Curves and surfaces with constant nonlocal mean curvature

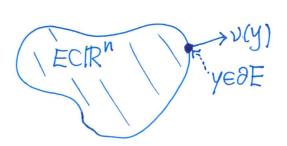
Xavier Cabré

ICREA and UPC, Barcelona

Advanced School & Workshop on Nonlocal Partial Differential Equations and Applications to Geometry, Physics and Probability
International Centre for Theoretical Physics, Trieste, May 22-June 2, 2017

ECIR bounded (and sufficiently smooth)

ECIR" yeaE


• (Standard) Perimeter:

 $P(E) = \sup_{\|X\|_{\infty} \leq 1} \int X(y) \cdot \nu(y) \, dy = \|\nabla II_{E}\|_{L^{2}(\mathbb{R}^{n})} = [I_{E}]_{W^{1}(\mathbb{R}^{n})}$

W-seminorn

 $\int X(y) \cdot v(y) dy = \int (div X)(y) dy = \int (div X) \cdot I_E = \int_{\mathbb{R}^n} -X \cdot V I_E$

ECIR bounded (and sufficiently smooth)

• (Standard) Perimeter:

$$P(E) = \sup_{\|X\|_{\infty} \leq 1} \int X(y) \cdot \nu(y) \, dy = \|\nabla A \|_{E} \|_{L^{1}(\mathbb{R}^{n})} = [A_{E}]_{W^{1}(\mathbb{R}^{n})}$$

$$\int X(y) \cdot \nu(y) dy = \int (div X)(y) dy = \int (div X) \cdot 1_E = \int_{\mathbb{R}^n} -X \cdot \nabla 1_E$$

• Fractional Perimeter: 0<a<1 - Fractional Sobolev seminorm:

W-seminorm

$$[l]_{W^{\alpha,1}(\mathbb{R}^n)} = \iint_{\mathbb{R}^n} \frac{|l|_{E}(x) - |l|_{E}(y)|}{|x-y|^{n+\alpha}} dxdy = 2 \iint_{E} \frac{dxdy}{|x-y|^{n+\alpha}}$$

$$P_{\alpha}(E) = C_{n,\alpha} \int_{E} \int_{E} \frac{dx \, dy}{|x-y|^{n+\alpha}} \cdot O(\alpha < 1 \leftarrow \alpha = 25; se(0, \frac{1}{2})$$

