# Localizing RegCM4.7.0-rc10

G. Giuliani
International Centre for Theorethical Physics - Trieste
Earth System Physics Section

ICTP - Earth System Physics Section

South Caucasus-Black Sea Regional Climate Conference October 3-5, 2017



Namelist File RegCM Namelist File

#### Fortran Namelist file

### NAMELIST provides an excellent way to add annotated input.

```
&nl_name

key1 = 0,

key2 = 0.0,

key3 = 'a string',

key4 = 1.0,2.0,
```

```
program test
implicit none
integer :: key1
real :: key2
character(len=16) :: key3
real , dimension(8) :: key4
namelist /nl_name/ key1,key2,key3,key4

open(unit=200,file='test.namelist', &
    status='old',action='read')
read(unit=200,nml=nl_name)
end program test
```



lamelist File RegCM Namelist File

# Coreparam namelist

```
! Choice of the dynamical core
!
&coreparam
idynamic = 1, ! Choice of dynamical core
! 1 = MM4 hydrostatical core
! 2 = MM5 NON hydrostatical core
```



# Dimparam namelist

```
&dimparam
       = 34, ! This is number of points in the N/S direction
      = 48, ! This is number of points in the E/W direction
jx
      = 18, ! Number of vertical levels
kz.
dsmin = 0.01, ! Minimum sigma spacing (only used if kz is not 14, 18, or 23)
dsmax = 0.05, ! Maximum sigma spacing (only used if kz is not 14, 18, or 23)
             ! For subgridding, number of points to decompose. If nsg=1,
nsg
               ! no subgridding is performed. CLM does NOT work as of now with
              ! subgridding enabled.
nixcpus = -1, ! Number of CPUS to be used in the jx (lon) dimension.
              ! If <=0 , the executable will try to figure out a suitable
              ! decomposition.
niycpus = -1, ! Number of CPUS to be used in the iy (lat) dimension.
              ! If <=0 , the executable will try to figure out a suitable
               ! decomposition.
```



# Geomparam namelist

```
iproj = 'LAMCON', ! Domain cartographic projection. Supported values are:
                  ! 'LAMCON', Lambert conformal.
                  ! 'POLSTR', Polar stereographic.
                  ! 'NORMER', Normal Mercator.
                  ! 'ROTMER', Rotated Mercator.
ds = 60.0.
                  ! Grid point horizontal resolution in km
ptop = 5.0,
                  ! Pressure of model top in cbar
clat = 45.39.
                  ! Central latitude of model domain in degrees
                  ! North hemisphere is positive
clon = 13.48,
                  ! Central longitude of model domain in degrees
                  ! West is negative.
                  ! Pole latitude (only for rotated Mercator Proj)
plat = 45.39.
plon = 13.48,
                 ! Pole longitude (only for rotated Mercator Proj)
truelat1 = 30.0. ! Lambert true latitude (low latitude side)
truelath = 60.
                  ! Lambert true latitude (high latitude side)
i_band = 0,
                  ! Use this to enable a tropical band. In this case the ds,
                  ! iproj, clat, clon parameters are not considered.
```

&geoparam



## Terrainparam namelist

```
&terrainparam
domname = 'AQWA'.
                             ! Name of the domain/experiment.
                             ! Controls naming of input files
lresamp = .false.,
                             ! Do a first resampling before interpolation
smthbdy = .false.,
                             ! Perform extra smoothing in boundaries
h2ohgt = .true..
                            ! Allow water points to have hgt greater than 0
ismthlev = 2.
                             ! Smoothing level (1-2-1, smoother-desmoother)
roidem = 1.0,
                            ! Interpolation radius in ds unit for topography
h2opct = 50.0.
                            ! Surface min H2O percent to be considered water
lakedpth
           = .false..
                             ! If using lakemod (see below), produce from
                             ! terrain program the domain bathymetry
lsmoist
           = .false..
                             ! Use Satellite Soil Moisture Dataset for
                             ! initialization of soil moisture.
fudge_lnd = .false.,
                             ! Fudging Control flag, for landuse of grid
fudge_lnd_s = .false.,
                             ! Fudging Control flag, for landuse of subgrid
fudge tex = .false..
                             ! Fudging Control flag, for texture of grid
fudge_tex_s = .false.,
                             ! Fudging Control flag, for texture of subgrid
fudge_lak = .false.,
                             ! Fudging Control flag, for lake of grid
fudge lak s = .false..
                             ! Fudging Control flag, for lake of subgrid
dirter = 'input/'.
                            ! Output directory for terrain files
inpter = 'globdata/',
                             ! Input directory for SURFACE dataset
tersrc = 'GMTED'.
                             ! Select GMTED or GTOPO DEM data
smsrc = 'ESACCI'.
                            ! Select ESACCI or CPC surface soil moisture
                             ! when 1smoist option is True
moist_filename = 'moist.nc', ! Read initial moisture and snow from this file
```



