Scattering Amplitudes LECTURE 1

Jaroslav Trnka

Center for Quantum Mathematics and Physics (QMAP), UC Davis

Particle experiments: our probe to fundamental laws of Nature

Theorist's perspective: scattering amplitude

Phenomenology

What does the blob really represent?

What does the blob really represent?

It can be for example a sum of different pictures

And in a special case

 even something more surprising

Overview of lectures

\% Lecture 1: Review of scattering amplitudes

- Motivation
- On-shell amplitudes
- Kinematics of massless particles
* Lecture 2: New methods for amplitudes
- Recursion relations for tree-level amplitudes
- Unitarity methods for loop amplitudes
- On-shell diagrams
\% Lecture 3: Geometric formulation
- Toy model: N=4 SYM theory
- Positive Grassmannian
- Amplituhedron

Motivation

Quantum Field Theory (QFT)

\because Our theoretical framework to describe Nature
\% Compatible with two principles

Special relativity

Quantum mechanics

$$
H(t)|\psi(t)\rangle=i \hbar \frac{\partial}{\partial t}|\psi(t)\rangle
$$

Perturbative QFT

(Dirac, Heisenberg, Pauli; Feynman, Dyson, Schwinger)
\% Fields, Lagrangian, Path integral

$$
\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+i \bar{\psi} D \mathcal{D} \psi-m \bar{\psi} \psi \quad \int \mathcal{D} A \mathcal{D} \psi \mathcal{D} \bar{\psi} e^{i S(A, \psi, \bar{\psi}, J)}
$$

\% Feynman diagrams: pictures of particle interactions Perturbative expansion: trees, loops

Great success of QFT

\% QFT has passed countless tests in last 70 years

* Example: Magnetic dipole moment of electron

Theory: $\quad g_{e}=2$
1928
Experiment: $\quad g_{e} \sim 2$

Great success of QFT

\% QFT has passed countless tests in last 70 years
\% Example: Magnetic dipole moment of electron
Theory: $g_{e}=2.00232$
1947
Experiment: $g_{e}=2.0023$

Great success of QFT

\% QFT has passed countless tests in last 70 years
\% Example: Magnetic dipole moment of electron 1957 Theory: $g_{e}=2.0023193$ 1972 Experiment: $g_{e}=2.00231931$

Great success of QFT

\% QFT has passed countless tests in last 70 years
\% Example: Magnetic dipole moment of electron
Theory: $g_{e}=2.0023193044$
1990
Experiment: $\quad g_{e}=2.00231930438$

Dualities

\% At strong coupling: perturbative expansion breaks

Hilic
SIUINTT
LIEONIES

\% Surprises: dual to weakly coupled theory

- Gauge-gauge dualities
(Montonen-Olive 1977, Seiberg-Witten 1994)
- Gauge-gravity duality
(Maldacena 1997)

Incomplete picture

\% Our picture of QFT is incomplete

* Also, tension with gravity and cosmology

If there is a new way of thinking about QFT, it must be seen even at weak coupling
\% Explicit evidence: scattering amplitudes

Colliders at high energies

\therefore Proton scattering at high energies

LHC - gluonic factory
\because Needed: amplitudes of gluons for higher multiplicities

$$
g g \rightarrow g g \ldots g \quad \text { 文 }
$$

Early 80s

\because Status of the art: $g g \rightarrow g g g$

Brute force calculation
 24 pages of result

New collider

\because 1983: Superconducting Super Collider approved
\therefore Energy 40 TeV : many gluons!

\% Demand for calculations, next on the list: $g g \rightarrow g g g g$

Parke-Taylor formula

(Parke, Taylor 1985)
\because Process $g g \rightarrow g g g g$
$\therefore 220$ Feynman diagrams, ~ 100 pages of calculations

GLUONIC TWO GOES TO FOUR

* 1985: Paper with 14 pages of result

Stephen J. Parke and T.R. Taylor Fermi National Accelerator Laboratory P.0. Box 500, Batavia, IL 60510
U.S.A.

ABSTRACT
The cross section for two gluon to four gluon scattering is given in a form suitable for fast numerical calculations.

Parke-Taylor formula

\therefore Process $g g \rightarrow g g g g$
$\therefore 220$ Feynman diagrams, ~ 100 pages of calculations

 ather - otan -

> m. 1 than
> (a)- $\frac{1}{4}$ floman).

Parke-Taylor formula

Our result has succesfully passed both these numerical checks.
Details of the calculation, together with a full exposition of our techniques, will be given in a forthcoming article. Furthermore, we hope to obtain a simple analytic form for the answer, making our result not only an experimentalist's, but also a theorist's delight.