$$E = bdd$$

$$0 < \alpha < 1 \leftarrow \alpha = 2s ; s \in (0, \frac{1}{2})$$

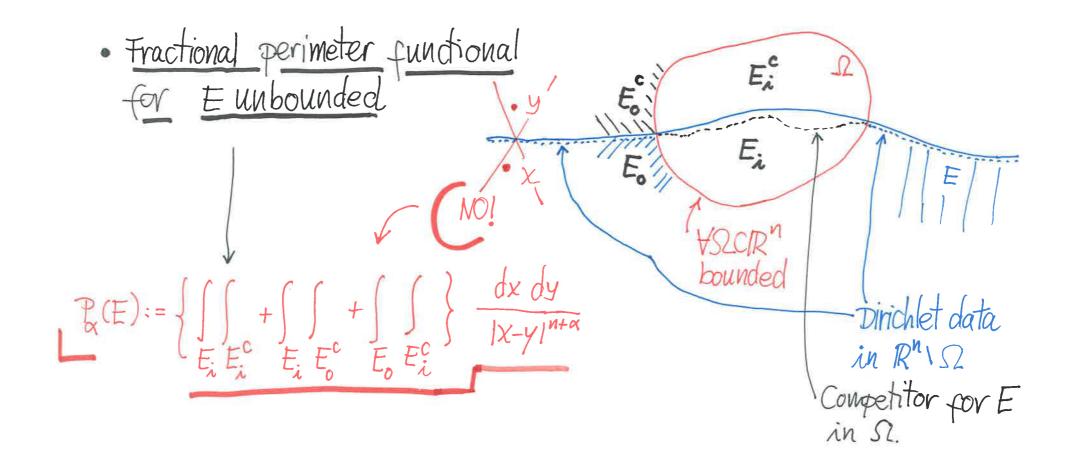
E bdd

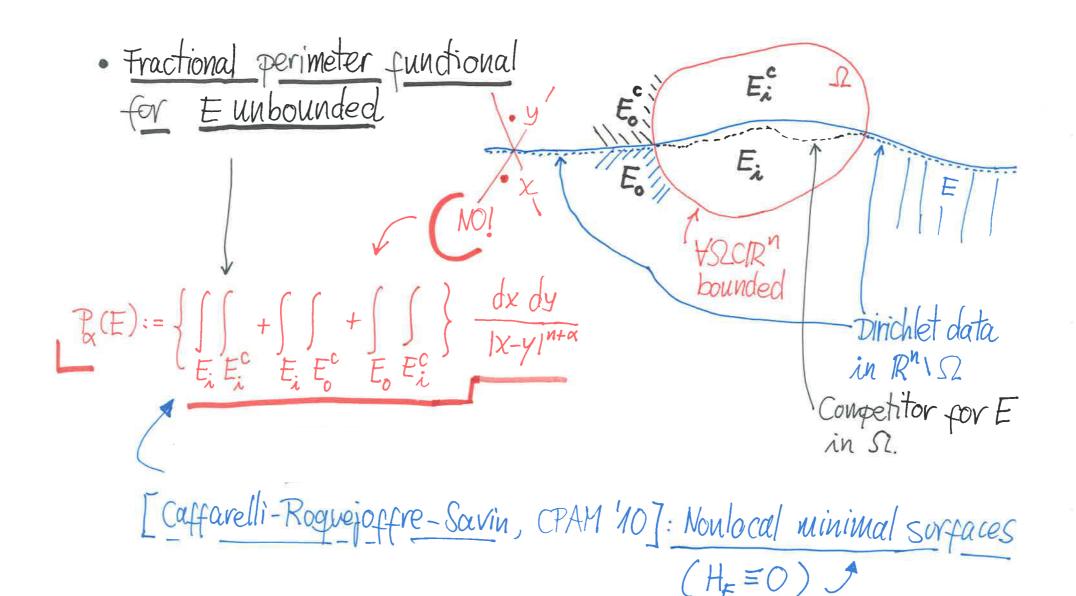
· Fractional isoperimetric	inequality: balls minimize fractional perimeter
	[Frank-Seininger, JAMS 2008]
Quantitative version	Tusco-Millot-Morini-Figalli-Maggi
	2014

· Fractional isoperimetric inequality: balls minimize fractional perimeter for a given volume [Frank-Seiringer, JAMS 2008] Quantitative version: Fusco-Millot-Morini-Figalli-Maggi 2011 2014

1st variation is NONLOCAL (or practional) MEAN CURVATURE (NMC):

ECR", DEEC2 and/or disconnected)


ECIRⁿ,
$$\partial E \in \mathbb{C}^2$$


(E perhaps unbounded \longrightarrow

HE(x) = H, (x) = P.V. $\int \frac{1/E^c(y) - 1/E(y)}{|x-y|^{n+\alpha}} dy$

for $x \in \partial E$

1 (up to multiplicative ctt)

· Motivation for [Caff.-Roquej.-Savin '10] came from: [Caffarelli-Souganidis 2008]: or threshold dynamics St. 10 Motion by classical mean convature. 1/E/11 Alec-11 as initial condition (linear)
for the (classical or fractional) heat equation (= convolution with Gaussian or power decay distribution) $L \rightarrow Small time step St \rightarrow New E=E_{St} = \{u(\cdot, St) < 0\}$ & repeat process

· Nonlocal minimal surfaces: ECIR", H_E(x) =0 \\div XEDE

[Caffarelli-Roquejoffre-Savin, CPAM'10]: For minimizing nonlocal minimal surfaces:

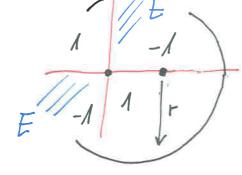
- . Definition of variational pb. and existence of minimizer
- · Density estimates
- · The Euler-Lagrange ean in viscosity sense
- · Improvement of flatness
- · Extension problem and monotonicity formula
- · Dimension reduction

Thm [C-R-S, 10] $ECIR^n$ minimizing nonlocal minimal set in $B_n \Rightarrow \Im E \cap B_{1/2}$ is $C^{1/\alpha}$ except for a closed set of \mathcal{H}^{n-2} dimension.

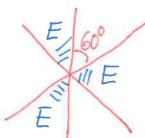
The extension problem [Caffarelli-Silvestre 2007]

0 < S < 1 $u: \mathbb{R}^n \to \mathbb{R}$ $| \operatorname{div}(y^{1-2S} \nabla v) = 0 \quad \text{in } \mathbb{R}^{n+1}$ $| v(x,0) = u(x) \quad \text{on } \partial \mathbb{R}^{n+1}_+ = \mathbb{R}^n$

Thm [Caff-Silv]


$$-\lim_{y \downarrow 0} y^{1-2S} v_y = \frac{\partial v}{\partial y^s} (x,0) = c_{n,s} (-\Delta)^s u(x).$$

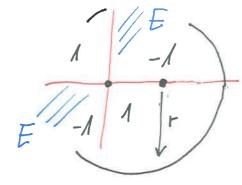
- · Nonlocal minimal surfaces: ECIR", H_(x) =0 \\xe\ze\E
- Thm [Barrios-Figalli-Valdinoci 1/2 & Figalli-Valdinoci 1/3]


 $\mathbb{R}^n \supset E \text{ minimizing nonlocal} \Rightarrow \partial E \in C^\infty$ minimal set & $\partial E \in Lip$

• Thm [Savin-Valdinoci 12]

 $\mathbb{R}^2 \supset \mathbb{E}$ minimizing nonl. min. set $\Rightarrow \mathbb{E} = \text{half-plane}$ (2E=line)

 $H_E = 0$ But we not minimizers



- · Nonlocal minimal surfaces: ECR", H_E(x) =0 \\xe\delta E
- Thm [Barrios-Figalli-Valdinoci 12 & Figalli-Valdinoci 13]

 $\mathbb{R}^n \supset E \text{ minimizing nonlocal} \Rightarrow \partial E \in C^\infty$ minimal set & $\partial E \in Lip$

• Thm [Savin-Valdinoci 12]

 $\mathbb{R}^2 \supset \mathbb{E}$ minimizing nonl. min. set $\Rightarrow \mathbb{E} = \text{half-plane}$ (2E=line)

• Thm [Figalli-Valdinoci 13]

 $IR^3 \supset \partial E = \{X_3 = \varphi(X_1, X_2), \varphi: R^2 \rightarrow R\}$ is a nonlocal minimal graph $\Rightarrow \partial E$ is a plane

Thm [Caffarelli-Valdinoci 11/13]

n < 7 and a sufficiently close to 1 >>

>In R, minimizing nonlocal minimal < cones are flat surfaces are smooth

• [Davila-del Pino-Wei 14]

* cones in higher dimensions

are they stable?