RegCM Namelist File

# Globdatparam namelist

```
&globdatparam
ibdyfrg =
                            ! boundary condition interval (hours)
ssttyp = 'OI_WK',
                            ! Type of Sea Surface Temperature used
                               One in: GISST, OISST, OI2ST, OI_WK, OI2WK,
                                       FV_A2, FV_B2, EH5A2, EH5B1, EHA1B,
                                       EIN75, EIN15, ERSST, ERSKT, CCSST,
                                       CA_XX, HA_XX, EC_XX, IP_XX, GF_XX,
                                       CN_XX, MP_XX
dattyp = 'EIN15',
                              Type of global analysis datasets used
                               One in: ECMWF, ERA40, EIN75, EIN15, EIN25,
                                       ERAHI, NNRP1, NNRP2, NRP2W, GFS11,
                                       FVGCM, FNEST, EH5A2, EH5B1, EHA1B,
                                       CCSMN, ECEXY, CA XX, HA XX, EC XX,
                                       IP_XX, GF_XX, CN_XX, MP_XX
                            ! with XX for CMIP5 datasets in 26, 45, 85
chemtvp = 'MZ6HR'.
                            ! Type of Global Chemistry boundary conditions
                            ! One in : MZ6HR, 6 hours MOZART output
                                      : MZCLM, MOZART climatology 1999-2009
gdate1 = 1990060100.
                            ! Start date for ICBC data generation
gdate2 = 1990070100.
                            ! End data for ICBC data generation
calendar = 'gregorian',
                            ! Calendar type : gregorian, noleap, 360_day
dirglob = 'input/',
                            ! Path for ICBC produced input files
inpglob = 'globdata/',
                            ! Path for ICBC global input datasets.
ensemble_run = .false.,
                            ! If this is a member of a perturbed ensemble
                            ! run. Activate random noise added to input
                            ! ICBC controlled by the perturbparam stanza
                  ! Look http://users.ictp.it/~pubregcm/RegCM4/globedat.htm
                  ! on how to download them.
```



# Timeparam namelists

```
! Model start/restart control
&restartparam
ifrest = .false. . ! If a restart
mdate0 = 1990060100, ! Global start (is globidate1)
mdate1 = 1990060100, ! Start date of this run
mdate2 = 1990060200, ! End date for this run
&timeparam
           150.. ! time step in seconds
dtrad =
            0., ! time interval solar radiation calculated (minutes)
            0., ! time interval absorption-emission calculated (hours)
dtabem =
dtsrf =
           ! time interval at which land model is called (seconds)
dt.cum =

    ! time interval at which cumuls is called (seconds)

dtche =
            O.. ! time interval at which chem model is called (seconds)
```



## Boundaryparam namelist

```
&boundaryparam

nspgx = 12, ! nspgx-1 represent the number of cross point slices on
! the boundary sponge or relaxation boundary conditions.

nspgd = 12, ! nspgd-1 represent the number of dot point slices on
! the boundary sponge or relaxation boundary conditions.

high_nudge = 3.0D0, ! Nudge value high range

medium_nudge = 2.0D0, ! Nudge value medium range

low_nudge = 1.0D0 ! Nudge value low range

bdy_num = -1.0, ! Newtonian term, Eq. 7 Giorgi et al, 1993
! Default is to use the formulation 1/dt

bdy_dm = -1.0, ! Reverse of diffusion term, Eq. 8 Giorgi et al, 1993
! Default is to use the formulation 1/(50*dt)

/
```