Parke-Taylor formula

Our result has succesfully passed both these numerical checks.
Details of the calculation, together with a full exposition of our techniques, will be given in a forthcoming article. Furthermore, we hope to obtain a simple analytic form for the answer, making our result not only an experimentalist's, but also a theorist's delight.
\% Within a year they realized
Spinor-helicity variables

$$
\mathcal{M}_{6}=\frac{\langle 12\rangle^{3}}{\langle 23\rangle\langle 34\rangle\langle 45\rangle\langle 56\rangle\langle 61\rangle}
$$

$$
\begin{aligned}
p^{\mu} & =\sigma_{a \dot{a}}^{\mu} \lambda_{a} \tilde{\lambda}_{\dot{a}} \\
\langle 12\rangle & =\epsilon_{a b} \lambda_{a}^{(1)} \lambda_{b}^{(2)} \\
{[12] } & =\epsilon_{\left.\dot{a} \dot{a} \dot{x}_{\dot{a}} 1\right)}^{\tilde{d}_{\dot{b}}^{(2)}}
\end{aligned}
$$

(Mangano, Parke, Xu 1987)

Parke-Taylor formula

Our result has succesfully passed both these numerical checks.
Details of the calculation, together with a full exposition of our techniques, will be given in a forthcoming article. Furthermore, we hope to obtain a simple analytic form for the answer, making our result not only an experimentalist's, but also a theorist's delight.
\% Within a year they realized
AN AMPLITUDE FOR n GLUON SCATTERING

$$
\mathcal{M}_{n}=\frac{\langle 12\rangle^{3}}{\langle 23\rangle\langle 34\rangle\langle 45\rangle \ldots\langle n 1\rangle}
$$

Problems with Feynman diagrams

: Particles on internal lines are not real

- Individual diagrams not gauge invariant
\% Obscure simplicity of the final answer
- Most of the terms in each diagram cancels
\because Lesson: work with gauge invariant quantities with fixed spin structure

Birth of amplitudes

* New field in theoretical particle physics

New methods and effective calculations

> Uncovering new structures in QFT
"Road map"

What are scattering amplitudes

Scattering process

* Interaction of elementary particles
\% Initial state $|i\rangle$ and final state $|f\rangle$
\therefore Scattering amplitude $\mathcal{M}_{i f}=\langle i \mid f\rangle$

\therefore Example: $e^{+} e^{-} \rightarrow e^{+} e^{-}$or $e^{+} e^{-} \rightarrow \gamma \gamma$ etc.
\because Cross section: $\quad \sigma=\int|\mathcal{M}|^{2} d \Omega \quad$ probability

Scattering amplitude in QFT

\% Scattering amplitude depends on types of particles and their momenta

$$
\mathcal{M}_{i f}=F\left(p_{i}, s_{i}\right)
$$

: Theoretical framework: calculated in some QFT
\because Specified by Lagrangian: interactions and couplings

$$
\mathcal{L}=\mathcal{L}\left(\mathcal{O}_{j}, g_{k}\right)
$$

\% Example: QED

$$
\mathcal{L}_{i n t}=e \bar{\psi} \gamma_{\mu} \psi A^{\mu}
$$

Perturbation theory

\because Weakly coupled theory

$$
\mathcal{M}=\mathcal{M}_{0}+g \mathcal{M}_{1}+g^{2} \mathcal{M}_{2}+g^{3} \mathcal{M}_{3}+\ldots
$$

*Representation in terms of Feynman diagrams

* Perturbative expansion = loop expansion

$$
\mathcal{M}=\mathcal{M}^{\text {tree }}+\mathcal{M}^{1-\text { loop }}+\mathcal{M}^{2-\text { loop }}+\ldots
$$

Divergencies

* Loop diagrams are generally UV divergent

$$
-\sim \int_{-\infty}^{\infty} \frac{d^{4} \ell}{\left(\ell^{2}+m^{2}\right)\left[(\ell+p)^{2}+m^{2}\right]} \sim \log \Lambda
$$

\because IR divergencies: physical effects, cancel in cross section
\% Dimensional regularization: calculate integrals in
$4+\epsilon$ dimensions
Divergencies $\sim \frac{1}{\epsilon^{k}}$

Renormalizable theories

* Absorb UV divergencies: counter terms
- Finite number of them: renormalizable theory
- Infinite number: non-renormalizable theory
* Mostly only renormalizable theories are interesting
* Exceptions: effective field theories

Example: Chiral perturbation theory - derivative expansion

$$
\mathcal{L}=\mathcal{L}_{2}+\mathcal{L}_{4}+\mathcal{L}_{6}+\mathcal{L}_{8}+\ldots
$$

Different loop orders are mixed

Analytic structure of amplitudes

\therefore Tree-level: rational functions

$$
\sim \frac{g^{2}}{\left(p_{1}+p_{2}\right)^{2}}
$$

Only poles

\because Loops: polylogarithms and more complicated functions

$$
\sim \log ^{2}(s / t) \quad \text { Branch cuts }
$$

Kinematics of massless particles

Massless particles

* Parameters of elementary particles of spin S
- Spin $s=(-S, S)$
- Mass m

On-shell (physical) particle

- Momentum p^{μ}
\therefore Massless particle: $m=0 \quad p^{2}=0$ spin $=$ helicity: only two extreme values $h=\{-S, S\}$

Example: photon

$$
\begin{aligned}
h & =(+,-) \\
s & =0 \text { missing }
\end{aligned}
$$

Spin functions

*At high energies particles are massless
Fundamental laws reveal there
\because Spin degrees of freedom: spin function

