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Diffusion equations describe how a continuous medium
(say, a population) spreads to occupy the available space.
Models come from all kinds of applications: fluids,
chemicals, bacteria, animal populations, the stock market,...
These equations have occupied a large part of my research since 1980.

The mathematical study of diffusion starts with the Heat
Equation,

ut = ∆u
a linear example of immense influence in Science.
The heat example is generalized into the theory of linear parabolic
equations, which is nowadays a basic topic in any advanced study of
PDEs.
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Nonlinear equations

However, the heat example and the linear models are not representative
enough, since many models of science are nonlinear in a form that is
very not-linear. A general model of nonlinear diffusion takes the
divergence form

∂tH(u) = ∇ · ~A(x, u,Du) + B(x, t, u,Du)

with monotonicity conditions on H and ∇p ~A(x, t, u, p) and structural
conditions on ~A and B. Posed in the 1960s (Serrin et al.)
In this generality the mathematical theory is too rich to admit a simple
description. This includes the big areas of Nonlinear Diffusion and
Reaction Diffusion, where I have been working.
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Nonlinear heat flows

Many specific examples, now considered the “classical nonlinear
diffusion models”, have been investigated to understand in detail the
qualitative features and to introduce the quantitative techniques, that
happen to be many and from very different origins
Typical nonlinear diffusion: Stefan Problem (phase transition between
two fluids like ice and water), Hele-Shaw Problem (potential flow in a
thin layer between solid plates), Porous Medium Equation:
ut = ∆(um), Evolution P-Laplacian Eqn: ut = ∇ · (|∇u|p−2∇u).

Typical reaction diffusion: Fujita model ut = ∆u + up.
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Recent Direction. Fractional diffusion

Replacing Laplacians by fractional Laplacians is motivated by the need to
represent anomalous diffusion. In probabilistic terms, it replaces
next-neighbour interaction of Random Walks and their limit, the Brownian
motion, by long-distance interaction. The main mathematical models are the
Fractional Laplacians that have special symmetry and invariance properties.

The Basic evolution equation

ut + (−∆)su = 0

Intense work in Stochastic Processes for some decades, but not in Analysis of
PDEs until 10 years ago, initiated around Prof. Caffarelli in Texas.
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The fractional Laplacian operator

Different formulas for fractional Laplacian operator.
We assume that the space variable x ∈ Rn, and the fractional exponent
is 0 < s < 1. First, pseudo differential operator given by the Fourier transform:

̂(−∆)su(ξ) = |ξ|2sû(ξ)

Singular integral operator:

(−∆)su(x) = Cn,s

∫
Rn

u(x)− u(y)

|x− y|n+2s dy

With this definition, it is the inverse of the Riesz integral operator (−∆)−su.
This one has kernel C1|x− y|n−2s, which is not integrable.
Take the random walk for Lévy processes:

un+1
j =

∑
k

Pjkun
k

where Pik denotes the transition function which has a . tail (i.e, power decay
with the distance |i− k|). In the limit you get an operator A as the infinitesimal
generator of a Levy process: if Xt is the isotropic α-stable Lévy process we have

Au(x) = lim
h→0

E(u(x)− u(x + Xh))
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The fractional Laplacian operator II

The α-harmonic extension: Find first the solution of the (n + 1) problem

∇ · (y1−α∇v) = 0 (x, y) ∈ Rn × R+; v(x, 0) = u(x), x ∈ Rn.

Then, putting α = 2s we have

(−∆)su(x) = −Cα lim
y→0

y1−α ∂v
∂y

When s = 1/2 i.e. α = 1, the extended function v is harmonic (in n + 1
variables) and the operator is the Dirichlet-to-Neumann map on the base space
x ∈ Rn. It was proposed in PDEs by Caffarelli and Silvestre, 2007.
This construction is generalized to other differential operators, like the
harmonic oscillator, by Stinga and Torrea, Comm. PDEs, 2010.

The semigroup formula in terms of the heat flow generated by ∆:

(−∆)sf (x) =
1

Γ(−s)

∫ ∞
0

(
et∆f (x)− f (x)

) dt
t1+s .
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Fractional Laplacians on bounded domains
In Rn all the previous versions are equivalent. In a bounded domain Ω ⊂ Rn we have
to re-examine all of them. Two main alternatives are studied in probability and PDEs,
corresponding to different options about what happens to particles at the boundary or
what is the domain of the functionals. There are more alternatives.