* Nonlocal catenoid (7)

* Nonlocal catenoid (8)

* Nonlocal catenoid

circular ones (numerics)

Thm [Cinti-Serra-Valdinoci 46]

REDE is a stable nonlocal minimal one => DE is a straight line

Thm [Cinti-Serra-Valdinoci 16]

REDE is a stable nonlocal minimal one => DE is a straight line

- Thm [Cabré-Cinti-Serra 17] $\mathbb{R}^3 \supset \partial \mathbb{E}$ is a stable nonlocal minimal cone

 Assume: & sufficiently close to 1 $\Rightarrow \partial \mathbb{E}$ is a plane
- Corol [Cabré-Cinti-Serra 17]

 IR3>DE is a stable nonlocal minimal surface \Rightarrow DE is a plane

 Assume: x sufficiently close to 1

· Proops in [Cabré-Cinti-Seura 47] based in three ingredients:

2) Behavior as x > 1 of the optimal ctt in the fractional Hardy inequality.

3) • Thm [Cinti-Sena-Valdinaci, 16.] $1R^n S \partial E$ is a stable nonlocal minimal surface in B_r , $\partial E \in C^2$.

Then, $Per_{B_{r/2}}(E) \leq \frac{C}{1-\alpha} r^{n-1}$ (Chold as $\alpha \uparrow 1$)

classical perimeter!!

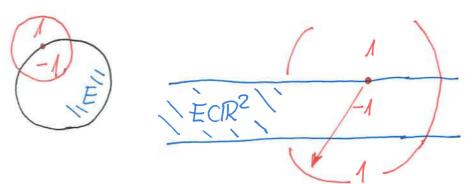
Curves and surfaces with constant nonlocal mean curvature

NMC (nonlocal mean curvature): ECTRⁿ, JEEC² (E perhaps unbold)

$$\frac{H_{E}(x)}{for} = \int_{\mathbb{R}^{n}} \frac{\int_{\mathbb{R}^{n}} \frac{\int_{\mathbb{R}^{n}} (y) - \int_{\mathbb{R}^{n}} (y)}{|x - y|^{n+\alpha}} dy$$

$$\frac{2}{|x - y|^{n+\alpha}} \frac{\int_{\mathbb{R}^{n}} (x - y) \cdot v(y)}{|x - y|^{n+\alpha}} do(y)$$

$$\frac{\partial v_{y}}{\partial v_{y}} \frac{x - y}{|x - y|^{n+\alpha}} = \alpha \frac{1}{|x - y|^{n+\alpha}}$$


NMC (nonlocal mean curvature): ECTR", FEC2 (E perhaps unbold)

$$\frac{H_{E}(x)}{for} = \int_{\mathbb{R}^{n}} \frac{I_{Ec}(y) - I_{E}(y)}{|x-y|^{n+d}} dy$$

$$= \frac{2}{x} \int_{\mathbb{R}^{n}} \frac{(x-y) \cdot \mathcal{V}(y)}{|x-y|^{n+d}} do(y)$$

$$= \frac{2}{x} \int_{\mathbb{R}^{n}} \frac{(x-y) \cdot \mathcal{V}(y)}{|x-y|^{n+d}} do(y)$$

divy
$$\frac{x-y}{|x-y|^{n+\alpha}} = \alpha \frac{1}{|x-y|^{n+\alpha}}$$

- $E = hyperplane \rightarrow H_E = 0$
- · E=ball in th" -> HE = ctt > 0
- $E = band in IR^2 \text{ or cylinder in } IR^N \longrightarrow H_E = ctt > 0$

· Classical mean curvature:

CMC surfaces: H= ctt; are extremals of perimeter

for given volume

• Thm [Aleksandrov 1958]

ECIRⁿ bold connected, ∂EEC², ∂E CMC hypersurface

⇒ E is a ball

· Classical mean curvature: CMC surfaces: H = ctt; are extremals of perimeter for given volume
Thm [Aleksandrov 1958] ECR" bold connected, $\partial E \in C^e$, ∂E CMC hypersurface $\Rightarrow E$ is a ball
Thm [Delaunay 1841, JMPA] In 183 (also in 18, 11>3), 3 periodic CMC cylinders
Rolling an ellipse & called UNDULOID tracing the FOCUS (see them in many http (Do NOT exist in R ²)