- $s=0$: Scalar - no degrees of freedom
- $\mathrm{s}=1 / 2$: Fermion - spinor u
- $\mathrm{s}=1$: Vector - polarization vector ϵ^{μ}
- $\mathrm{s}=2$: Tensor - polarization tensor $h^{\mu \nu}$

Spin functions

*At high energies particles are massless
Fundamental laws reveal there
\because Spin degrees of freedom: spin function

- $s=0$: Scalar - no degrees of freedom
- $\mathrm{s}=1 / 2$: Fermion - spinor u
- $\mathrm{s}=1$: Vector - polarization vector ϵ^{μ}
- $\mathrm{s}=2$: Tensor - polarization tensor $h^{\mu \nu}$

Polarization vectors

* Spin 1 particle is described by vector ϵ^{μ}
\downarrow
2 degrees of freedom
4 degrees of freedom
\therefore Null condition: $\epsilon \cdot \epsilon^{*}=0 \quad 3$ degrees of freedom left
* We further impose: $\epsilon \cdot p=0 \quad$ Identification

Feynman diagrams depend on $\alpha \quad \epsilon_{\mu} \sim \epsilon_{\mu}+\alpha p_{\mu}$ gauge dependence

Spinor helicity variables

\% Standard $\mathrm{SO}(3,1)$ notation for momentum

$$
p^{\mu}=\left(p_{0}, p_{1}, p_{2}, p_{3}\right) \quad p_{j} \in \mathbb{R}
$$

\% We use $\mathrm{SL}(2, \mathrm{C})$ representation $\quad p^{2}=p_{0}^{2}+p_{1}^{2}+p_{2}^{2}-p_{3}^{2}$

$$
p_{a b}=\sigma_{a b}^{\mu} p_{\mu}=\left(\begin{array}{cc}
p_{0}+i p_{1} & p_{2}+p_{3} \\
p_{2}-p_{3} & p_{0}-i p_{1}
\end{array}\right)
$$

On-shell: $\quad p^{2}=\operatorname{det}\left(p_{a b}\right)=0$
$\operatorname{Rank}\left(p_{a b}\right)=1$

Spinor helicity variables

\therefore We can then write $p_{a b}=\lambda_{a} \kappa_{b}$
$\because \mathrm{SL}(2, \mathrm{C})$: dotted notation $p_{a b}=\lambda_{a} \widetilde{\lambda}_{b}$
$\widetilde{\lambda}$ is complex conjugate of λ

* Little group transformation
$\lambda \rightarrow t \lambda \quad$ leaves momentum

$$
\tilde{\lambda} \rightarrow \frac{1}{t} \tilde{\lambda} \quad \begin{gathered}
\text { unchanged }
\end{gathered} \quad p \rightarrow p
$$

3 degrees of freedom

Spinor helicity variables

\therefore Momentum invariant $\quad\left(p_{1}+p_{2}\right)^{2}=\left(p_{1} \cdot p_{2}\right)$

$$
p_{1}^{\mu}=\sigma_{a \dot{a}}^{\mu} \lambda_{1 a} \widetilde{\lambda}_{1 \dot{a}} \quad p_{2}^{\mu}=\sigma_{b \dot{b}}^{\mu} \lambda_{2 b} \widetilde{\lambda}_{2 \dot{b}}
$$

* Plugging for momenta

$$
\left(p_{1} \cdot p_{2}\right)=\left(\sigma_{a \dot{a}}^{\mu} \sigma_{\mu b \dot{b}}\right)\left(\lambda_{1 a} \lambda_{2 b}\right)\left(\widetilde{\lambda}_{1 \dot{a}} \widetilde{\lambda}_{2 \dot{b}}\right)
$$

$$
\epsilon_{a b}^{\stackrel{\downarrow}{\epsilon}} \dot{\epsilon}_{\dot{a} \dot{b}}=\left(\epsilon_{a b} \lambda_{1 a} \lambda_{2 b}\right)\left(\epsilon_{\dot{a} \dot{b}} \tilde{\lambda}_{1 \dot{a}} \tilde{\lambda}_{2 \dot{b}}\right)
$$

Define:

$$
\langle 12\rangle \equiv \epsilon_{a b} \lambda_{1 a} \lambda_{2 b} \quad[12] \equiv \epsilon_{\dot{a} \dot{b}} \tilde{\lambda}_{1 \dot{a}} \tilde{\lambda}_{2 \dot{b}}
$$

Invariant products

\therefore Momentum invariant

$$
s_{i j}=\left(p_{i}+p_{j}\right)^{2}=\langle i j\rangle[i j]
$$

Square brackets
Angle brackets $\langle i j\rangle=\epsilon_{a b} \lambda_{i a} \lambda_{j b} \quad[i j]=\epsilon_{\dot{a} \dot{b}} \widetilde{\lambda}_{i \dot{a}} \widetilde{\lambda}_{j \dot{b}}$
\because Antisymmetry

$$
\langle 21\rangle=-\langle 12\rangle \quad[21]=-[12]
$$

\% More momenta

$$
\left(p_{1}+p_{2}+p_{3}\right)^{2}=\langle 12\rangle[12]+\langle 23\rangle[23]+\langle 13\rangle[13]
$$