The restricted Laplacian. It is the simplest option. Functions f (x) defined in Ω
are extended by zero to the complement and then the whole space hypersingular
integral is used

(−∆rest)
sf (x) = cn,sP.V.

∫
Rn

f (x)− f (y)

|x− y|n+2s dy.

The spectral Laplacian

(−∆sp)
sf (x) =

1
Γ(−s)

∫ ∞
0

(
et∆D f (x)− f (x)

) dt
t1+s =

∞∑
j=1

λs
j f̂j ϕj(x) ,

where (λj, ϕj), j = 1, 2, . . . are the normalized spectral sequence of the
standard Dirichlet Laplacian ∆D on Ω, f̂j are the Fourier coeff. of f .

Analysis references for the whole space. Books by Landkof (1966-72), Stein
(1970), Davies (1996). For Bounded Domains, see below.
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Mathematical theory of the Fractional Heat Equation

The Linear Problem is
ut + (−∆)s(u) = 0

We take x ∈ Rn, 0 < m <∞, 0 < s < 1, with initial data in u0 ∈ L1(Rn).
Normally, u0, u ≥ 0.
This model represents the linear flow generated by the so-called Lévy processes
in Stochastic PDEs, where the transition from one site xj of the mesh to another
site xk has a probability that depends on the distance |xk − xj| in the form of an
inverse power for j 6= k. The power we take is c |xk − xj|−n−2s. The range is
0 < s < 1. The limit from random walk to the continuous equation is done by
E. Valdinoci, in From the long jump random walk to the fractional Laplacian,
Bol. Soc. Esp. Mat. Apl. 49 (2009), 33-44.
The solution of the linear equation can be obtained in Rn by means of
convolution with the fractional heat kernel

u(x, t) =

∫
u0(y)Pt(x− y) dy,

and people in probability (like Blumental and Getoor) proved in the 1960s that

Pt(x) � t(
t1/s + |x|2

)(n+2s)/2 ⇒ look at the fat tail.
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The paper
B. Barrios, I. Peral, F. Soria, E. Valdinoci. “A Widder’s type theorem for the
heat equation with nonlocal diffusion” Arch. Ration. Mech. Anal. 213 (2014),
no. 2, 629-650, studies the theory in classes of (maybe) large functions and
studies the question: is every solution representable by the convolution formula.
The answer is yes if the solutions are ‘nice’ strong solutions and the growth in x
is no more that u(x, t) ≤ (1 + |x|)a with a < 2s.

Our recent paper
M. Bonforte, Y. Sire, J. L. Vázquez. “Optimal Existence and Uniqueness
Theory for the Fractional Heat Equation”, Arxiv:1606.00873v1
solves the problem of existence and uniqueness of solutions when the initial
data is a locally finite Radon measure with the condition∫

Rn
(1 + |x|)−(n+2s) dµ(x) <∞ . (1)

Moreover we prove that any constructed solution by convolution, or any very
weak solution u ≥ 0, has an initial trace µ which is a measure in the above class
Ms. So the result closes the problem of the Widder theory for the fractional
heat equation posed in Rn.

The paper goes on to tell what you want to know about this semigroup for
nonnegative solutions. Arxiv is free.
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A detailed account of this talk

J. L. Vázquez. The mathematical theories of diffusion. Nonlinear and
fractional diffusion,
to appear in Lecture Notes in Mathematics, CIME Summer Course
2016.



15

A detailed account of this talk

J. L. Vázquez. The mathematical theories of diffusion. Nonlinear and
fractional diffusion,
to appear in Lecture Notes in Mathematics, CIME Summer Course
2016.



16

Outline

1 Linear and Nonlinear Diffusion
Nonlinear equations

2 Fractional diffusion

3 Nonlinear Fractional diffusion models
Model I. A potential Fractional diffusion
Main estimates for this model

4 Model II. Fractional Porous Medium Equation
Some recent work

5 Operators and Equations in Bounded Domains



17

Nonlocal nonlinear diffusion model I

The model arises from the consideration of a continuum, say, a fluid,
represented by a density distribution u(x, t) ≥ 0 that evolves with time
following a velocity field v(x, t), according to the continuity equation

ut +∇ · (u v) = 0.

We assume next that v derives from a potential, v = −∇p, as happens in fluids
in porous media according to Darcy’s law, an in that case p is the pressure. But
potential velocity fields are found in many other instances, like Hele-Shaw
cells, and other recent examples.