# Outparam namelist

```
&outparam
ifsave = .true. ,
                            ! Create SAV files for restart
savfrg =
             0..
                            ! Frequency in hours to create them (0 = monthly)
                            ! Output ATM ?
ifatm = .true. ,
atmfrq =
                            ! Frequency in hours to write to ATM
             6..
ifrad = .true. .
                            ! Output RAD ?
radfra =
                            ! Frequency in hours to write to RAD
             6..
                            ! Output STS (frequence is daily) ?
ifsts = .true. ,
ifsrf = .true. .
                          ! Output SRF ?
srffrq =
             3..
                          ! Frequency in hours to write to SRF
ifsub = .true. ,
                          ! Output SUB ?
             6.,
                          ! Frequency in hours to write to SUB
subfrq =
iflak = .true..
                          ! Output LAK ?
lakfrq = 6..
                         ! Frequency in hours to write to LAK
ifchem = .true.,
                          ! Output CHE ?
ifopt = .false..
                          ! Output OPT ?
chemfrq = 6.,
                           ! Frequency in hours to write to CHE
enable_atm_vars = 67*.true., ! Mask to eventually disable variables ATM
enable srf vars = 35*.true.. ! Mask to eventually disable variables SRF
enable rad vars = 25*.true.. ! Mask to eventually disable variables RAD
enable_sub_vars = 18*.true., ! Mask to eventually disable variables SUB
enable_sts_vars = 18*.true., ! Mask to eventually disable variables STS
enable_lak_vars = 18*.true., ! Mask to eventually disable variables LAK
enable_opt_vars = 19*.true., ! Mask to eventually disable variables OPT
enable_che_vars = 26*.true., ! Mask to eventually disable variables CHE
dirout = './output'.
                            ! Path where all output will be placed
lsvnc = .false..
                            ! If sync of output files at every timestep is
                            ! requested. Note, it has a performance impact.
                            ! Enabled by default if debug level > 2
idiag = 0.
                            ! Enable tendency diagnostic output in the ATM
                            ! file. NOTE: output file gets HUGE.
```



# Physics namelist(I)

```
&physicsparam
iboudv =
                   5, ! Lateral Boundary conditions scheme
                           0 \Rightarrow Fixed
                           1 => Relaxation, linear technique.
                           2 => Time-dependent
                           3 => Time and inflow/outflow dependent.
                           4 => Sponge (Perkey & Kreitzberg, MWR 1976)
                           5 => Relaxation, exponential technique.
isladvec =
                   0, ! Semilagrangian advection scheme for tracers and
                       ! humidity
                           0 => Disabled
                           1 => Enable Semi Lagrangian Scheme
 iqmsl =
                      ! Quasi-monotonic Semi Lagrangian
                           0 => Standard Semi-Lagrangian
                           1 => Bermejo and Staniforth 1992 QMSL scheme
                      ! Boundary layer scheme
ibltyp =
                           0 => Frictionless
                           1 => Holtslag PBL (Holtslag, 1990)
                           2 => UW PBL (Bretherton and McCaa, 2004)
icup_lnd =
                    4, ! Cumulus convection scheme Over Land
icup_ocn =
                    4, ! Cumulus convection scheme Over Icean
                           1 => K110
                           2 => Grell
                           3 => Betts-Miller (1986) DOES NOT WORK !!!
                           4 => Emanuel (1991)
                           5 => Tiedtke (1996)
                           6 => Kain-Fritsch (1990), Kain (2004)
                        -1 => MM5 Shallow cumulus scheme:
                                   No precipitation but only mixing.
```



# Physics namelist(II)

```
pptls =
                  1, ! Moisture scheme
                            1 => Explicit moisture (SUBEX: Pal et al 2000)
                            2 => Explicit moisture Nogherotto/Tompkins
                            3 => Explicit moisture WSM5
                    O, ! Ocean SST from coupled Ocean Model through RegESM
 iocncpl =
                            1 => Coupling activated
                       ! Ocean roughness from coupled Wave Model through RegESM
 iwavcpl =
                            1 => Coupling activated
 iocnflx =
                       ! Ocean Flux scheme
                            1 => Use BATS1e Monin-Obukhov
                         2 => Zeng et al (1998)
                            3 => Coare bulk flux algorithm
   iocnrough =
                    1, ! Zeng Ocean model roughness formula to use.
                         1 => (0.0065*ustar*ustar)/egrav
                           2 => (0.013*ustar*ustar)/egrav + 0.11*visa/ustar
                        ! 3 => (0.017*ustar*ustar)/egrav
                        ! 4 => Huang 2012 free convection and swell effects
                            5 => four regime formulation
                    1, ! Zeng Ocean model factors for t,q roughness
   iocnzoa =
                         1 => 2.67*(re**d_rfour) - 2.57
                            2 \Rightarrow \min(4.0e-4, 2.0e-4*re**(-3.3))
                            3 => COARE formulation as in bulk flux above
 ipgf
                    0, ! Pressure gradient force scheme
                            0 => Use full fields
                            1 => Hydrostatic deduction with pert. temperature
                    0, ! Use computed long wave emissivity
 iemiss =
                    0, ! Use lake model
 lakemod =
```