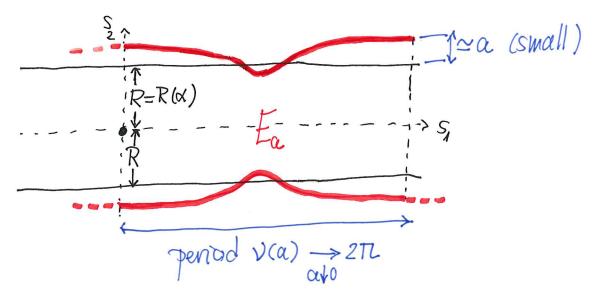
 \rightarrow extremals of fractional perimeter under volume constraint CNMC sets (sets with ctt nonlocal mean curvature H_E) Constraint Toint work (arXiv 2015) with M.M. Fall, J. Solà-Morales & T. Weth

-> extremals of tractional perimeter under volume CNMC sets (sets with ctt nonlocal mean curvature H=) Joint work (arXiv 2015) with M.M. Fall, J. Solà-Morales & T. Weth

• Thm 1 \$≠ECR" bold C2,8 (3>α), HE = ctt on ∂E ⇒ Eisa ball.

also proved by Ciraolo-Figalli-Maggi-Novaga, arxiv 2015 with a quantitative version: BCECBt with t-s small if $\|H_E\|_{Lip}(\mathcal{Z})$ is small

CNMC sets (sets with ctt nonlocal mean cuvature H_E)

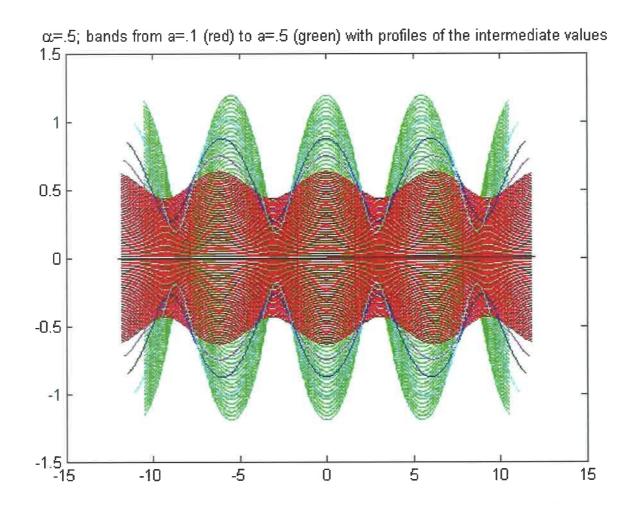

Toint work (arXiv 2015) with M.M. Tall, J. Solà-Morales & T. Weth

Thin 1 \$\psi \text{ECR}^n \text{ bdd } C^{2/8}((3>\alpha)), $H_E = ctt$ on ∂E also proved by Ciraclo-Tigalli-Maggi-Novaga, arXiv 2015]

also proved by [Ciraolo-Figalli-Maggi-Novaga, arXiv 2015]
with a quantitative version: B, CECB, with t-s small
if IIHEILLIP(Æ) is small

· Hence:

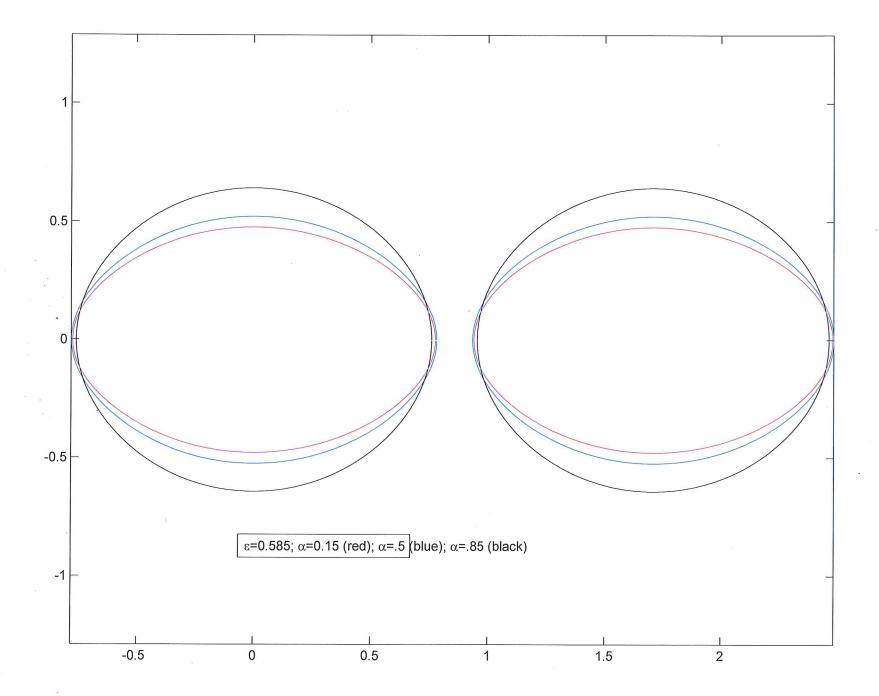
From a straight band in R2, a family of periodic bands {-ua(s,)<s2<ua(s,)} bifurcate. They all have the same NMC (but their periods are different)