We still need a closure relation to relate u and p. In the case of gases in porous
media, as modeled by Leibenzon and Muskat, the closure relation takes the
form of a state law p = f (u), where f is a nondecreasing scalar function, which
is linear when the flow is isothermal, and a power of u if it is adiabatic.
The linear relationship happens also in the simplified description of water
infiltration in an almost horizontal soil layer according to Boussinesq. In both
cases we get the standard porous medium equation, ut = c∆(u2).
See PME Book for these and other applications (around 20!).
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Nonlocal diffusion model. The problem
The diffusion model with nonlocal effects proposed in 2007 with Luis
Caffarelli uses the derivation of the PME but with a closure relation of the form
p = K(u), where K is a linear integral operator, which we assume in practice
to be the inverse of a fractional Laplacian. Hence, p es related to u through a
fractional potential operator, K = (−∆)−s, 0 < s < 1, with kernel

k(x, y) = c|x− y|−(n−2s)

(i.e., a Riesz operator). We have (−∆)sp = u.

The diffusion model with nonlocal effects is thus given by the system

ut = ∇ · (u∇p), p = K(u). (2)

where u is a function of the variables (x, t) to be thought of as a density or
concentration, and therefore nonnegative, while p is the pressure, which is
related to u via a linear operator K. ut = ∇ · (u∇(−∆)−su)

The problem is posed for x ∈ Rn, n ≥ 1, and t > 0, and we give initial
conditions

u(x, 0) = u0(x), x ∈ Rn, (3)

where u0 is a nonnegative, bounded and integrable function in Rn.
Papers and surveys by us and others are available, see below
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Nonlocal diffusion model

The interest in using fractional Laplacians in modeling diffusive processes has a
wide literature, especially when one wants to model long-range diffusive
interaction, and this interest has been activated by the recent progress in the
mathematical theory as a large number works on elliptic equations, mainly of
the linear or semilinear type (Caffarelli school; Bass, Kassmann, and others)

There are many works on the subject. Here is a good reference to fractional
elliptic work by a young Spanish author
Xavier Ros-Otón. Nonlocal elliptic equations in bounded domains: a survey,
Preprint in arXiv:1504.04099 [math.AP].
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Nonlocal diffusion Model I. Applications
Modeling dislocation dynamics as a continuum. This has been studied by P.
Biler, G. Karch, and R. Monneau (2008), and then other collaborators,
following old modeling by A. K. Head on Dislocation group dynamics II.
Similarity solutions of the continuum approximation. (1972).
This is a one-dimensional model. By integration in x they introduce viscosity
solutions a la Crandall-Evans-Lions. Uniqueness holds.
Equations of the more general form ut = ∇ · (σ(u)∇Lu) have appeared
recently in a number of applications in particle physics. Thus, Giacomin and
Lebowitz (J. Stat. Phys. (1997)) consider a lattice gas with general short-range
interactions and a Kac potential, and passing to the limit, the macroscopic
density profile ρ(r, t) satisfies the equation

∂ρ

∂t
= ∇ ·

[
σs(ρ)∇δF(ρ)

δρ

]
See also (GL2) and the review paper (GLP). The model is used to study phase
segregation in (GLM, 2000).
More generally, it could be assumed that K is an operator of integral type
defined by convolution on all of Rn, with the assumptions that is positive and
symmetric. The fact the K is a homogeneous operator of degree 2s, 0 < s < 1,
will be important in the proofs. An interesting variant would be the Bessel
kernel K = (−∆ + cI)−s. We are not exploring such extensions.
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Extreme cases

If we take s = 0, K = the identity operator, we get the standard porous medium
equation, whose behaviour is well-known, see references later.

In the other end of the s interval, when s = 1 and we take K = −∆ we get

ut = ∇u · ∇p− u2, −∆p = u. (4)

In one dimension this leads to ut = uxpx − u2, pxx = −u. In terms of
v = −px =

∫
u dx we have

vt = upx + c(t) = −vxv + c(t),

For c = 0 this is the Burgers equation vt + vvx = 0 which generates shocks in
finite time but only if we allow for u to have two signs.

