Scattering Amplitudes LECTURE 2

Jaroslav Trnka

Center for Quantum Mathematics and Physics (QMAP), UC Davis

Review of Lecture 1

Spinor helicity variables

\% Standard $\mathrm{SO}(3,1)$ notation for momentum

$$
p^{\mu}=\left(p_{0}, p_{1}, p_{2}, p_{3}\right) \quad p_{j} \in \mathbb{R}
$$

\because Matrix representation

$$
p^{2}=p_{0}^{2}+p_{1}^{2}+p_{2}^{2}-p_{3}^{2}
$$

$$
p_{a b}=\sigma_{a b}^{\mu} p_{\mu}=\left(\begin{array}{cc}
p_{0}+i p_{1} & p_{2}+p_{3} \\
p_{2}-p_{3} & p_{0}-i p_{1}
\end{array}\right)
$$

On-shell: $\quad p^{2}=\operatorname{det}\left(p_{a b}\right)=0$
$\operatorname{Rank}\left(p_{a b}\right)=1$

Spinor helicity variables

\because Rewrite the four component momentum

$$
p_{1}^{\mu}=\sigma_{a \dot{a}}^{\mu} \lambda_{1 a} \widetilde{\lambda}_{1 \dot{a}}
$$

* Little group scaling $\quad \lambda \rightarrow t \lambda$

$$
\tilde{\lambda} \rightarrow \frac{1}{t} \widetilde{\lambda} \quad p \rightarrow p
$$

\% Invariants

$$
\begin{gathered}
\langle 12\rangle \equiv \epsilon_{a b} \lambda_{1 a} \lambda_{2 b} \quad[12] \equiv \epsilon_{\dot{a} \dot{b}} \widetilde{\lambda}_{1 \dot{a}} \widetilde{\lambda}_{2 \dot{b}} \\
s_{12}=\langle 12\rangle[12]
\end{gathered}
$$

Three point amplitudes

Three point kinematics

$$
p_{1}^{2}=p_{2}^{2}=p_{3}^{2}=0 \quad p_{1}+p_{2}+p_{3}=0
$$

\because Two solutions:

$$
\begin{array}{rlrl}
\langle 12\rangle=\langle 23\rangle & =\langle 13\rangle=0 & {[12]=[23]=[13]=0} \\
\lambda_{1} & \sim \lambda_{2} & \sim \lambda_{3} & \widetilde{\lambda}_{1}
\end{array} \widetilde{\lambda}_{2} \sim \widetilde{\lambda}_{3} . ~ l
$$

$(++-) \quad$ No solution for real momenta $\mid(--+)$
E.g. $\left(\frac{[12]^{3}}{[23][31]}\right)^{S} \quad$ spin-S amplitudes $\left(\frac{\langle 12\rangle^{3}}{\langle 23\rangle\langle 31\rangle}\right)^{S}$

Tree-level amplitudes

\% Single function: locality and unitarity constraints

\% On-shell constructibility: amplitude fixed by poles
\because Consistency of four point amplitude: only spins ≤ 2

Recursion relations

Tree level amplitudes

\% Tree-level amplitude is a rational function of kinematics

$$
A=\sum(\text { Feyn. diag })=\frac{N}{\prod_{j} P_{j}^{2}} \quad \begin{gathered}
\text { momenta } \\
\text { polarization vectors }
\end{gathered}
$$

Feynman propagators

$$
P_{j}=\sum_{k} p_{k}
$$

* Gauge invariant object: use spinor helicity variables

Reconstruction of the amplitude

\because Amplitude on-shell constructible: fixed only from factorizations: try to reconstruct it
"Integrate the relation" $\mathcal{M} \underset{P^{2}=0}{\longrightarrow} \mathcal{M}_{L} \frac{1}{P^{2}} \mathcal{M}_{R}$
\because First guess: $\mathcal{M}=\sum_{P} \mathcal{M}_{L} \frac{1}{P^{2}} \mathcal{M}_{R}$

Reconstruction of the amplitude

\because Amplitude on-shell constructible: fixed only from factorizations: try to reconstruct it
"Integrate the relation" $\mathcal{M} \underset{P^{2}=0}{\longrightarrow} \mathcal{M}_{L} \frac{1}{P^{2}} \mathcal{M}_{R}$
\therefore First guess: $\mathcal{M}=\sum_{P} \mathcal{M}_{L} \frac{1}{P^{2}} \mathcal{M}_{R} \quad$ WRONG
Overlapping factorization channels
\% Solution: shift external momenta