# Physics namelist(III)

```
O. ! Use active aerosol chemical model
ichem
scenario
             'RCP4.5', ! AR5 RCP scenario in RPC2.6, RCP4.5, RCP6.0, RCP8.5
                       ! AR4 old CMIP3 scenario to use in A1B, A2, B1, B2
                       ! CONST scenario at year ghg_year_const
ghg_year_const = 1950, ! Year to use for a constant GHG concentration values
idesst =
                    0. ! Use diurnal cycle sst scheme
iseaice =
                    O. ! Model seaice effects
idesseas =
                    0, ! Model desert seasonal albedo variability
iconvlwp =
                    0. ! Use convective algo for lwp in the large-scale
                       ! This is reset to zero if using ipptls = 2
icldfrac =
                    1, ! Cloud fraction algorithm
                           0 : Original SUBEX
                           1 : Xu-Randall empirical
                           2 : Thompson scheme
                    1, ! Simulate stratocumulus clouds
icldmstrat =
icumcloud =
                    1. ! Formulas to use for cumulus clouds (cf and lwc)
                       ! Cloud fractions, only if mass fluxes are not
                       ! available (Kuo and BM):
                           0.1 \Rightarrow cf = 1-(1-clfrcv)**(1/kdepth)
                           2 => cf = cloud profile
                       ! Liquid water content:
                               => constant in cloud
                           1,2 => function of temperature
irrtm
                    O, ! Use RRTM radiation scheme instead of CCSM
iclimao3 =
                    0, ! Use 03 climatic dataset from SPARC CMIP5
                    O. ! Use AEROSOL climatic dataset from AERGLOB for non
iclimaaer =
                       ! interactive aerosol load affecting radiative scheme.
                       ! Requires running chem_icbc
isolconst =
                    0, ! Use a constant 1367 W/m^2 instead of the prescribed
                       ! TSI recommended CMIP5 solar forcing data.
islab_ocean =
                    0, ! Activate the SLAB ocean model
itweak =
                    0. ! Enable tweak scenario
```



## dynparam namelist

```
! Dynamical core parameters : Use defaults, be on your own otherwise!
&dvnparam
gnu1 = 0.0600, ! nu factor for Asselin filter in leapfrog step.
gnu2 = 0.0600, ! nu factor for Asselin filter in leapfrog step (tracers).
                 ! MM5 manual , equation 2.4.6
                 ! Default 0.06.0.06 for hydro, 0.1.0.1 for nonhydro
                ! Background diffusion multiplication factor
ckh = 1.0,
adyndif = 1.0, ! Dynamical diffusion multiplication factor
diffu hgtf = 1. ! Add topographic effect to diffusion
upstream_mode = .true., ! Add off centering to advection
upu = 0.150,
                         ! Maximum off-centering factor to use
umax = 160.0.
                         ! Value of P*U for maximum off centering
stability enhance = .false.. ! Do not allow horizontal advection to increase
                             ! tendencies if strong gradients are present
                             ! Enabled by default in non-hydro
vert stability enhance = .false.. ! Same for vertical advection
                                  ! Enabled by default in non-hydro
t_extrema = 5.0, ! Maximum gradient of T in K for advection to stop
q_rel_extrema = 0.2, ! Maximum gradient fraction for QV for advection to stop
c_rel_extrema = 0.2, ! Maximum gradient fraction for QX for advection to stop
t_rel_extrema = 0.2, ! Maximum gradient fraction for tracer advection to stop
```



## Nonhydrostatic namelist

```
! Non-hydrostatic core option
&nonhydroparam
ifupr = 1,
                    ! Upper radiative boundary condition (Klemp and Durran,
                    ! Bougeault, 1983)
nhbet = 0.4.
                    ! Ikawa beta parameter (0.=centered, 1.=backward)
                    ! determines the time-weighting, where zero gives a
                    ! time-centered average and positive values give a bias
                    ! towards the future time step that can be used for
                    ! acoustic damping. In practice, values of
                    ! nhbet = 0.2 - 0.4 are used (MM5 manual, Sec. 2.5.1)
nhxkd = 0.1.
                    ! Time weighting for weighting old/new pp
ifravd = 1.
                    ! Upper levels Rayleigh damper to BCs
rayndamp = 5,
                   ! Number of top levels to apply
ravalpha0 = 0.001, ! Rate alpha0
rayhd = 10000.0, ! Damping scale depth
```