HYDRODYNAMIC LIMIT. The case s = 1 in several dimensions is more
interesting because it does not reduce to a simple Burgers equation.

ut = ∇ · (u∇p) = ∇u · ∇p− u2; , p = (−∆)−1u ,

Applications in superconductivity and superfluidity, see paper with Serfaty and
below.
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Our first project. Results

Existence of weak energy solutions and property of finite propagation
L. Caffarelli and J. L. Vázquez, Nonlinear porous medium flow with
fractional potential pressure, Arch. Rational Mech. Anal. 2011; arXiv
2010.

Existence of self-similar profiles, renormalized Fokker-Planck equation
and entropy-based proof of stabilization
L. Caffarelli and J. L. Vázquez, Asymptotic behaviour of a porous
medium equation with fractional diffusion, appeared in Discrete Cont.
Dynam. Systems, 2011; arXiv 2010.

Regularity in three levels: L1 → L2, L2 → L∞, and bounded implies Cα

L. Caffarelli, F. Soria, and J. L. Vázquez, Regularity of porous medium
equation with fractional diffusion, J. Eur. Math. Soc. (JEMS) 15 5
(2013), 1701–1746. The very subtle case s = 1/2 is solved in a new
paper L. Caffarelli, and J. L. Vázquez, appeared in ArXiv and as
Newton Institute Preprint, 2014
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Our first project. Results

Limit s→ 1 S. Serfaty, and J. L. Vazquez, Hydrodynamic Limit of
Nonlinear. Diffusion with Fractional Laplacian Operators, Calc. Var.
PDEs 526, online; arXiv:1205.6322v1 [math.AP], may 2012.

A presentation of this topic and results for the Proceedings from the
Abel Symposium 2010.

J. L. Vázquez. Nonlinear Diffusion with Fractional Laplacian
Operators. in “Nonlinear partial differential equations: the Abel
Symposium 2010”, Holden, Helge & Karlsen, Kenneth H. eds.,
Springer, 2012. Pp. 271–298.

Last reference is proving that the selfsimilar solutions of Barenblatt
type (Caffareli-Vazquez, Biler-Karch-Monneau) are attractors with
calculated rate in 1D
Exponential Convergence Towards Stationary States for the 1D Porous
Medium Equation with Fractional Pressure, by J. A. Carrillo, Y. Huang,
M. C. Santos, and J. L. Vázquez. JDE, 2015.
Uses entropy analysis. Problem is open (and quite interesting in higher
dimensions).
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Main estimates for this model

We recall that the equation of M1 is ∂tu = ∇ · (u∇K(u)), posed in the whole
space Rn.
We consider K = (−∆)−s for some 0 < s < 1 acting on Schwartz class
functions defined in the whole space. It is a positive essentially self-adjoint
operator. We let H = K1/2 = (−∆)−s/2.
We do next formal calculations, assuming that u ≥ 0 satisfies the required
smoothness and integrability assumptions. This is to be justified later by
approximation.

Conservation of mass
d
dt

∫
u(x, t) dx = 0. (5)

First energy estimate:

d
dt

∫
u(x, t) log u(x, t) dx = −

∫
|∇Hu|2 dx. (6)

Second energy estimate

d
dt

∫
|Hu(x, t)|2 dx = −2

∫
u|∇Ku|2 dx. (7)
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Main estimates
Conservation of positivity: u0 ≥ 0 implies that u(t) ≥ 0 for all times.

L∞ estimate. We prove that the L∞ norm does not increase in time.
Proof. At a point of maximum of u at time t = t0, say x = 0, we have

ut = ∇u · ∇P + u ∆K(u).

The first term is zero, and for the second we have −∆K = L where L = (−∆)q

with q = 1− s so that

∆Ku(0) = −Lu(0) = −
∫

u(0)− u(y)

|y|n+2(1−s) dy ≤ 0.

This concludes the proof.

We did not find a clean comparison theorem, a form of the usual maximum
principle is not proved for Model 1. Good comparion works for Model 2 to be
presented below, actually, it helps produce a very nice theory.

Finite propagation is true for model M1. Infinite propagation is true for model
M2.