Invariant products

* Shouten identity

$$
\langle 13\rangle\langle 24\rangle=\langle 12\rangle\langle 34\rangle+\langle 14\rangle\langle 23\rangle
$$

\% Mixed brackets

$$
\langle 1| 2+3 \mid 4] \equiv\langle 12\rangle[24]+\langle 13\rangle[34]
$$

\% Momentum conservation

$$
\sum_{i=1}^{n} \lambda_{i a} \widetilde{\lambda}_{i \dot{a}}=0
$$

Non-trivial conditions:
Quadratic relation
between components

Polarization vectors

\% Two polarization vectors

$$
\epsilon_{+}^{\mu}=\sigma_{a \dot{a}}^{\mu} \frac{\eta_{a} \widetilde{\lambda}_{\dot{a}}}{\langle\eta \lambda\rangle} \quad \epsilon_{-}^{\mu}=\sigma_{a \dot{a}}^{\mu} \frac{\lambda_{a} \widetilde{\eta}_{\dot{a}}}{[\widetilde{\eta} \widetilde{\lambda}]}
$$

Note that
where $\eta, \widetilde{\eta}$ are auxiliary spinors $\left(\epsilon_{+} \cdot \epsilon_{-}\right)=1$
\% Freedom in choice of $\eta, \widetilde{\eta}$ corresponds to

$$
\epsilon^{\mu} \sim \epsilon^{\mu}+\alpha p^{\mu}
$$

\% Gauge redundancy of Feynman diagrams

Scaling of amplitudes

\% Consider some amplitude $A(-+--+\cdots-)$

$$
A=\left(\epsilon_{1} \epsilon_{2} \ldots \epsilon_{n}\right) \cdot Q
$$

* Little group scaling depends only on momenta

$$
\begin{array}{lll}
\lambda \rightarrow t \lambda \\
\tilde{\lambda} \rightarrow \frac{1}{t} \tilde{\lambda}
\end{array} \longrightarrow \quad \begin{gathered}
p \rightarrow p \\
\epsilon_{+}
\end{gathered} \longrightarrow \frac{1}{t^{2}} \cdot \epsilon_{+} \longrightarrow \quad A\left(i^{-}\right) \rightarrow t^{2} \cdot A\left(i^{-}\right)
$$

Back to Parke-Taylor formula

\because Let us consider $A\left(1^{-} 2^{-} 3^{+} 4^{+} 5^{+} 6^{+}\right)$
\because Scaling $A\left(t \lambda_{i}, \frac{1}{t} \widetilde{\lambda}_{i}\right)=t^{2} \cdot A\left(\lambda_{i}, \widetilde{\lambda}_{i}\right)$ for particles 1,2

$$
A\left(t \lambda_{i}, \frac{1}{t} \widetilde{\lambda}_{i}\right)=\frac{1}{t^{2}} \cdot A\left(\lambda_{i}, \widetilde{\lambda}_{i}\right) \text { for particles } 3,4,5,6
$$

\% Check for explicit expression

$$
A_{6}=\frac{\langle 12\rangle^{3}}{\langle 23\rangle\langle 34\rangle\langle 45\rangle\langle 56\rangle\langle 61\rangle}
$$

If only $\langle i j\rangle$ allowed the form is unique

Helicity amplitudes

* In Yang-Mills theory we have + or - "gluons"

$$
A_{6}\left(1^{-} 2^{-} 3^{+} 4^{+} 5^{+} 6^{+}\right)
$$

: We denote k: number of - helicity gluons

* Some amplitudes are zero

$$
\begin{aligned}
& A_{n}(+++\cdots+)=0 \\
& A_{n}(-++\cdots+)=0 \\
& A_{n}(---\cdots-)=0 \\
& A_{n}(+--\cdots-)=0
\end{aligned}
$$

First non-trivial: $\mathrm{k}=2$

$$
A_{n}(--+\cdots+)
$$

Parke-Taylor formula for tree level

Three point amplitudes

Three point kinematics

* Gauge invariant building blocks: on-shell amplitudes

$$
p_{1}^{2}=p_{2}^{2}=p_{3}^{2}=0 \quad p_{1}+p_{2}+p_{3}=0
$$

*Plugging second equation into the first

$$
\left(p_{1}+p_{2}\right)^{2}=\left(p_{1} \cdot p_{2}\right)=0
$$

* Similarly we get for other pairs

$$
\left(p_{1} \cdot p_{2}\right)=\left(p_{1} \cdot p_{3}\right)=\left(p_{2} \cdot p_{3}\right)=0
$$

These momenta are very constrained!