Momentum shift

\% Let us shift two external momenta

$$
\begin{array}{ll}
\lambda_{1} \rightarrow \lambda_{1}-z \lambda_{2} & \widetilde{\lambda}_{1} \rightarrow \widetilde{\lambda}_{1} \\
\lambda_{2} \rightarrow \lambda_{2} & \widetilde{\lambda}_{2} \rightarrow \widetilde{\lambda}_{2}+z \widetilde{\lambda}_{1}
\end{array}
$$

\therefore Momentum is conserved, stays on-shell

$$
\left(\lambda_{1}-z \lambda_{2}\right) \widetilde{\lambda}_{1}+\lambda_{2}\left(\widetilde{\lambda}_{2}+z \widetilde{\lambda}_{1}\right)=\lambda_{1} \widetilde{\lambda}_{1}+\lambda_{2} \widetilde{\lambda}_{2}
$$

\because This corresponds to shifting

$$
p_{1}, p_{2}, \epsilon_{1}, \epsilon_{2}
$$

Shifted amplitude

\% On-shell tree-level amplitude with shifted kinematics

$$
A_{n}(z)=A\left(\hat{p}_{1}(z), \hat{p}_{2}(z), p_{3}, \ldots, p_{n}\right)
$$

* Analytic structure

$$
A_{n}(z)=\frac{N(z)}{\prod_{j} P_{j}(z)^{2}}
$$

\therefore Location of poles: $\quad P_{j}(z)=P_{j}-z \lambda_{2} \widetilde{\lambda}_{1} \quad$ if $\quad p_{1} \in P_{j}$

$$
\begin{aligned}
& P_{j}(z)=P_{j}+z \lambda_{2} \widetilde{\lambda}_{1} \quad \text { if } \quad p_{2} \in P_{j} \\
& P_{j}(z)=P_{j} \quad \text { otherwise }
\end{aligned}
$$

Shifted amplitude

\therefore On the pole if $p_{1} \in P_{j}$

$$
\begin{gathered}
\left.P_{j}(z)^{2}=P_{j}^{2}-2 z\langle 1| P_{j} \mid 2\right]=0 \\
z=\frac{P_{j}^{2}}{\left.2\langle 1| P_{j} \mid 2\right]} \equiv z_{j}
\end{gathered}
$$

Shifted amplitude:

$$
A_{n}(z)=\frac{N(z)}{\prod_{j} P_{j}(z)^{2}} \quad \text { location of poles }
$$

Residue theorem

\% Shifted amplitude

$$
A_{n}(z)=\frac{N(z)}{\prod_{k}\left(z-z_{k}\right)}
$$

\because Let us consider the contour integral

$$
\int \frac{d z}{z} A_{n}(z)=0 \quad \text { No pole at } z \rightarrow \infty
$$

\because Original amplitude $A_{n}=A_{n}(z=0) \quad z=0$
\because Residue theorem: $A_{n}+\left.\sum_{k} \operatorname{Res}\left(\frac{A_{n}(z)}{z}\right)\right|_{z=z_{k}}=0$

Residue theorem

$$
A_{n}=-\left.\sum_{k} \operatorname{Res}\left(\frac{A_{n}(z)}{z}\right)\right|_{z=z_{k}}
$$

Residue on the pole $P_{j}(z)^{2}=0$

* Unitarity of shifted tree-level amplitude

$$
A_{n}(z) \xrightarrow[P_{j}(z)^{2}=0]{ } A_{L}(z) \frac{1}{P_{j}(z)^{2}} A_{R}(z)
$$

Residue theorem

$$
A_{n}=-\left.\sum_{k} \operatorname{Res}\left(\frac{A_{n}(z)}{z}\right)\right|_{z=z_{k}}
$$