∂tu + (−∆)sum = 0,

the most recent member of the family, that we love so much.
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Boundedness

Solutions are bounded in terms of data in Lp, 1 ≤ p ≤ ∞.
For Model 1 Use (the de Giorgi or the Moser) iteration technique on the
Caffarelli-Silvestre extension as in Caffarelli-Vasseur.
Or use energy estimates based on the properties of the quadratic and
bilinear forms associated to the fractional operator, and then the
iteration technique

Theorem (for M1) Let u be a weak solution the IVP for the FPME
with data u0 ∈ L1(Rn) ∩ L∞(Rn), as constructed before. Then, there
exists a positive constant C such that for every t > 0

sup
x∈Rn
|u(x, t)| ≤ C t−α‖u0‖γL1(Rn)

(8)

with α = n/(n + 2− 2s), γ = (2− 2s)/((n + 2− 2s). The constant C
depends only on n and s.
This theorem allows to extend the theory to data u0 ∈ L1(Rn), u0 ≥ 0,
with global existence of bounded weak solutions.
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Energy and bilinear forms

Energy solutions: The basis of the boundedness analysis is a property
that goes beyond the definition of weak solution. The general energy
property is as follows: for any F smooth and such that f = F′ is
bounded and nonnegative, we have for every 0 ≤ t1 ≤ t2 ≤ T ,∫

F(u(t2)) dx−
∫

F(u(t1)) dx = −
∫ t2

t1

∫
∇[f (u)]u∇p dx dt =

−
∫ t2

t1

∫
∇h(u)∇(−∆)−su dx dt

where h is a function satisfying h′(u) = u f ′(u). We can write the last
integral as a bilinear form∫

∇h(u)∇(−∆)−su dx = Bs(h(u), u)

This bilinear form Bs is defined on the Sobolev space W1,2(Rn) by

Bs(v,w) = Cn,s

∫∫
∇v(x)

1
|x− y|n−2s∇w(y) dx dy . (9)
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Energy and bilinear forms II

This bilinear form Bs is defined on the Sobolev space W1,2(Rn) by

Bs(v,w) = Cn,s
∫∫
∇v(x) 1

|x−y|n−2s∇w(y) dx dy =∫∫
N−s(x, y)∇v(x)∇w(y) dx dy

where N−s(x, y) = Cn,s|x− y|−(n−2s) is the kernel of operator (−∆)−s.
After some integrations by parts we also have

Bs(v,w) = Cn,1−s

∫∫
(v(x)− v(y))

1
|x− y|n+2(1−s) (w(x)− w(y)) dx dy

(10)
since −∆N−s = N1−s.
It is known (Stein) that Bs(u, u) is an equivalent norm for the fractional
Sobolev space W1−s,2(Rn).
We will need in the proofs that Cn,1−s ∼ Kn(1− s) as s→ 1, for some
constant Kn depending only on n.
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Energy and bilinear forms II

This bilinear form Bs is defined on the Sobolev space W1,2(Rn) by

Bs(v,w) = Cn,s
∫∫
∇v(x) 1

|x−y|n−2s∇w(y) dx dy =∫∫
N−s(x, y)∇v(x)∇w(y) dx dy

where N−s(x, y) = Cn,s|x− y|−(n−2s) is the kernel of operator (−∆)−s.
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Additional and Recent work, open problems

The asymptotic behaviour as t→∞ is a very interesting topic
developed in a paper with Luis Caffarelli. This was our first work
(2008, published 2011). Rates of convergence are found in dimension
n = 1 (Carrillo, Huang, Santos, JLV) but they are not available for
n > 1, they are tied to some functional inequalities that are not known.
The study of the free boundary is in progress, but it is still open for
small s > 0.
The equation is generalized into ut = ∇ · (um−1∇(−∆)−su) with
m > 1. Recent work with D. Stan and F. del Teso shows that finite
propagation is true for m ≥ 2 and propagation is infinite is m < 2. This
is quite different from the standard porous medium case s = 0, where
m = 1 is the dividing value.
Gradient flow in Wasserstein metrics is work by S. Lisini, E. Mainini
and A. Segatti, just appeared in arXiv, A gradient flow approach to the
porous medium equation with fractional pressure. Thanks to the Pavia
people!
Previous work by J. A. Carrillo et al. in n = 1.
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The questions of uniqueness and comparison are solved in dimension
n = 1 thanks to the trick of integration in space used by Biler, Karch,
and Monneau. New tools are needed to make progress in several
dimensions.
Recent uniqueness results. Paper by X H Zhou, W L Xiao, J C Chen,
Fractional porous medium and mean field equations in Besov spaces,
EJDE 2014. They obtain local in time strong solutions in Besov spaces.
Thus, for initial data in Bα1,∞ if 1/2 ≤ s < 1 and α > n + 1 and n ≥ 2.
The problem in a bounded domain with Dirichlet or Neumann data has
not been studied.
Good numerical studies are needed.
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FPME: Second model for fractional Porous Medium
Flows