## SUBEX namelist

```
&subexparam
ncld
                    ! # of bottom model levels with no clouds (rad only)
gck1land = 0.0005. ! Autoconversion Rate for Land
ack1oce
       = 0.0005, ! Autoconversion Rate for Ocean
gulland = 0.65,
                    ! Fract of Gultepe eqn (qcth) when prcp occurs (land)
guloce
       = 0.30,
                    ! Fract of Gultepe eqn (qcth) for ocean
rhmax
       = 1.01.
                    ! BH at which FCC = 1.0
rhmin = 0.01.
                    ! RH min value
rh0land = 0.80,
                    ! Relative humidity threshold for land
rh0oce = 0.90.
                    ! Relative humidity threshold for ocean
t.c0
       = 238.0.
                    ! Below this temp, rhO begins to approach unity
cevaplnd = 1.0e-5,
                   ! Raindrop evap rate coef land [[(kg m-2 s-1)-1/2]/s]
                   ! Raindrop evap rate coef ocean [[(kg m-2 s-1)-1/2]/s]
cevapoce = 1.0e-5.
caccrlnd = 6.0.
                    ! Raindrop accretion rate land [m3/kg/s]
caccroce = 6.0.
                    ! Raindrop accretion rate ocean [m3/kg/s]
cllwcv
         = 0.3e-3, ! Cloud liquid water content for convective precip.
clfrcvmax = 0.75.
                    ! Max cloud fractional cover for convective precip.
cftotmax = 0.75,
                    ! Max total cover cloud fraction for radiation
dtls
         = 300.0,
                    ! Timescale for Qc removal (pptmax = qc/dtls)
      = 1.00.
conf
                    ! Condensation efficiency
rcrit = 13.5.
                 ! Mean critical radius
coef_ccn = 2.5e+20, ! Coefficient determined by assuming a lognormal PMD
abulk = 0.9. ! Bulk activation ratio
lsrfhack = false ! Surface radiation back
```



#### Micro namelist

```
param
stats = .false..
                            ! Produce debug variables in output files
budget_compute = .false.,
                           ! Verify enthalpy and moisture conservation
nssopt = 1.
                            ! Supersaturation Computation
                            ! 0 => No scheme
                            ! 1 => Tompkins
                            ! 2 => Lohmann and Karcher
                            1 3 => Gierens
iautoconv = 4,
                             Choose the autoconversion paramaterization
                            ! => 1 Klein & Pincus (2000)
                            ! => 2 Khairoutdinov and Kogan (2000)
                            ! => 3 Kessler (1969)
                            ! => 4 Sundqvist
                            ! Rain fall speed (default is 4 m/s)
vfar = 4.0.
vfai = 0.15.
                            ! Ice fall speed (default is 0.15 m/s)
                            ! Snow fall speed (default is 1 m/s)
vfqs = 1.0,
auto rate khair = 0.355.
                            ! Autoconversion coefficient for kautoconv=2
auto_rate_kessl = 1.e-3,
                            ! Autoconversion coefficient for kautoconv=3
auto_rate_klepi = 0.5e-3,
                           ! Autoconversion coefficient for kautoconv=1
rkconv = 1.666e-4,
                            ! Autoconversion coefficient for kautoconv=4
skconv = 1.0-3.
                            | Autoconversion coefficient for snow
rcovpmin = 0.1,
                            ! Minimum precipitation coverage
rpecons = 5.547e-5,
                            ! Evaporation constant Kessler
```