Residue on the pole $\left.P_{j}(z)^{2}=2\langle 1| P_{j} \mid 2\right]\left(z_{j}-z\right)=0$
\because Unitarity of shifted tree-level amplitude $\quad z_{j}=\frac{P_{j}^{2}}{\left.2\langle 1| P_{j} \mid 2\right]}$

$$
A_{n}(z) \underset{z=z_{j}}{\longrightarrow} A_{L}\left(z_{j}\right) \frac{1}{\left.2\langle 1| P_{j} \mid 2\right]} A_{R}\left(z_{j}\right)
$$

Residue theorem

$$
\begin{gathered}
{\left[A_{n}=-\left.\sum_{k} \operatorname{Res}\left(\frac{A_{n}(z)}{z}\right)\right|_{z=z_{k}}\right.} \\
A_{L}\left(z_{j}\right) \frac{1}{\left.2\langle 1| P_{j} \mid 2\right]} A_{R}\left(z_{j}\right) \times \frac{\left.2\langle 1| P_{j} \mid 2\right]}{P_{j}^{2}}=A_{L}\left(z_{j}\right) \frac{1}{P_{j}^{2}} A_{R}\left(z_{j}\right)
\end{gathered}
$$

Final formula

$$
A_{n}=-\sum_{j} A_{L}\left(z_{j}\right) \frac{1}{P_{j}^{2}} A_{R}\left(z_{j}\right) \quad z_{j}=\frac{P_{j}^{2}}{\left.2\langle 1| P_{j} \mid 2\right]}
$$

BCFW recursion relations

(Britto, Cachazo, Feng, Witten, 2005)

$$
z_{j}=\frac{P_{j}^{2}}{\left.2\langle 1| P_{j} \mid 2\right]}
$$

$$
\begin{aligned}
& \text { Chosen such } \\
& \text { that internal }
\end{aligned}
$$

line is on-shell

Sum over all distributions of legs keeping 1,2 on different sides

Comment on applicability

\therefore The crucial property is $A_{n}(z) \rightarrow 0$ for $z \rightarrow \infty$
\because In Yang-Mills theory this is satisfied if

$$
\begin{aligned}
& \lambda_{1} \rightarrow \lambda_{1}-z \lambda_{2} \longleftarrow \text { Helicity + } \\
& \widetilde{\lambda}_{2} \rightarrow \widetilde{\lambda}_{2}+z \widetilde{\lambda}_{1} \longleftarrow \text { Helicity - }
\end{aligned}
$$

\because Same is true for Einstein gravity, and many others

* This means that amplitudes in these theories are fully specified by residues on their poles

Generalizations

\% In Standard Model and other theories more general recursion relations needed: shift more momenta
\% Include masses: go back to momenta

$$
\begin{array}{cc}
p_{1} \rightarrow p_{1}+z q & q^{2}=\left(p_{1} \cdot q\right)=\left(p_{2} \cdot q\right)=0 \\
p_{2} \rightarrow p_{2}-z q & \text { Shifted momenta on-shell, } \\
& \text { q completely fixed }
\end{array}
$$

: Extension to effective field theories

Example: amplitudes of gluons

Color decomposition

\because Sum of Feynman diagrams in Yang-Mills

$$
\mathcal{M}=\sum_{F D}(\text { Color }) \times(\text { Kinematics })
$$

Polarization vectors
Color factors Gauge dependent

$$
\operatorname{Tr}\left(T^{a_{1}} T^{a_{2}} T^{a_{3}} \ldots T^{a_{n}}\right)
$$

Decomposition

$$
\mathcal{M}=\sum_{\sigma} \operatorname{Tr}\left(T^{\sigma_{1}} T^{\sigma_{2}} T^{\sigma_{3}} \ldots T^{\sigma_{n}}\right) A(123 \ldots n)
$$

Color decomposition

\because Sum of Feynman diagrams in Yang-Mills

$$
\mathcal{M}=\sum_{F D}(\text { Color }) \times(\text { Kinematics })
$$

Polarization vectors
Color factors Gauge dependent

$$
\operatorname{Tr}\left(T^{a_{1}} T^{a_{2}} T^{a_{3}} \ldots T^{a_{n}}\right)
$$

Decomposition

$$
\mathcal{M}=\sum_{\sigma} \operatorname{Tr}\left(T^{\sigma_{1}} T^{\sigma_{2}} T^{\sigma_{3}} \ldots T^{\sigma_{n}}\right) A(123 \ldots n)
$$