An alternative natural equation is the equation that we will call FPME:

∂tu + (−∆)sum = 0. (11)

This model arises from stochastic differential equations when modeling
for instance heat conduction with anomalous properties and one
introduces jump processes into the modeling.
Understanding the physical situation looks difficult to me , but the
modelling on linear an non linear fractional heat equations is done by
Stefano Olla, Milton Jara and collaborators, see for instance
M. D. Jara, T. Komorowski, S. Olla, Ann. Appl. Probab. 19 (2009), no. 6,
2270–2300. M. Jara, C. Landim, S. Sethuraman, Probab. Theory Relat.
Fields 145 (2009), 565–590.

Another derivation comes from boundary control problems and it
appears in Athanasopoulos, I.; Caffarelli, L. A.
Continuity of the temperature in boundary heat control problems, Adv. Math.
224 (2010), no. 1, 293–315, where they prove Cα regularity of the solutions.
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Mathematical theory of the FPME, Model 2

The Problem is
ut + (−∆)s(|u|m−1u) = 0

We take x ∈ Rn, 0 < m <∞, 0 < s < 1, with initial data in u0 ∈ L1(Rn).
Normally, u0, u ≥ 0.
This second model, M2 here, represents another type of nonlinear interpolation,
this time between

ut −∆(|u|m−1u) = 0 and ut + |u|m−1u = 0

A complete analysis of the Cauchy problem done by
A. de Pablo, F. Quirós, Ana Rodrı́guez, and J.L.V., in 2 papers appeared in
Advances in Mathematics (2011) and Comm. Pure Appl. Math. (2012).
In the classical Bénilan-Brezis-Crandall style, a semigroup of weak energy
solutions is constructed, the L1 − L∞ smoothing effect works,
Cα regularity (if m is not near 0),
Nonnegative solutions have infinite speed of propagation for all m and s⇒ no
compact support. But Model 1 with Caffarelli did have the compact support
property.
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Outline of work done for model M2
Comparison of models M1 and M2 is quite interesting

Existence of self-similar solutions, paper JLV, JEMS 2014. The fractional
Barenblatt solution is constructed:

U(x, t) = t−αF(xt−β)

The difficulty is to find F as the solution of an elliptic nonlinear equation of
fractional type.
F has behaviour like a Blumental tail F(r) ∼ r−(n+2s) for m ≥ 1, but not for
some fast diffusion m < 1. Asymptotic behaviour follows: the Barenblatt
solution is an attractor.

A priori upper and lower estimates of intrinsic, local type. Paper with Matteo
Bonforte in Advances Math., 2014 for problems posed in Rn.
- Quantitative positivity and Harnack Inequalities follow.
Against some prejudice due to the nonlocal character of the diffusion, we are
able to obtain them here for fractional PME/FDE using a technique of weighted
integrals to control the tails of the integrals in a uniform way. The novelty is the
weighted functional inequalities.
Work on bounded domains is more recent, see below.
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Existence of classical solutions and higher regularity for the FPME and
the more general model

∂tu + (−∆)sΦ(u) = 0

Two works by group PQRV. The first appeared at J. Math. Pures Appl.
treats the model case Φ(u) = log(1 + u), which is interesting. Second
is general Φ and is accepted 2015 in J. Eur. Math. Soc. It proves higher
regularity for nonnegative solutions of this fractional porous medium
equation.
Recent extension of C∞ regularity to solutions in bounded domains by
M. Bonforte, A. Figalli, X. Ros-Oton, Infinite speed of propagation and
regularity of solutions to the fractional porous medium equation in
general domains, arxiv1510.03758.