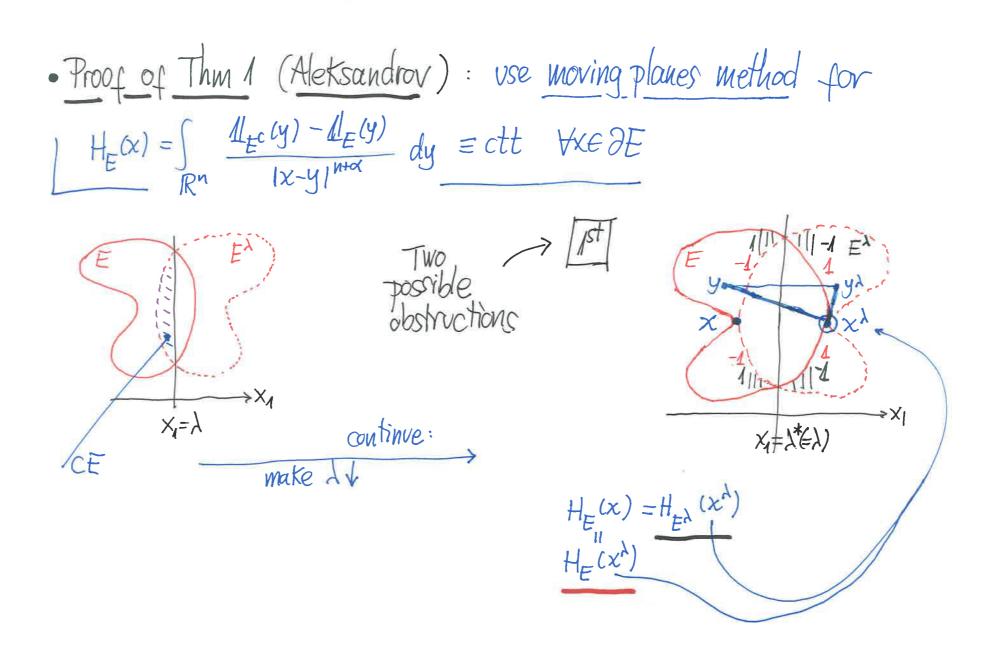

Thm 3 [Cabré-Fall-Weth 16]:

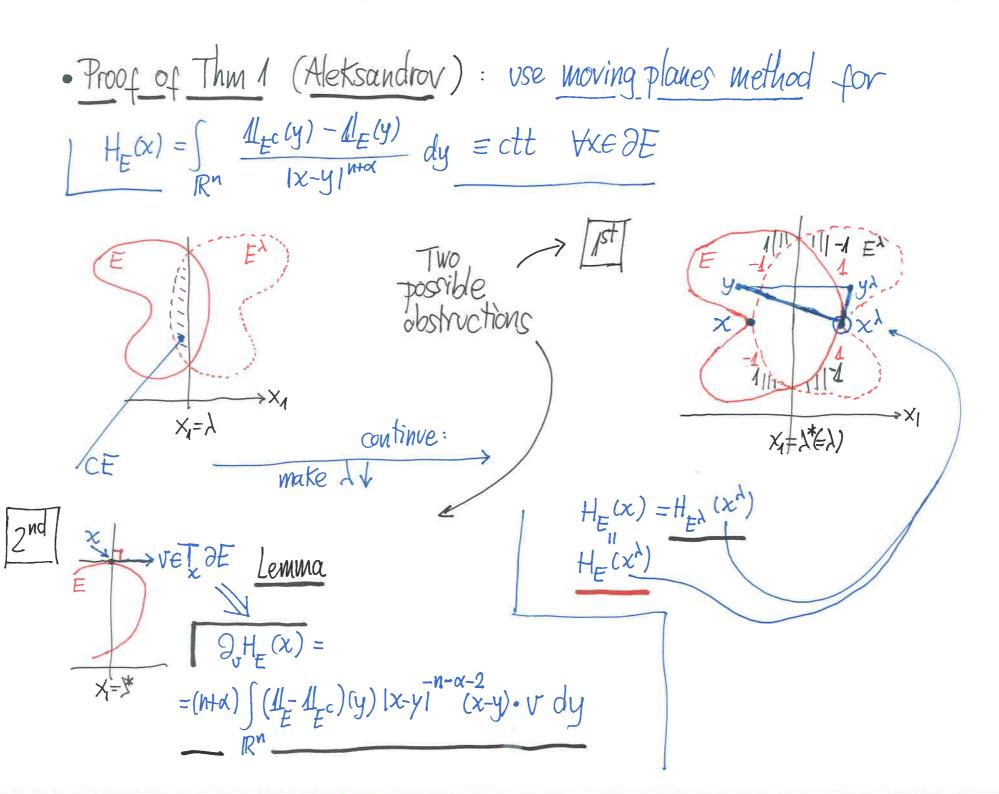
The same holds in IR", n > 3

R Has largued is C^{∞}

R Who cylinders & the branch is C.


Thm 4 [Cabré-Fall-Weth 16]


In IRN, I periodic lattices having ctt NMC and made of hear-spheres:


E=U?interior or near-balls?