Color ordered amplitude

$$
A(123 \ldots n)
$$

Particles are ordered, other orderings: permutations
Gauge invariant
\because This is a key object of our interest
\% Consider:

- All particles massless and on-shell
- All momenta incoming
- Helicities fixed

Example 1: 4pt amplitude

\therefore Let us consider amplitude of gluons $A_{4}\left(1^{+} 2^{-} 3^{-} 4^{+}\right)$

Only one term contributes

$$
\begin{aligned}
& \hat{\lambda_{1}}=\lambda_{1}-z \lambda_{2} \\
& \tilde{\hat{\lambda}}_{2}=\widetilde{\lambda}_{2}+z \widetilde{\lambda}_{1}
\end{aligned}
$$

z takes the value when
P is on-shell momentum

Example 1: 4pt amplitude

\therefore Let us consider amplitude of gluons $A_{4}\left(1^{+} 2^{-} 3^{-} 4^{+}\right)$

$$
\begin{aligned}
& P^{2}=\langle\hat{1} 4\rangle[14]=0 \\
& \quad \downarrow \\
&\langle\hat{1} 4\rangle=\langle 14\rangle-z\langle 24\rangle=0 \rightarrow z=\frac{\langle 14\rangle}{\langle 24\rangle}
\end{aligned}
$$

We can now rewrite
Shouten identity

$$
\begin{aligned}
& \hat{\lambda}_{1}=\lambda_{1}-z \lambda_{2}=\lambda_{1}-\frac{\langle 14\rangle}{\langle 24\rangle} \lambda_{2} \stackrel{\downarrow}{=} \frac{\langle 12\rangle}{\langle 24\rangle} \lambda_{4} \\
& \widetilde{\lambda}_{2}=\widetilde{\lambda}_{2}+z \widetilde{\lambda}_{1}=\frac{[12]}{[13]} \widetilde{\lambda}_{3} \longleftarrow \quad \begin{array}{c}
\text { Use of momentum } \\
\text { conservation }
\end{array}
\end{aligned}
$$

Example 1: 4pt amplitude

\therefore Let us consider amplitude of gluons $A_{4}\left(1^{+} 2^{-} 3^{-} 4^{+}\right)$

$$
\hat{\lambda}_{1}=\frac{\langle 12\rangle}{\langle 24\rangle} \lambda_{4}
$$

Calculate on-shell momentum P

$$
\begin{gathered}
P=\hat{\lambda}_{1} \widetilde{\lambda}_{1}+\lambda_{4} \widetilde{\lambda}_{4}=\lambda_{4}\left(\frac{\langle 12\rangle}{\langle 24\rangle} \widetilde{\lambda}_{1}+\widetilde{\lambda}_{4}\right) \\
\downarrow \\
\lambda_{P}=\lambda_{4} \quad \widetilde{\lambda}_{P}=\frac{\langle 23\rangle}{\langle 24\rangle} \widetilde{\lambda}_{3}
\end{gathered}
$$

Example 1: 4pt amplitude

\therefore Let us consider amplitude of gluons $A_{4}\left(1^{+} 2^{-} 3^{-} 4^{+}\right)$

Example 1: 4pt amplitude

\therefore Let us consider amplitude of gluons $A_{4}\left(1^{+} 2^{-} 3^{-} 4^{+}\right)$

Example 1: 4pt amplitude

\therefore Let us consider amplitude of gluons $A_{4}\left(1^{+} 2^{-} 3^{-} 4^{+}\right)$

One gauge invariant object equivalent to three Feynman diagrams

Example 2: 6pt amplitude

\because Let us consider $A_{6}\left(1^{-} 2^{-} 3^{-} 4^{+} 5^{+} 6^{+}\right)$and shift legs 3,4
$\frac{\langle 1| 2+3 \mid 4]^{3}}{\left.[23][34]\langle 56\rangle\langle 61\rangle s_{234}\langle 5| 3+4 \mid 2\right]}$,

Example 2: 6pt amplitude

\therefore Let us consider $A_{6}\left(1^{-} 2^{-} 3^{-} 4^{+} 5^{+} 6^{+}\right)$and shift legs 3,4