Three point kinematics

* Use spinor helicity variables trivializes on-shell condition

$$
p_{1}=\lambda_{1} \widetilde{\lambda}_{1}, \quad p_{2}=\lambda_{2} \widetilde{\lambda}_{2}, \quad p_{3}=\lambda_{3} \widetilde{\lambda}_{3}
$$

\therefore The mutual conditions then translate to

$$
\left(p_{1} \cdot p_{2}\right)=\langle 12\rangle[12]=0
$$

\because And similarly for other two pairs

$$
\left(p_{1} \cdot p_{3}\right)=\langle 13\rangle[13]=0 \quad\left(p_{2} \cdot p_{3}\right)=\langle 23\rangle[23]=0
$$

Two solutions

\%We want to solve conditions

$$
\langle 12\rangle[12]=\langle 13\rangle[13]=\langle 23\rangle[23]=0
$$

\because Solution 1: $\langle 12\rangle=0$ which implies $\lambda_{2}=\alpha \lambda_{1}$
Then we also have $\langle 23\rangle=\alpha\langle 13\rangle$
And we set $\langle 13\rangle=0$ by demanding $\lambda_{3}=\beta \lambda_{1}$

$$
\lambda_{1} \sim \lambda_{2} \sim \lambda_{3}
$$

Two solutions

\% Solution 2:

$$
\begin{gathered}
{[12]=[23]=[13]=0} \\
\widetilde{\lambda}_{1} \sim \widetilde{\lambda}_{2} \sim \widetilde{\lambda}_{3}
\end{gathered}
$$

* Let us take this solution

$$
p_{1}=\lambda_{1} \widetilde{\lambda}_{1}, \quad p_{2}=\alpha \lambda_{2} \widetilde{\lambda}_{1}, \quad p_{3}=\left(-\lambda_{1}-\alpha \lambda_{2}\right) \widetilde{\lambda}_{1}
$$

No solution for real momenta

Three point amplitudes

\% Gauge theory: scattering of three gluons (not real)
\therefore Building blocks: $\langle 12\rangle,\langle 23\rangle,\langle 13\rangle,[12],[23],[13]$
\because Mass dimension: each term $\sim m$

* Three point amplitude

$$
A_{3} \sim \epsilon^{3} p \sim p \sim m
$$

Three point amplitudes

\% Two options

$$
A_{3}^{(1)}=\langle 12\rangle^{a_{1}}\langle 13\rangle^{a_{2}}\langle 23\rangle^{a_{3}} \quad A_{3}^{(2)}=[12]^{b_{1}}[13]^{b_{2}}[23]^{b_{3}}
$$

\therefore Apply to $A_{3}\left(1^{-}, 2^{-}, 3^{+}\right)$

$$
A_{3}\left(t \lambda_{1}, t^{-1} \widetilde{\lambda}_{1}\right)=t^{a_{1}+a_{2}} \cdot A_{3} \quad a_{1}+a_{2}=2 \quad a_{1}=3
$$

$$
A_{3}\left(t \lambda_{2}, t^{-1} \widetilde{\lambda}_{2}\right)=t^{a_{1}+a_{3}} \cdot A_{3} \rightarrow a_{1}+a_{3}=2 \rightarrow a_{2}=-1
$$

$$
A_{3}\left(t \lambda_{3}, t^{-1} \widetilde{\lambda}_{3}\right)=t^{a_{2}+a_{3}} \cdot A_{3} \quad a_{2}+a_{3}=-2 \quad a_{3}=-1
$$

Three point amplitudes

\% Similarly for $A_{3}\left(1^{+}, 2^{+}, 3^{-}\right)$
\% Two fundamental amplitudes

$$
A_{3}\left(1^{-}, 2^{-}, 3^{+}\right)=\frac{\langle 12\rangle^{3}}{\langle 13\rangle\langle 23\rangle}
$$

$$
A_{3}\left(1^{+}, 2^{+}, 3^{-}\right)=\frac{[12]^{3}}{[13][23]}
$$

This is true to all orders: just kinematics

Three point amplitudes

Collect all $(--+)$ amplitudes

$$
\begin{aligned}
A_{3}\left(1^{-}, 2^{-}, 3^{+}\right) & =\frac{\langle 12\rangle^{3}}{\langle 13\rangle\langle 23\rangle} \\
A_{3}\left(1^{-}, 2^{+}, 3^{-}\right) & =\frac{\langle 13\rangle^{3}}{\langle 12\rangle\langle 23\rangle} \\
A_{3}\left(1^{+}, 2^{-}, 3^{-}\right) & =\frac{\langle 23\rangle^{3}}{\langle 12\rangle\langle 13\rangle}
\end{aligned}
$$

$\frac{\langle a b\rangle^{4}}{\langle 12\rangle\langle 23\rangle\langle 31\rangle}$
where a, b are - helicity gluons

Similarly for $(++-)$ amplitudes

$$
\frac{[a b]^{4}}{[12][23][31]}
$$

where a, b are + helicity gluons

Three point amplitudes

\% Using similar analysis we find for gravity

$$
\frac{\langle a b\rangle^{8}}{\langle 12\rangle^{2}\langle 23\rangle^{2}\langle 31\rangle^{2}}
$$

where a, b are - helicity gravitons

$$
\frac{[a b]^{8}}{[12]^{2}[23]^{2}[31]^{2}}
$$

where a, b are + helicity graviton
\because Note that there is no three-point scattering
They exist only for complex momenta
\because Important input into on-shell methods