amelist File RegCM Namelist File

### Grell namelist

```
&grellparam
igcc = 2,
                  ! Cumulus closure scheme
                  ! 1 => Arakawa & Schubert (1974)
                      2 => Fritsch & Chappell (1980)
gcr0 = 0.0020.
                  ! Conversion rate from cloud to rain
edtmin
           = 0.20, ! Minimum Precipitation Efficiency land
edtmin ocn = 0.20. ! Minimum Precipitation Efficiency ocean
edtmax
           = 0.80, ! Maximum Precipitation Efficiency land
edtmax_ocn = 0.80, ! Maximum Precipitation Efficiency ocean
           = 0.20, ! Minimum Tendency Efficiency (o var) land
edtmino
edtmino ocn = 0.20. ! Minimum Tendency Efficiency (o var) ocean
           = 0.80, ! Maximum Tendency Efficiency (o var) land
edtmaxo
edtmaxo_ocn = 0.80, ! Maximum Tendency Efficiency (o var) ocean
edtminy
           = 0.20, ! Minimum Tendency Efficiency (x var) land
edtminx_ocn = 0.20, ! Minimum Tendency Efficiency (x var) ocean
           = 0.80, ! Maximum Tendency Efficiency (x var) land
edtmaxx
edtmaxx ocn = 0.80, ! Maximum Tendency Efficiency (x var) ocean
shrmin
           = 0.30, ! Minimum Shear effect on precip eff. land
shrmin_ocn = 0.30, ! Minimum Shear effect on precip eff. ocean
           = 0.90, ! Maximum Shear effect on precip eff. land
shrmax
shrmax_ocn = 0.90, ! Maximum Shear effect on precip eff. ocean
pbcmax = 50.0,
                  ! Max depth (mb) of stable layer b/twn LCL & LFC
mincld = 150.0,
                ! Min cloud depth (mb).
htmin = -250.0. ! Min convective heating
htmax = 500.0, ! Max convective heating
skbmax = 0.4, ! Max cloud base height in sigma
```



amelist File RegCM Namelist File

#### MIT namelist

```
&emanparam
minsig = 0.95,
                    ! Lowest sigma level from which convection can originate
elcrit_ocn = 0.0011, ! Autoconversion threshold water content (g/g) (ocean)
elcrit_lnd = 0.0011, ! Autoconversion threshold water content (g/g) (land)
tlcrit = -55.0.
                    ! Below tlcrit auto-conversion threshold is zero
entp = 1.5,
                    ! Coefficient of mixing in the entrainment formulation
                    ! Fractional area covered by unsaturated dndraft
sigd = 0.05,
sigs = 0.12.
                    ! Fraction of precipitation falling outside of cloud
omtrain = 50.0.
                    ! Fall speed of rain (Pa/s)
omtsnow = 5.5,
                    ! Fall speed of snow (Pa/s)
                     ! Coefficient governing the rate of rain evaporation
coeffr = 1.0.
coeffs = 0.8.
                     ! Coefficient governing the rate of snow evaporation
cu = 0.7,
                     ! Coefficient governing convective momentum transport
betae = 10.0,
                     ! Controls downdraft velocity scale
dtmax = 0.9.
                    ! Max negative parcel temperature perturbation below LFC
                     ! Controls the approach rate to quasi-equilibrium
alphae = 0.2,
damp = 0.1,
                    ! Controls the approach rate to quasi-equilibrium
epmax_ocn = 0.999,
                    ! Maximum precipitation efficiency (ocean)
epmax_lnd = 0.999,
                    ! Maximum precipitation efficiency (land)
```



## Tiedtke namelist

```
&tiedtkeparam
iconv = 4,
                       ! Actual used scheme.
entrmax = 1.75e-3.
                       ! Max entrainment iconv=[1,2,3]
entrdd = 3.0e-4,
                       ! Entrainment rate for cumulus downdrafts
entrpen_lnd = 1.75e-3, ! Entrainment rate for penetrative convection
entrpen ocn = 1.75e-3, ! Entrainment rate for penetrative convection
entrscv = 3.0e-4.
                       ! Entrainment rate for shallow convection iconv=[1,2,3]
entrmid = 1.0e-4.
                       ! Entrainment rate for midlevel convection iconv=[1,2,3]
cprcon = 1.0e-4.
                       ! Coefficient for determining conversion iconv=[1,2,3]
detrpen_lnd = 0.75e-4, ! Detrainment rate for penetrative convection iconv=4
detrpen_ocn = 0.75e-4, ! Detrainment rate for penetrative convection iconv=4
rcuc_1nd = 0.05,
                       ! Convective cloud cover for rain evporation iconv=4
rcuc ocn = 0.05.
                       ! Convective cloud cover for rain evporation iconv=4
rcpec_lnd = 5.55e-5,
                       ! Coefficient for rain evaporation below cloud iconv=4
rcpec_ocn = 5.55e-5,
                       ! Coefficient for rain evaporation below cloud iconv=4
rhebc lnd = 0.7.
                       ! Critical rh below cloud for evaporation iconv=4
rhebc ocn = 0.9.
                       ! Critical rh below cloud for evaporation iconv=4
rprc_lnd = 1.4e-3,
                       ! conversion coefficient from cloud water iconv=4
                       ! conversion coefficient from cloud water iconv=4
rprc ocn = 1.4e-3.
entshalp = 2.0.
                       ! shallow entrainment factor for entropg iconv=4
cmtcape = 3600.0,
                       ! CAPE adjustment timescale iconv=[1,2,3]
lmfpen = .true.,
                       ! penetrative conv is switched on
lmfmid = .true..
                       ! midlevel conv is switched on
lmfdd = .true.,
                       ! cumulus downdraft is switched on
lepcld = .true.,
                        prognostic cloud scheme is on
lmfdudy = .true..
                       I cumulus friction is switched on
lmfscv = .true..
                       ! shallow convection is switched on
lmfuvdis = .true.,
                       ! use kinetic energy dissipation
lmftrac = .true..
                       ! chemical tracer transport is on
                       ! smoot of mass fluxes for tracers
lmfsmooth = .false..
lmfwstar = .false..
                       ! Grant w* closure for shallow conv
```