$\frac{\langle 1| 2+3 \mid 4]^{3}}{[23][34]\langle 56\rangle\langle 61\rangle s_{23}\langle\{5|3+4| 2]}$ Spurious pole

Remark on BCFW

* Extremely efficient (3 vs 220 for 6 pt, 20 vs 34300 for 8pt)
\therefore Terms in BCFW recursion relations
- Gauge invariant
- Spurious poles
* Amplitude $=$ sum of these terms dictated by unitarity
* Note: not all factorization channels are present when 1,2 are on the same side

Unitarity methods

One-loop amplitudes

\because Sum of Feynman diagrams

$$
\mathcal{M}^{1-\text { loop }}=\sum_{j} \int d \mathcal{I}_{j} \quad \text { where } \quad d \mathcal{I}_{j}=d^{4} \ell \mathcal{I}_{j}
$$

\% Re-express as basis of canonical integrals
Rational

$$
\begin{gathered}
\mathcal{M}^{1-\text { loop }}=\sum_{j} a_{j} \int d \mathcal{I}_{j}^{(4)}+\sum_{j} b_{j} \int d \mathcal{I}_{j}^{(3)}+\sum_{j} c_{j} \int d \mathcal{I}_{j}^{(2)}+\mathcal{R} \\
\text { Box }
\end{gathered}
$$

One loop amplitudes

\because Box integral

Tadpoles and other integrals

\square
Vanish in dim reg
\therefore Triangle and box integrals

$$
I=\frac{d^{4} \ell s}{\ell^{2}\left(\ell+k_{1}\right)^{2}\left(\ell+k_{1}+k_{2}\right)^{2}}
$$

$I=\frac{d^{4} \ell s}{\ell^{2}\left(\ell+k_{1}+k_{2}\right)^{2}}$

One loop amplitudes

\because Box integral

Tadpoles and other integrals

Vanish in dim reg
\% Triangle and box integrals

$$
I=\frac{d^{4} \ell s}{\ell^{2}\left(\ell+k_{1}\right)^{2}\left(\ell+k_{1}+k_{2}\right)^{2}}
$$

$I=\frac{d^{4} \ell s}{\ell^{2}\left(\ell+k_{1}+k_{2}\right)^{2}}$
UV divergent

(Super) Yang Mills amplitudes

* One-loop expansion in SYM theory
$\mathcal{M}=\sum$ Boxes $+\sum$ Triangle $+\sum$ Bubble + Rational
Pure Yang-Mills (massless QCD)

(Super) Yang Mills amplitudes

\because One-loop expansion in SYM theory $\mathcal{M}=\sum$ Boxes $+\sum$ Triangle $+\sum$ Bubble + Rational $\mathrm{N}=1$ and $\mathrm{N}=2$ Super Yang-Mills

(Super) Yang Mills amplitudes

* One-loop expansion in SYM theory
N=4 Super Yang-Mills
\because Note that it is UV finite at 1-loop, but also all loops

One loop expansion

\therefore One-loop expansion

$$
\mathcal{M}=\sum_{j} a_{j} \text { Boxes }_{j}+\sum_{j} b_{j} \text { Triangle }_{j}+\sum_{j} c_{j} \text { Bubble }_{j}+\text { Rational }
$$

One loop expansion

\therefore One-loop expansion

$$
\mathcal{M}=\sum_{j} a_{j} \text { Boxes }_{j}+\sum_{j} b_{j} \operatorname{Triangle}_{j}+\sum_{j} c_{j} \text { Bubble }_{j}+\text { Rational }
$$

One loop expansion

* One-loop expansion

$$
\mathcal{M}=\sum_{j} a_{j} \operatorname{Boxes}_{j}+\sum_{j} b_{j} \operatorname{Triangle}_{j}+\sum_{j} c_{j} \text { Bubble }_{j}+\text { Rational }
$$

Unitarity methods

One loop unitarity

\because Analogue of tree-level unitarity at one-loop

$$
\mathcal{M}^{1-\text { loop }} \xrightarrow[\substack{\ell^{2}=(\ell+Q)^{2}=0 \\ \text { Unitarity cut }}]{\substack{\text { tree }}} \frac{1}{\ell^{2}(\ell+Q)^{2}} \mathcal{M}_{R}^{\text {tree }}
$$