General 3pt amplitudes

\because Two solutions for 3pt kinematics

Under the little group rescaling:

$$
A_{3}\left(t \lambda_{j}, t^{-1} \widetilde{\lambda}_{j}\right) \sim t^{2 h_{j}} \cdot A_{3}
$$

Solve the system of equations
$\widetilde{\lambda}_{1} \sim \widetilde{\lambda}_{2} \sim \widetilde{\lambda}_{3}$

General 3pt amplitudes

* Two solutions for amplitudes

$$
\text { (} A_{3}^{h_{3}} A_{3}^{h_{2}} A_{3}^{2}=[12]^{-h_{1}-h_{2}+h_{3}}[23]^{-h_{2}-h_{3}+h_{1}}[31]^{-h_{1}-h_{3}+h_{2}}
$$

General 3pt amplitudes

* Two solutions for amplitudes

$$
\begin{gathered}
A_{3}=[12]^{+h_{1}+h_{2}-h_{3}}[23]^{-h_{1}+h_{2}+h_{3}}[31]^{+h_{1}-h_{2}+h_{3}} \\
h_{1}+h_{2}+h_{3} \leq 0
\end{gathered}
$$

$$
\begin{gathered}
A_{3}=\langle 12\rangle^{-h_{1}-h_{2}+h_{3}}\langle 23\rangle^{+h_{1}-h_{2}-h_{3}}\langle 31\rangle^{-h_{1}+h_{2}-h_{3}} \\
h_{1}+h_{2}+h_{3} \geq 0
\end{gathered}
$$

Mass dimension must be positive!

All spins allowed

\therefore Note that these formulas are valid for any spins
\because For example for amplitude $A_{3}\left(1^{0}, 2^{1^{+}}, 3^{2^{+}}\right)$

$$
A_{3}=\frac{\langle 23\rangle\langle 31\rangle^{3}}{\langle 12\rangle^{3}}
$$

\because But we can also do higher spins $A_{3}\left(1^{3^{+}}, 2^{5^{+}}, 3^{12^{-}}\right)$

$$
A_{3}=\frac{\langle 23\rangle^{10}\langle 31\rangle^{14}}{\langle 12\rangle^{20}}
$$

* Completely fixed just by kinematics!

Tree-level amplitudes

Feynman diagrams

\% Yang-Mills Lagrangian

$$
\begin{aligned}
\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu} & \sim(\partial A)^{2}+A^{2} \partial A+ \\
& \sim A^{4} \\
& \sim f^{a b c} g_{\mu \nu} p_{\alpha} \quad \sim f^{a b e} f^{c d e} g_{\mu \nu} g_{\alpha \beta}
\end{aligned}
$$

* Draw diagrams Feynman rules Sum everything

Change of strategy

What is the scattering amplitude?

Feynman diagrams

Unique object fixed by physical properties

The Analytic
S-Matrix
(1960s)
Modern methods use both:

- Calculate the amplitude directly
- Use perturbation theory

Locality and unitarity

\% Only poles: Feynman propagators
Locality

$$
\frac{1}{P^{2}} \text { where } P=\sum_{k \in \mathcal{P}} p_{k}
$$

\therefore On the pole
Unitarity

Feynman diagrams recombine on both sides into amplitudes

$$
\mathcal{M} \underset{P^{2}=0}{ } \mathcal{M}_{L} \frac{1}{P^{2}} \mathcal{M}_{R}
$$

Factorization on the pole

$$
\text { On } P^{2}=0 \quad \operatorname{Res} \mathcal{M}=\mathcal{M}_{L} \frac{1}{P^{2}} \mathcal{M}_{R}
$$

\because For $P^{2}=0$ the internal leg: on-shell physical particle

* Both sub-amplitudes are on-shell, gauge invariant
\% On-shell data: statement about on-shell quantities

On-shell constructibility

\because Factorization of tree-level amplitudes

$$
\mathcal{M} \underset{P^{2}=0}{ } \mathcal{M}_{L} \frac{1}{P^{2}} \mathcal{M}_{R}
$$

\therefore On-shell constructibility: factorizations fix the answer
\therefore Write a proposal tree-level amplitude $\widetilde{\mathcal{M}}$

- On-shell gauge invariant function, correct weights
- It factorizes properly on all channels

The amplitude is uniquely specified by these properties

On-shell constructibility

*This is obviously a theory specific statement
\because Theories with contact terms might not be constructible

* Naively, this is false for Yang-Mills theory

$$
g g \rightarrow g g
$$

Four point amplitude

Contact term

On-shell constructibility

\therefore This is obviously a theory specific statement
\because Theories with contact terms might not be constructible
$\%$ Naively, this is false for Yang-Mills theory

$$
g g \rightarrow g g
$$

Four point amplitude

Contact term
Imposing gauge invariance fixes it

On-shell constructibility

\% In gravity we have infinity tower of terms

$$
\mathcal{L} \sim \sqrt{g} R \sim h^{2}+h^{3}+h^{4}+\ldots
$$

\because Only h^{3} terms important, others fixed by diffeomorphism symmetry

On-shell constructibility of Yang-Mills, GR, SM
Only function which factorizes properly on all poles is the amplitude.