amelist File RegCM Namelist File

## Kain Fritsch namelist



## PBL namelists

```
&holtslagparam
ricr_ocn = 0.25, ! Critical Richardson Number over Ocean
ricr_lnd = 0.25, ! Critical Richardson Number over Land
zhnew fac = 0.25. ! Multiplicative factor for zzhnew in holtpbl
ifaholtth10 = 1, ! First approximation for obhukov length, th10 formula:
                         1 \Rightarrow 0.5 * (t+tg) * (1+0.61*q)
                         2 \Rightarrow (0.25*t + 0.75*tg) * (1+0.61*g)
                         3 \Rightarrow theta + hf/(k*us)*log(z/10)
                  ! t = air temp., tg = ground temp., q = wv mix. ratio
                  ! hf = total heat flux. z = elevation
                  ! theta = virt. pot. t
ifaholt = 1,
                  ! th10 final adjustment:
                         0 => no adjustment
                       1 => max(th10,tg)
                         2 => min(th10,tg)
&uwparam
iuwvadv = 0. ! 0=standard T/QV/QC advection. 1=GB01-stvle advection
               ! 1 is ideal for MSc simulation, but may have stability issues
               ! Efficiency of enhancement of entrainment by cloud evap.
atwo = 15.0.
               ! see Grenier and Bretherton (2001) Mon. Wea. Rev.
               ! and Bretherton and Park (2009) J. Clim.
              ! Scaling parameter for stable boundary layer eddy length
rstbl = 1.5,
               ! scale. Higher values mean stronger mixing in stable
               ! conditions
czero = 5.869, ! Czero constant in UW PBL (eqn 44a and pgs 856-857)
nuk = 5.0. ! Multiplication factor for diffusion coefficients
```



Namelist File RegCM Namelist File

## SLAB Ocean namelist



## RRTM namelist

```
&rrtmparam
inflgsw = 2, ! 0 = use the optical properties calculated in prep_dat_rrtm
                   (same as standard radiation)
              ! 2 = use RRTM option to calculate cloud optical properties
                   from water path and cloud drop radius
iceflgsw = 3, ! Flag for ice particle specification
                 0 => ice effective radius, r_ec, (Ebert and Curry, 1992),
                      r ec must be >= 10.0 microns
                 1 => ice effective radius, r_ec, (Ebert and Curry, 1992),
                      r ec range is limited to 13.0 to 130.0 microns
                 2 => ice effective radius, r_k, (Key, Streamer Ref. Manual,
                      1996), r_k range is limited to 5.0 to 131.0 microns
                 3 => generalized effective size, dge, (Fu, 1996),
                      dge range is limited to 5.0 to 140.0 microns
                      [dge = 1.0315 * r_ec]
ligflgsw = 1, ! Flag for liquid droplet specification
                 0 => Compute the optical depths due to water clouds in ATM
                      (currently not supported)
                 1 => The water droplet effective radius (microns) is input
                      and the optical depths due to water clouds are computed
                      as in Hu and Stamnes, J., Clim., 6, 728-742, (1993).
inflglw = 2, ! Flag for cloud optical properties as above but for LW
iceflglw = 3, ! Flag for ice particle specification as above but for LW
liqflglw = 1, ! Flag for liquid droplet specification as above but for LW
icld = 1, ! Cloud Overlap hypothesis
irng = 1, ! mersenne twister random generator for McICA COH
imcica = 1, ! Cloud optical depth (extinction) is in cloud quantity
```