\because In general $\mathrm{Cut} \leftrightarrow \ell^{2}=0$

One-loop unitarity

\because Higher cuts

Triple cut
Quadruple cut
$\ell^{2}=\left(\ell+Q_{1}\right)^{2}=\left(\ell+Q_{2}\right)^{2}=0 \quad \ell^{2}=\left(\ell+Q_{1}\right)^{2}=\left(\ell+Q_{2}\right)^{2}=\left(\ell+Q_{3}\right)^{2}=0$

Fixing coefficients

\% Perform cut on both side of equation

$$
\mathcal{M}=\sum_{j} a_{j} \text { Boxes }_{j}+\sum_{j} b_{j} \text { Triangle }_{j}+\sum_{j} c_{j} \text { Bubble }_{j}+\text { Rational }
$$

Product of trees Linear combination of coefficients
: Example: Quadruple cut - only one box contributes

$$
\mathcal{M}_{1}^{\text {tree }} \mathcal{M}_{2}^{\text {tree }} \mathcal{M}_{3}^{\text {tree }} \mathcal{M}_{4}^{\text {tree }}=a_{j}
$$

\because All coefficients a_{j}, b_{j}, c_{j} can be obtained

Unitarity methods

\therefore We can iterate both types of cuts

* Stop when all propagators are cut: maximal cut

Product of 3pt on-shell amplitudes

Unitarity methods

\because Expansion of the amplitude

$$
\mathcal{M}^{\ell-\text { loop }}=\sum_{j} a_{j} \int d \mathcal{I}_{j}
$$

Cuts give product Linear combinations of trees

$$
\text { of coefficients } a_{j}
$$

\% Very successful method for loop amplitudes in different theories

* Practical problems:
- Find basis of integrals
- Solve (long) system of equations

Unitarity methods

: Results in susy theories and QCD

Basis of integrals for 3-loop amplitudes in $\mathrm{N}=4 \mathrm{SYM}$ and $\mathrm{N}=8$ SUGRA

Black Hat

On-shell good, off-shell bad

\%Feynman diagrams: off-shell objects
Off-shell objects
\because Unitarity methods: $\operatorname{Cut}[\mathcal{M}]=\operatorname{Cut}[$ Basis of integrals $]$
: Recursion relations
On-shell objects
Locality
Unitarity

$$
\mathcal{M} \sim \mathcal{M}_{L} \mathcal{M}_{R} \quad \begin{gathered}
\text { Locality lost } \\
\\
\text { On-shell objects }
\end{gathered} \quad \text { Unitarity } \quad \text {. }
$$

\% Next direction: loosing manifest locality and unitarity

On-shell diagrams

(Arkani-Hamed, Bourjaily, Cachazo, Goncharov, Postnikov, JT 2012)

Atoms of amplitudes

What are natural gauge invariant objects?

Atoms of amplitudes

What are natural gauge invariant objects?

Scattering amplitudes

* Recursion relations, unitarity methods: products of amplitudes
\therefore Iterative procedure: reduces to elementary amplitudes
* In most interesting theories these are three point

Three point kinematics

* Two options

$\widetilde{\lambda}_{1} \sim \widetilde{\lambda}_{2} \sim \widetilde{\lambda}_{3}$

Spinor helicity variables

$$
\begin{aligned}
p^{\mu} & =\sigma_{a \dot{a}}^{\mu} \lambda_{a} \widetilde{\lambda}_{\dot{a}} \\
\langle 12\rangle & =\epsilon_{a b} \lambda_{1 a} \lambda_{2 b} \\
{[12] } & =\epsilon_{\dot{a} \dot{b}} \lambda_{1 \dot{a}} \lambda_{2 \dot{b}}
\end{aligned}
$$

Two solutions for 3pt kinematics

$$
p_{1}^{2}=p_{2}^{2}=p_{3}^{2}=\left(p_{1}+p_{2}+p_{3}\right)=0
$$

Three point amplitudes

* Two solutions for amplitudes

$$
\begin{gathered}
A_{3}=[12]^{+h_{1}+h_{2}-h_{3}}[23]^{-h_{1}+h_{2}+h_{3}}[31]^{+h_{1}-h_{2}+h_{3}} \\
h_{1}+h_{2}+h_{3} \geq 0
\end{gathered}
$$