E=U?interior of near-balls} L> DE has ctt NMC

. Thm 4 [Cabré-Fall-Weth 167 In IRN, I periodic lattices having ctt NMC and made of hear-spheres. E= U ? interior of near-balls } L> DE has cit NMC Need r=1/E large (E small) $\mathbb{R}^N = \mathbb{R}^M \times \mathbb{R}^{N-M}$ $\Rightarrow \left\{ \sum_{k=1}^{M} K_{i} \alpha_{i} : K \in \mathbb{Z}^{M} \right\}$ $TR^{M} \ni (x', 0)$ {a₁,..., α_N { basis of IR™ $S_{\varphi} = \left\{ \left(1 + \varphi(\sigma) \right) \sigma : \sigma \in S^{N-1} \right\}$ $\partial E = S_{\varphi} + r \mathcal{L}$ (r>0 large) Linearized operator $\alpha + S^{N-1}(\varphi=0, r=\infty) = L_{\alpha} - \lambda_{\Lambda}$, with $L_{\alpha}\varphi(0) = \int_{N-1} \frac{\varphi(0) - \varphi(0)}{|0-\sigma|^{N+\alpha}} d\sigma$, $\theta \in S^{N-1}$.

· Proof of Thm 2: For CNMC periodic bands

We use a Lyapunov-Schmidt reduction (1) Implicit Function Theorem applied to a quasilinear-type practional elliptic equation.

■ STEP 1: The setting, equation, and functional spaces:

 $U: \mathbb{R} \rightarrow \mathbb{R}_+$, $O < M_1 \le U \le M_2$ $E = \{-u(S_1) < S_2 < u(S_1)\} \subset \mathbb{R}^2 \Rightarrow \frac{1}{2} H_{\mu}(S_{\mu}u(S)) =: \frac{1}{2} H(u)(S) =$

$$\begin{array}{c|c}
S_{2} \\
\hline
(S_{i}-u(S))
\end{array}$$

Use Fubini for the Sire: integrate first here -

$$\frac{1}{2}H_{E}(s,u(s)) =: \frac{1}{2}H(u)(s) =$$

$$= \int_{\mathcal{R}} F\left(\frac{u(s)-u(s-t)}{|t|}\right) \frac{dt}{|t|^{1+\alpha}}$$

$$-\int_{\mathbb{R}} \left\{ F\left(\frac{u(s)+u(s-t)}{|t|}\right) - F(t\infty) \right\} \frac{dt}{|t|^{1+\alpha}}$$

where
$$F(q) = \int_{0}^{q} \frac{dT}{(1+T^2)^{\frac{2+\alpha}{2}}}$$

Want $H(u_a)(s) = ctt \text{ indep. of a}$ where $u_a(s) := R + \frac{a}{\lambda} \left\{ \cos(\lambda s) + v_a(\lambda s) \right\}$ Vant $\lambda = \lambda(a)$ & $v_a = v(a)$ Period = $\frac{2\pi}{\lambda(a)}$ Rescale s-variable & the "variable of the harmonic of the line of the harmonic of the line of

Want H(ua)(s) = ctt indep. of a where $u_a(s) := R + \frac{a}{\lambda} \left\{ \cos(\lambda s) + v_a(\lambda s) \right\}$ Want 1=1(a) & V= V(a) va even I'ch - Rescale s-variable & the u-variable NMC rescales like 2" to make all fins 277-periodic NEW EQUATION u(s)=2R+a {cos(s)+Va(s)} after dividing = 1R+a qcs) by (a) ; as in [CRANDALL -RABINOWIR] $\overline{\Phi}(\alpha,\lambda,\varphi)(s) := \int_{\mathbb{R}} \frac{1}{\alpha} F\left(\alpha \frac{\varphi(s)-\varphi(s-t)}{|t|}\right) \frac{dt}{|t|^{1+\alpha}}$ $-\int_{\mathbb{R}} \frac{1}{a} \left\{ F\left(\frac{2\lambda R + a(\varphi s) + \varphi s - t1}{1t1}\right) - F\left(\frac{2\lambda R}{1t1}\right) \right\} \frac{dt}{1+1}$

Solve
$$0 = \oint (a_{1}\lambda, \varphi) (s) := \int_{\mathbb{R}} \frac{1}{\alpha} F(a \frac{\varphi(s) - \varphi(s+1)}{HI}) \frac{1}{IH} ds$$

$$-\int_{\mathbb{R}} \frac{1}{\alpha} \left\{ F\left(\frac{2\lambda R + a(\varphi(s) + \varphi(s+1))}{HI}\right) - F\left(\frac{2\lambda R}{HI}\right) \right\} \frac{dt}{HH} ds$$

$$\int_{\mathbb{R}} \frac{1}{\alpha} \left\{ F\left(\frac{2\lambda R + a(\varphi(s) + \varphi(s+1))}{HI}\right) - F\left(\frac{2\lambda R}{HI}\right) \right\} \frac{dt}{HH} ds$$

$$\int_{\mathbb{R}} \frac{1}{\alpha} \left\{ F\left(\frac{2\lambda R + a(\varphi(s) + \varphi(s+1))}{HI}\right) - F\left(\frac{2\lambda R}{HI}\right) \right\} \frac{dt}{HI} ds$$

$$\sum_{I} F\left(\frac{2\lambda R}{IH}\right) - F\left(\frac{2\lambda R}{IH}\right) - F\left(\frac{2\lambda R}{IH}\right) - F\left(\frac{2\lambda R}{IH}\right) - F\left(\frac{2\lambda R}{IH}\right) + F\left(\frac{2\lambda R}{IH}\right) - F\left(\frac{2\lambda R}{IH}\right) + F\left(\frac{2\lambda R}{IH}\right) - F\left(\frac{2\lambda R}{IH}\right) + F\left(\frac{2\lambda R}{IH}\right)$$