Four point test

From 3pt to 4 pt

\because Three point amplitudes exist for all spins
\because For 4 pt amplitude: we have a powerful constraint

$$
A_{4} \underset{s=0}{\longrightarrow} A_{3} \frac{1}{s} A_{3} \quad \begin{gathered}
\text { This must be true on } \\
\text { all channels }
\end{gathered}
$$

\% This will immediately kill most of the possibilities
\because We are left with spectrum of spins: $0, \frac{1}{2}, 1, \frac{3}{2}, 2$

Three point of spin S

\% I will discuss amplitudes of single spin S particle
\because For 3pt amplitudes we get

$$
\begin{aligned}
A_{3}= & \left(\frac{\langle 12\rangle^{3}}{\langle 23\rangle\langle 31\rangle}\right)_{\text {minimal }}^{S} A_{3}=\left(\frac{[12]^{3}}{[23][31]}\right)^{S} \\
& (--+) \text { powercounting }(++-)
\end{aligned}
$$

\because There exist also non-minimal amplitudes

$$
\begin{array}{cc}
A_{3}=(\langle 12\rangle\langle 23\rangle\langle 31\rangle)^{S} & A_{3}=([12][23][31])^{S} \\
(---) & (+++)
\end{array}
$$

Four point amplitude

\% Let us consider a 4 pt amplitude of particular helicities

$$
A_{4}(--++)
$$

\% Mandelstam variables:

$$
\begin{aligned}
& s=\left(p_{1}+p_{2}\right)^{2}=\langle 12\rangle[12]=\langle 34\rangle[34] \\
& t=\left(p_{1}+p_{4}\right)^{2}=\langle 14\rangle[14]=\langle 23\rangle[23] \\
& u=\left(p_{1}+p_{3}\right)^{2}=\langle 13\rangle[13]=\langle 24\rangle[24]
\end{aligned}
$$

\because One can show that the little group dictates:

$$
A_{4}=(\langle 12\rangle[34])^{2 S} \cdot F(s, t)
$$

\because It must be consistent with factorizations

s-channel constraint

\therefore The s-channel factorization dictates $\quad P=1+2=-3-4$

$$
A_{4} \rightarrow\left(\frac{\langle 12\rangle^{3}}{\langle 1 P\rangle\langle 2 P\rangle}\right)^{S} \frac{1}{s}\left(\frac{[34]^{3}}{[3 P][4 P]}\right)^{S} \text { on } \mathrm{s}=0
$$

Note: $s=\langle 12\rangle[12]=\langle 34\rangle[34]$

s-channel constraint

\therefore The s-channel factorization dictates $\quad P=1+2=-3-4$

$$
\begin{aligned}
& A_{4} \rightarrow\left(\frac{\langle 12\rangle^{3}}{\langle 1 P\rangle\langle 2 P\rangle}\right)^{S} \frac{1}{s}\left(\frac{[34]^{3}}{[3 P][4 P]}\right)^{S} \text { on } \mathrm{s}=0 \\
& \text { Note: } s=\langle 12\rangle[12])=(\langle 34\rangle)[34]
\end{aligned}
$$

s-channel constraint

$$
\left(\frac{\langle 12\rangle^{3}}{\langle 1 P\rangle\langle 2 P\rangle}\right)^{S} \frac{1}{s}\left(\frac{[34]^{3}}{[3 P][4 P]}\right)^{S}
$$

Rewrite using momentum conservation:

$$
\begin{gathered}
\langle 1 P\rangle[3 P]=-\langle 1| P \mid 3]=-\langle 1| 1+2 \mid 3]=\langle 12\rangle[23] \\
\langle 2 P\rangle[4 P]=-\langle 2| P \mid 4]=\langle 2| 3+4 \mid 4]=\langle 23\rangle[34]
\end{gathered}
$$

: We get

$$
\frac{1}{s}\left(\frac{(\langle 12\rangle[34])^{3}}{\langle 1 P\rangle[3 P]\langle 2 P\rangle[4 P]}\right)^{S}
$$

s-channel constraint

$$
\left(\frac{\langle 12\rangle^{3}}{\langle 1 P\rangle\langle 2 P\rangle}\right)^{S} \frac{1}{s}\left(\frac{[34]^{3}}{[3 P][4 P]}\right)^{S}
$$

Rewrite using momentum conservation:

$$
\begin{gathered}
\langle 1 P\rangle[3 P]=-\langle 1| P \mid 3]=-\langle 1| 1+2 \mid 3]=\langle 12\rangle[23] \\
\langle 2 P\rangle[4 P]=-\langle 2| P \mid 4]=\langle 2| 3+4 \mid 4]=\langle 23\rangle[34]
\end{gathered}
$$