# Chem namelist(I)

```
chemsimtvpe = 'CBMZ
                      '. ! Which chemical tracers to be activated.
                         ! One in :
                             DUST : Activate 4 dust bins scheme
                             SSLT : Activate 2 bins Sea salt scheme
                             DUSS : Activate DUST + SSLT
                             DU12 : Activate 12 dust bins scheme
                             CARB : Activate 4 species black/anthropic
                                    carbon simulations
                             SULF : Activate SO2 and SO4 tracers
                             SUCA : Activate both SUKF and CARB
                             AERO : Activate all DUST, SSLT, CARB and SULF
                             CBMZ : Activate gas phase and sulfate
                             DCCB : Activate CBMZ +DUST +CARB
                             POLLEN: Activate POLLEN transport scheme
ichsolver = 1. ! Activate the chemical solver
ichsursrc = 1, ! Enable the emissions
ichdrdepo = 1. ! 1 = enable tracer surface dry deposition. For dust.
                     it is calculated by a size settling and dry
                     deposition scheme. For other aerosol, a dry
                     deposition velocity is simply prescribed further.
ichebdy = 1. ! Enable boundary conditions read
ichcumtra = 1, ! 1 = enable tracer convective transport and mixing.
ichremlsc = 1, ! 1 = wet removal of chemical species (washout and rainout
                     by total rain) is enabled
ichremcvc = 1, ! 1 = wet removal of chemical species (washout and rainout
                     by convective rain) is enabled
ichdustemd = 1. ! Choice for parametrisation of dust emission size distribution
               ! 1 = use the standard scheme (Alfaro et al., Zakey et al.)
               ! 2 = use the the revised soil granulometry + Kok et al., 2011
               1.3 = use the the CLM4.5 dust emission module.
```

&chemparam



# Chem namelist(II)

```
ichdiag = 0,    ! 1 = enable writing of additional diagnostics in the output
idirect = 1, ! Choice to enable or not aerosol feedbacks on radiation and
! dynamics (aerosol direct and semi direct effcts)
! 1 = no coupling to dynamic and thermodynamic. However
! the clear sky surface and top of atmosphere
aerosol radiative forcings are diagnosed.
! 2 = allows aerosol feedbacks on radiative,
thermodynamic and dynamic fields.
ismoke = 0, ! Consider emissions from fires (smoke tracer)
indirect = 0, ! Enable sulfate indirect effect in radiation scheme
rdstemfac = 1.0,! Aerosol correction factor (Laurent et al, 2008)
ichjphcld = 1, ! Impact of cloud aod on photolysis coef
ichbion = 0, ! ?????????????????????????
```



### CLM 3.5 namelist



### CLM 4.5 namelist

```
&clm_inparm
fpftcon = 'pft-physiology.c130503.nc',
fsnowoptics = 'snicar_optics_5bnd_c090915.nc',
fsnowaging = 'snicar_drdt_bst_fit_60_c070416.nc',
/
&clm_soilhydrology_inparm
h2osfcflag = 1,
origflag = 0,
/
&clm_hydrology1_inparm
oldfflag = 0,
/
&clm_regcm
enable_megan_emission = .false.,
enable_urban_landunit = .true.,
enable_more_crop_pft = .false.,
/
/
```



amelist File RegCM Namelist File

# Tweaking namelist

```
&tweakparam
itweak_sst = 0,
                            ! Enable adding sst_tweak to input TS
itweak_temperature = 0,     ! Enable adding temperature_tweak to input T
itweak_solar_irradiance = 0, ! Add solar_tweak to solar constant
itweak_greenhouse_gases = 0, ! Multiply gas_tweak_factors to GG concentrations
sst tweak = 0.0D0.
                            ! In K
temperature tweak = 0.0D0. ! In K
solar_tweak = 0.0D0, ! In W m-2 (1367.0 is default solar)
gas_tweak_factors = 1.0D0, 1.0D0 , 1.0D0 , 1.0D0 , 1.0D0,
                   CD2
                          CH4
                                  N20
                                          CFC11
                                                  CFC12
```