Solve
$$0 = \frac{1}{2}(a,\lambda,\varphi)(s) := \int_{\mathbb{R}} \frac{1}{a} F(a \frac{\varphi(s) - \varphi(s+1)}{H!}) \frac{1}{H!} dt$$

$$-\int_{\mathbb{R}} \frac{1}{a} \left\{ F\left(\frac{2\lambda R + a(\varphi(s) + \varphi(s+1))}{H!}\right) - F\left(\frac{2\lambda R}{H!}\right) \right\} \frac{dt}{H!} dt$$

$$\int_{\mathbb{R}} \frac{1}{a} \left\{ F\left(\frac{2\lambda R + a(\varphi(s) + \varphi(s+1))}{H!}\right) - F\left(\frac{2\lambda R}{H!}\right) \right\} \frac{dt}{H!} dt$$

$$\int_{\mathbb{R}} \frac{1}{a} \left\{ F\left(\frac{2\lambda R + a(\varphi(s) + \varphi(s+1))}{H!}\right) - F\left(\frac{2\lambda R}{H!}\right) \right\} \frac{dt}{H!} dt$$

$$\int_{\mathbb{R}} \frac{1}{a} \left\{ F\left(\frac{2\lambda R + a(\varphi(s) + \varphi(s+1))}{H!}\right) - F\left(\frac{2\lambda R}{H!}\right) \right\} \frac{dt}{H!} dt$$

$$\int_{\mathbb{R}} \frac{1}{a} \left\{ F\left(\frac{2\lambda R + a(\varphi(s) + \varphi(s+1))}{H!}\right) - F\left(\frac{2\lambda R}{H!}\right) \right\} \frac{dt}{H!} dt$$

$$\int_{\mathbb{R}} \frac{1}{a} \left\{ F\left(\frac{2\lambda R + a(\varphi(s) + \varphi(s+1))}{H!}\right) - F\left(\frac{2\lambda R}{H!}\right) \right\} \frac{dt}{H!} dt$$

$$\int_{\mathbb{R}} \frac{1}{a} \left\{ F\left(\frac{2\lambda R + a(\varphi(s) + \varphi(s+1))}{H!}\right) - F\left(\frac{2\lambda R}{H!}\right) \right\} \frac{dt}{H!} dt$$

$$\int_{\mathbb{R}} \frac{1}{a} \left\{ F\left(\frac{2\lambda R + a(\varphi(s) + \varphi(s+1))}{H!}\right) - F\left(\frac{2\lambda R}{H!}\right) \right\} \frac{dt}{H!} dt$$

$$\int_{\mathbb{R}} \frac{1}{a} \left\{ F\left(\frac{2\lambda R + a(\varphi(s) + \varphi(s+1))}{H!}\right) - F\left(\frac{2\lambda R}{H!}\right) \right\} \frac{dt}{H!} dt$$

$$\int_{\mathbb{R}} \frac{1}{a} \left\{ F\left(\frac{2\lambda R + a(\varphi(s) + \varphi(s+1))}{H!}\right) - F\left(\frac{2\lambda R}{H!}\right) \right\} \frac{dt}{H!} dt$$

$$\int_{\mathbb{R}} \frac{1}{a} \left\{ F\left(\frac{2\lambda R + a(\varphi(s) + \varphi(s+1))}{H!}\right) - F\left(\frac{2\lambda R}{H!}\right) \right\} \frac{dt}{H!} dt$$

$$\int_{\mathbb{R}} \frac{1}{a} \left\{ F\left(\frac{2\lambda R + a(\varphi(s) + \varphi(s+1))}{H!}\right) - F\left(\frac{2\lambda R}{H!}\right) \right\} \frac{dt}{H!} dt$$

$$\int_{\mathbb{R}} \frac{1}{a} \left\{ F\left(\frac{2\lambda R + a(\varphi(s) + \varphi(s+1))}{H!}\right) - F\left(\frac{2\lambda R}{H!}\right) \right\} \frac{dt}{H!} dt$$

$$\int_{\mathbb{R}} \frac{1}{a} \left\{ F\left(\frac{2\lambda R + a(\varphi(s) + \varphi(s+1))}{H!}\right) - F\left(\frac{2\lambda R}{H!}\right) \right\} \frac{dt}{H!} dt$$

$$\int_{\mathbb{R}} \frac{1}{a} \left\{ F\left(\frac{2\lambda R + a(\varphi(s) + \varphi(s+1)}{H!}\right) - F\left(\frac{2\lambda R}{H!}\right) \right\} \frac{dt}{H!} dt$$