\because We get

$$
\frac{1}{s}\left(\frac{(\langle 12\rangle[34])^{3}}{\langle 12\rangle[23]\langle 23\rangle[34]}\right)^{S}
$$

s-channel constraint

$$
\left(\frac{\langle 12\rangle^{3}}{\langle 1 P\rangle\langle 2 P\rangle}\right)^{S} \frac{1}{s}\left(\frac{[34]^{3}}{[3 P][4 P]}\right)^{S}
$$

Rewrite using momentum conservation:

$$
\begin{gathered}
\langle 1 P\rangle[3 P]=-\langle 1| P \mid 3]=-\langle 1| 1+2 \mid 3]=\langle 12\rangle[23] \\
\langle 2 P\rangle[4 P]=-\langle 2| P \mid 4]=\langle 2| 3+4 \mid 4]=\langle 23\rangle[34]
\end{gathered}
$$

* We get

$$
\frac{1}{s}\left(\frac{(\langle 12\rangle[34])^{2}}{\langle 23\rangle[23]}\right)^{S}
$$

s-channel constraint

$$
\left(\frac{\langle 12\rangle^{3}}{\langle 1 P\rangle\langle 2 P\rangle}\right)^{S} \frac{1}{s}\left(\frac{[34]^{3}}{[3 P][4 P]}\right)^{S}
$$

Rewrite using momentum conservation:

$$
\begin{gathered}
\langle 1 P\rangle[3 P]=-\langle 1| P \mid 3]=-\langle 1| 1+2 \mid 3]=\langle 12\rangle[23] \\
\langle 2 P\rangle[4 P]=-\langle 2| P \mid 4]=\langle 2| 3+4 \mid 4]=\langle 23\rangle[34]
\end{gathered}
$$

\because We get

$$
\frac{1}{s}\left(\frac{(\langle 12\rangle[34])^{2}}{t}\right)^{S}
$$

s-channel constraint

$$
\left(\frac{\langle 12\rangle^{3}}{\langle 1 P\rangle\langle 2 P\rangle}\right)^{S} \frac{1}{s}\left(\frac{[34]^{3}}{[3 P][4 P]}\right)^{S}
$$

Rewrite using momentum conservation:

$$
\begin{gathered}
\langle 1 P\rangle[3 P]=-\langle 1| P \mid 3]=-\langle 1| 1+2 \mid 3]=\langle 12\rangle[23] \\
\langle 2 P\rangle[4 P]=-\langle 2| P \mid 4]=\langle 2| 3+4 \mid 4]=\langle 23\rangle[34]
\end{gathered}
$$

\therefore We get

$$
(\langle 12\rangle[34])^{2 S} \cdot \frac{1}{s t^{S}}
$$

Note:

$$
t=-u
$$

"Trivial" helicity factor
Important piece

Comparing channels

\because On s-channel we got:
\because Require simple poles: $\frac{1}{s}, \frac{1}{t}, \frac{1}{u}$ and search for $F(s, t, u)$

Comparing channels

\because On s-channel we got:

$$
\begin{aligned}
& A_{4} \rightarrow(\langle 12\rangle[34])^{2 S} \cdot \frac{1}{s t^{S}} \\
& A_{4} \rightarrow(\langle 12\rangle[34])^{2 S} \cdot \frac{1}{t s^{S}}
\end{aligned}
$$

$\%$ Require simple poles: $\frac{1}{s}, \frac{1}{t}, \frac{1}{u}$ and search for $F(s, t, u)$
\therefore There are only two solutions:

$$
\begin{array}{cc}
F(s, t, u)=\frac{1}{s}+\frac{1}{t}+\frac{1}{u} & F(s, t, u)=\frac{1}{s t u} \\
\operatorname{spin} 0\left(\phi^{3}\right) & \text { spin } 2(\mathrm{GR})
\end{array}
$$

Where are gluons (spin-1)?

\because Need to consider multiplet of particles

$$
A_{3}=\left(\frac{\langle 12\rangle^{3}}{\langle 23\rangle\langle 31\rangle}\right)^{S} f^{a_{1} a_{2} a_{3}} \quad A_{3}=\left(\frac{[12]^{3}}{[23][31]}\right)^{S} f^{a_{1} a_{2} a_{3}}
$$

\% The same check gives us $\mathrm{S}=1$ and requires

$$
\begin{aligned}
& f^{a_{1} a_{2} a_{P}} f^{a_{3} a_{4} a_{P}}+f^{a_{1} a_{4} a_{P}} f^{a_{2} a_{3} a_{P}}=f^{a_{1} a_{3} a_{P}} f^{a_{2} a_{4} a_{P}} \\
& \text { and the result corresponds to } \\
& \text { SU(N) Yang-Mills theory }
\end{aligned}
$$

Power of 4pt check

* We can apply this check for cases with mixed particle content:
- Spin >2 still not allowed
- Spin 2 is special: only one particle and it couples universally to all other particles
- We get various other constraints on interactions (of course all consistent with known theories)
* General principles very powerful

Thank you for attention!