Symmetrization (Schwarz and Steiner). Collaboration with Bruno
Volzone, two papers at JMPA. Applying usual symmetrization
techniques is not easy and we have many open problems. Recent
collaboration with Sire and Volzone on the Faber Krahn inequality.
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The phenomenon of KPP propagation in linear and nonlinear fractional
diffusion. Work with Diana Stan based on previous linear work of
Cabré and Roquejoffre (2009, 2013).
Numerics is being done by a number of authors at this moment:
Nochetto, Jakobsen, and coll., and with my student Felix del Teso.
Extension of model M1 to accept a general exponent m so that the
comparison of both models happens on equal terms.
Work by P. Biler and collaborators. Work by Stan, Teso and JLV
(papers in CRAS, and a Journal Diff. Eqns., 2016) on

∂tu +∇(um−1∇(−∆)−sup) = 0

Interesting question : separating finite and infinite propagation.
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Cabré and Roquejoffre (2009, 2013).
Numerics is being done by a number of authors at this moment:
Nochetto, Jakobsen, and coll., and with my student Felix del Teso.
Extension of model M1 to accept a general exponent m so that the
comparison of both models happens on equal terms.
Work by P. Biler and collaborators. Work by Stan, Teso and JLV
(papers in CRAS, and a Journal Diff. Eqns., 2016) on

∂tu +∇(um−1∇(−∆)−sup) = 0

Interesting question : separating finite and infinite propagation.



36

The phenomenon of KPP propagation in linear and nonlinear fractional
diffusion. Work with Diana Stan based on previous linear work of
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A detailed account on such progress is obtained in the papers (cf. arxiv)
and in the following reference that is meant as a survey for two-year
progress on Model M2

Recent progress in the theory of Nonlinear Diffusion with Fractional
Laplacian Operators, by Juan Luis Vázquez. In “Nonlinear elliptic and
parabolic differential equations”, Disc. Cont. Dyn. Syst. - S 7, no. 4
(2014), 857–885.

Fast diffusion and extinction. Very singular fast diffusion. Paper with
Bonforte and Segatti in CalcVar. 2016, on non-existence due to
instantaneous extinction.

fractional p-Laplacian flows This is a rather new topic. The definition
of the nonlocal p-laplacian operator was given in Mingione’s last talk as
the Euler-Lagrange operator corresponding to a power-like functional
with nonlocal kernel of the s-Laplacian type. There the aim is elliptic
theory. Paper by JLV, 2015 in arXiv, appeared JDE 2016, solves
parabolic theory on bounded domains.

Very degenerate nonlinearities, like the Mesa Problem. This is the limit
of NLPME with m→∞. Paper by JLV, Interfaces Free Bound. 2015.
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Some future Directions

Other nonlocal linear operators (hot topic)

Elliptic theory (main topic, by many authors)

Geostrophic flows (this is more related to Fluid Mechanics)

Reaction-diffusion and blowup

Geometrical flows, fractional Yamabe (MMar Gonzalez, Sire)

Chemotaxis systems, ....
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Operators and Equations in Bounded Domains

This work is recent and needs a different lecture. It comes from long
time collaboration with Matteo Bonforte, and recently with Yannick
Sire and Alessio Figalli.
We develop a new programme for Existence, Uniqueness, Positivity, A
priori bounds and Asymptotic behaviour for fractional porous medium
equations on bounded domains, after examining very carefully the set
of suitable concepts of FLO in a bounded domain.
But the main issue is how many natural definitions we find of the FLO
in a bounded domain.
Then we use the “dual” formulation of the problem and the concept of
weak dual solution. In brief, we use the linearity of the operator L to lift
the problem to a problem for the potential function

U(x, t) =

∫
Ω

u(y, t)G(x, y)dy

Where G is the elliptic Green function for L.
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Fractional Laplacian operators on bounded domains
The Restricted Fractional Laplacian operator (RFL) is defined via the
hypersingular kernel in Rn, “restricted” to functions that are zero outside Ω.

(−∆|Ω)sg(x) = cN,s P.V.
∫
RN

g(x)− g(z)
|x− z|n+2s dz , with supp(g) ⊂ Ω .

where s ∈ (0, 1) and cn,s > 0 is a normalization constant.

(−∆|Ω)s is a self-adjoint operator on L2(Ω) with a discrete spectrum:

EIGENVALUES: 0 < λ1 ≤ λ2 ≤ . . . ≤ λj ≤ λj+1 ≤ . . . and λj � j2s/N .

EIGENFUNCTIONS: φj are the normalized eigenfunctions, are only Hölder
continuous up to the boundary, namely φj ∈ Cs(Ω) .
Lateral boundary conditions for the RFL:

u(t, x) = 0 , in (0,∞)×
(
RN \ Ω

)
.

