/8

By Lemma 1,
(Sle

(L+22)y " > wly), V=

Lemma 2 follows from the above.



Since v, < 1, by Lemma 2, for any € > 0, we have, for large k,

2n
/ v, % <e
rn<l|y|<d1 Rk

e Small energy implies L> bound — consequence of Liouville, as
showed before.

Lemma 3. 3 5o > 0 and Gy > 1 such that if 0 < u € C?(By),

FIMAY)) = 1, in B, / Uz < 6,
B>

then
u<C in Bi.



Lemma 4. 3 C, 4 > 0, independent of k, such that

vi(y) < CU(y),  V |y| < daRx.
Proof. V 4r; < r < §1Rk/4, consider

- n—2 1

U(z) = r'z vw(rz), 1< |z| < 4.
For large k,

2n 2n
/ \7k(z) n—2 — / vk(n) -2 < € := Jp,
L1c)z|<4 7<|nl<4r

where dg > 0 is the number in Lemma 3.




e By Lemma 3,

N 1

(z) < C, 3< |z] <3,
for some universal constant C.

e By local gradient estimates,

1
|Vlog v (z)| < C, 5 < |z| < 2.

e Thus

max Vx(z) < min Vg(2).
|z|=1 |z|]=1

max vk(x) < C min vg(x) < CU(r).

x|=r Ix|=r

—- used Lemma 1 for last inequality. Lemma 4 follows
immediately.



Proof of Proposition 3-2. Only need to prove that there exists §’
and kg such that for any k > kg,

() < (1 +2)U(y), VY ly| <R
Suppose the contrary, passing to subsequence, 3 |yx| = dx Rk,

O — 0+, but

vi(yk) = Jmax vi(y) = (14 2€)U(y«)-

. . O
Since v = v in C)(R"), |yk| — oo.
Consider rescaling of vy:

R B 54 Ri
() = lyil "2 vie(lyilz) 2| < v

We have
04 Ry
|yl

Since ¥, < C, we can apply gradient estimates to f, to obtain:

f(MA™)(2) = Iyl 2AMA))(2) = v 2, [zl <




V0<a<pf<oo, 3 C(a,pB) such that for large k,
[Vlog U(2)| < C(a,B), Va<|z|<pB.

We know from Lemma 1 and the above

5¢
A <14
|rzr|1|:n1 (z) <1+ 1

and

3e
ax v >1+ —.
HE R

Passing to subsequence, for some 0 < v* € CYH(R™\ {0}),

loc

Ve — 0" in CEYR"\{0}), VO < a <1,

loc

and v* satisfies in viscosity sense

MATYeoar,  R"\ {0}



Theorem

ue CO,l(Rn \ {0}), A(A”) € oI in R™"\ {0}, viscosity sense

loc
implies
u radially symmetric about the origin 0.

So ¥* radially symmetric.

Remark. If f is not assumed to be homogeneous, V* does not
necessarily satisfy A(A”") € dr, R™\ {0}.
Passing to subsequence,

5¢
ok <142
min V@) <1

3e
0* >1+ —.
|r;1|a:>i V(z) > 1+ 5

Contradiction. Proposition 3-2 proved.



Proof of Theorem 1.

e By a previously known energy estimate of,

2n
n—2
/ u; " <C.
Big

ed18<r<nmrn<l.9,

2n
/ u£’2 < 4.
Br,\Br,

e dr < r3 << nrsuch that

u < C, in B, \ B,

e Go to a maximum point of uy in By, and apply Proposition 3-2,
...., then apply Proposition 3-2 again in the region ... Since each
time, it takes away a fixed amount of energy, it stops in finite
times (the total energy is bounded by C).

Theorem 1 is proved.