$$\int_{\mathbb{R}} \frac{1}{a} \left\{ F\left(\frac{2\lambda R + a(\varphi(s) + \varphi(s+1)}{H!}\right) - F\left(\frac{2\lambda R + a(\varphi(s) + \varphi(s+1))}{H!}\right) - F\left(\frac{2\lambda R + a(\varphi(s) + \varphi(s+1)}{H!}\right) - F\left(\frac{2\lambda R + a(\varphi(s) + \varphi(s+1))}{H!}\right) - F\left(\frac{2\lambda R + a(\varphi(s) + \varphi(s+1)}{H!}\right) - F\left(\frac{$$

$$\Phi(0, \lambda, \varphi)(s) = \int_{\mathbb{R}} \frac{\varphi(s) - \varphi(s - t)}{|t|^{2 + \alpha}} dt - \int_{\mathbb{R}} \frac{\varphi(s) + \varphi(s - t)}{|t|^{2 + \alpha}} + \frac{\varphi(s) + \varphi(s - t)}{|t|} dt.$$

$$= C_{\alpha} \cdot \cos(s) \qquad ||| \\
= C_{\alpha} \cdot \cos(s) \qquad || \\
= C_{\alpha}$$

$$\begin{split} & \Phi(0,\lambda,\varphi)(s) = \int_{\mathbb{R}} \frac{\varphi(s) + \varphi(s+t)}{Ht^{2+\alpha}} \, dt - \int_{\mathbb{R}} \frac{\varphi(s) + \varphi(s+t)}{Itt^{2+\alpha}} \, \mp \frac{2\lambda R}{(t+t)} \, dt \\ & = \sum_{k} \Phi(0,l,\cos(k))(s) = -\int_{\mathbb{R}} \{\cos(k) + \cos(k-t)\} \, \frac{2R \, \mp \frac{R}{2\lambda R}}{Ht^{3+\alpha}} \, dt \\ & = \sum_{k} \cos(ks) \, |||| \\ & = \sum_{k} \exp(ks) + \exp(ks) \, ||$$

 $W_{i}=\cos(\cdot)$ is in the ternel of D_{i} \neq $(0,1,\cos(\cdot))$ & does not belong to its image, BUT is in the image of D_{i} \neq $(0,1,\cos(\cdot))$!!

Lyapunov-Schmidt, I.F. Thun $A=\lambda(\alpha)$ for lay small. \square

 $W_{h} = \cos(\cdot)$ is in the ternel of $D_{p} \neq (0,1,\cos(\cdot))$ & does not belong to its image, BUT is in the image of $D_{p} \neq (0,1,\cos(\cdot))$!!

Lyapunov-Schmidt, I.T. Thun $A = \lambda(\alpha)$ for lap small.

Step 3: $\Phi = \Phi(\alpha,\lambda,\rho)$ is C' from ACRxRxX into Y

■ Step 3:

=

=

=

= (a, λ, φ) is C from ACRXRXX into Y · Proposition Main part of \$\overline{\psi}\$ is: & 277-periodic fons $R \qquad |H| \qquad |H|^{1+\alpha} \qquad \text{where} \qquad \frac{q}{T_{1}(\alpha,q)} = \int_{0}^{q} \frac{dT}{(1+\alpha^{2}T^{2})^{\frac{2+\alpha}{2}}} dt$ $= \frac{1}{2} \int_{0}^{2} \frac{2\varphi(s) - \varphi(s+t)}{|t|^{2+\alpha}} \qquad |T_{3}(\alpha, \frac{\varphi(s) - \varphi(s+t)}{|t|}, \frac{\varphi(s) + \varphi(s+t)}{|t|}) \qquad \text{with } T_{3} \text{ similar}$ $R \qquad |T_{1}(\alpha,q) = \int_{0}^{q} \frac{dT}{(1+\alpha^{2}T^{2})^{\frac{2+\alpha}{2}}} dt$ $|T_{2}(\alpha, \frac{\varphi(s) - \varphi(s+t)}{|t|}, \frac{\varphi(s) + \varphi(s+t)}{|t|}) \qquad \text{with } T_{3} \text{ similar}$ $|T_{1}(\alpha,q) = \int_{0}^{q} \frac{dT}{(1+\alpha^{2}T^{2})^{\frac{2+\alpha}{2}}} dt$ $|T_{1}(\alpha,q) = \int_{0}^{q} \frac{dT}{(1+\alpha^{2}T^{2})^{\frac{2+\alpha}{2}}} dt$ $|T_{1}(\alpha,q) = \int_{0}^{q} \frac{dT}{(1+\alpha^{2}T^{2})^{\frac{2+\alpha}{2}}} dt$ $|T_{2}(\alpha,q) = \int_{0}^{q} \frac{dT}{(1+\alpha^{2}T^{2})^{\frac{2+\alpha}{2}}} dt$ $|T_{3}(\alpha,q) = \int_{0}^{q} \frac{dT}{(1+\alpha^{2}T^{2})^{\frac{2+\alpha}{2}}} dt$ $|T_{4}(\alpha,q) =$ $\Phi_{\Lambda}(a,\varphi)(s) \coloneqq \int_{-\pi}^{\pi} F_{\Lambda}(\alpha,\frac{\varphi(s)-\varphi(s+1)}{|H|}) \frac{dt}{|H|^{1+\alpha}}$