The Green function G of RFL satisfies a strong behaviour condition (K4)

G(x, y) � 1
|x− y|N−2s

(
δγ(x)

|x− y|γ ∧ 1
)(

δγ(y)

|x− y|γ ∧ 1
)
, with γ = s

References.(K4) Bounds proven by Bogdan, Grzywny, Jakubowski, Kulczycki,
Ryznar (1997-2010). Eigenvalues: Blumental-Getoor (1959), Chen-Song
(2005).
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Fractional Laplacian operators on bounded domains

The The Spectral Fractional Laplacian operator (SFL)

(−∆Ω)sg(x) =
∞∑
j=1

λs
j ĝj φj(x) =

1
Γ(−s)

∫ ∞
0

(
et∆Ωg(x)− g(x)

) dt
t1+s .

where ∆Ω is the classical Dirichlet Laplacian on the domain Ω,

ĝj =

∫
Ω

g(x)φj(x) dx , with ‖φj‖L2(Ω) = 1 .

EIGENVALUES: 0 < λ1 ≤ λ2 ≤ . . . ≤ λj ≤ λj+1 ≤ . . . and λj � j2/n.

EIGENFUNCTIONS: φj are as smooth as the boundary of Ω allows,
namely when ∂Ω is Ck, then φj ∈ C∞(Ω) ∩ Ck(Ω) for all k ∈ N .

Lateral boundary conditions for the SFL. They are better defined by using the
Caffarelli-Silvestre extension adapted to bounded domain as a cylinder. Then
we put U = 0 on the lateral boundary x ∈ ∂Ω, y > 0.

The Green function of SFL satisfies a stronger assumption

G(x, y) � 1
|x− y|n−2s

(
δγ(x)

|x− y|γ ∧ 1
)(

δγ

|x− y|γ ∧ 1
)
, with γ = 1
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Fractional Laplacian operators on bounded domains

Censored Fractional Laplacians (CFL)
This is another option that has been introduced in 2003 by Bogdan, Burdzy and
Chen. Definition

Lf (x) = P.V.
∫

Ω

(f (x)− f (y))
a(x, y)

|x− y|N+2s dy , with
1
2
< s < 1 ,

where a(x, y) is a measurable, symmetric function bounded between two
positive constants, satisfying some further assumptions; for instance
a ∈ C1(Ω× Ω).

The Green function G(x, y) satisfies condition K4 , proven by Chen, Kim and
Song (2010), in the form

G(x, y) � 1
|x− y|N−2s

(
δγ(x)

|x− y|γ ∧ 1
)(

δγ(y))

|x− y|γ ∧ 1
)
, with γ = s− 1

2
.

Roughly speaking, s ∈ (0, 1/2] would correspond to Neumann boundary
conditions.
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We have presented 3 models of Dirichlet fractional Laplacian.
Put

[
a(x, y) = const

]
in the last case. The estimates (K4) show that

they are of course not equivalent.

References. K. Bogdan, K. Burdzy, K., Z.-Q. Chen. Censored stable
processes. Probab. Theory Relat. Fields (2003).

Z.-Q. Chen, P. Kim, R. Song, Two-sided heat kernel estimates for
censored stable-like processes. Probab. Theory Relat. Fields (2010).

M. Bonforte, J. L. Vázquez. A Priori Estimates for Fractional
Nonlinear Degenerate Diffusion Equations on bounded domains. Arch.
Ration. Mech. Anal. 218, no 1 (2015), 317–362.

M. Bonforte, Y. Sire, J. L. Vázquez. Existence, Uniqueness and
Asymptotic behaviour for fractional porous medium equations on
bounded domains. Discrete Contin. Dyn. Syst.-A 35 (2015), no. 12,
5725–5767.

Last work. M. Bonforte, A. Figalli, J. L. Vázquez. Sharp global
estimates for local and nonlocal porous medium-type equations in
bounded domains, arXiv:1610.09881. October 2016,

improved with numerics Jan 2017, done at BCAM by my former
student Félix del Teso and collaborators.
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♦

The detailed analysis of existence and uniqueness of solutions for a large class
of integro-differential operators, plus sharp decay and decay and boundary
behaviour is done in the last paper.

It is reported in the following Talk:

Nonlinear and Nonlocal Degenerate Diffusions on Bounded Domains,
given by Matteo Bonforte, matteo.bonforte@uam.es

at

2016-17 Warwick EPSRC Symposium: Non-local Equations and Fractional
Diffusion, Mathematical Institute, University of Warwick, UK
May 26, 2017
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Thank you for your attention
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