Supersymmetry: amplitudes of super-fields (all component fields included)

Three point amplitudes

\because In N=4 SYM: no need to specify helicities

$$
\mathcal{A}_{3}^{(1)}=\frac{\delta^{4}\left(p_{1}+p_{2}+p_{3}\right) \delta^{4}\left([23] \widetilde{\eta}_{1}+[31] \widetilde{\eta}_{2}+[12] \widetilde{\eta}_{3}\right)}{[12][23][31]}
$$

$$
\mathcal{A}_{3}^{(2)}=\frac{\delta^{4}\left(p_{1}+p_{2}+p_{3}\right) \delta^{8}\left(\lambda_{1} \widetilde{\eta}_{1}+\lambda_{2} \widetilde{\eta}_{2}+\lambda_{3} \widetilde{\eta}_{3}\right)}{\langle 12\rangle\langle 23\rangle\langle 31\rangle}
$$

Easy book-keeping
Fully fixed in any QFT up to coupling

Gluing three point amplitudes

\% Let us build a diagram

Multiply two three point amplitudes
$=\mathcal{A}_{3}^{(2)}(14 P) \times \mathcal{A}_{3}^{(1)}(P 23)$
$=\frac{\delta^{4}\left(p_{1}+p_{4}+P\right) \delta^{8}\left(\lambda_{1} \widetilde{\eta}_{1}+\lambda_{4} \widetilde{\eta}_{4}+\lambda_{P} \widetilde{\eta}_{P}\right)}{\langle 14\rangle\langle 4 P\rangle\langle P 1\rangle} \times \frac{\delta^{4}\left(p_{2}+p_{3}-P\right) \delta^{4}\left(\widetilde{\eta}_{P}[23]+\widetilde{\eta}_{2}[3 P]+\widetilde{\eta}_{3}[P 2]\right.}{[23][3 P][P 2]}$
also $\lambda_{P} \sim \lambda_{2} \sim \lambda_{3}$ and $\widetilde{\lambda}_{1} \sim \widetilde{\lambda}_{4} \sim \widetilde{\lambda}_{P}$

Gluing three point amplitudes

\% Let us build a diagram

Multiply two three point amplitudes
$=\mathcal{A}_{3}^{(2)}(14 P) \times \mathcal{A}_{3}^{(1)}(P 23)$
$=\frac{\delta^{4}\left(p_{1}+p_{2}+p_{3}+p_{4}\right) \delta^{8}\left(\lambda_{1} \widetilde{\eta}_{1}+\lambda_{2} \widetilde{\eta}_{2}+\lambda_{3} \widetilde{\eta}_{3}+\lambda_{4} \widetilde{\eta}_{4}\right)}{\langle 12\rangle\langle 23\rangle\langle 34\rangle\langle 41\rangle} \times \delta\left(\left(p_{2}+p_{3}\right)^{2}\right)$
$=\mathcal{A}_{4}^{(2)}(1234) \times \delta\left(\left(p_{2}+p_{3}\right)^{2}\right)$
Four point tree level amplitude on factorization channel

Gluing three point amplitudes

* Let us build a diagram

Multiply four three point amplitudes

$$
=\mathcal{A}_{3}^{(1)}\left(1 P_{1} P_{4}\right) \times \mathcal{A}_{3}^{(2)}\left(2 P_{2} P_{1}\right) \times \mathcal{A}_{3}^{(1)}\left(3 P_{3} P_{2}\right) \times \mathcal{A}_{3}^{(2)}\left(4 P_{4} P_{3}\right)
$$

Gluing three point amplitudes

* Let us build a diagram

Multiply four three point amplitudes

$$
\begin{gathered}
=\mathcal{A}_{3}^{(1)}\left(1 P_{1} P_{4}\right) \times \mathcal{A}_{3}^{(2)}\left(2 P_{2} P_{1}\right) \times \mathcal{A}_{3}^{(1)}\left(3 P_{3} P_{2}\right) \times \mathcal{A}_{3}^{(2)}\left(4 P_{4} P_{3}\right) \\
=\mathcal{A}_{4}(1234)
\end{gathered}
$$

On-shell diagrams

\therefore Draw arbitrary graph with three point vertices

Products of three point
amplitudes $\left\{\begin{array}{l}P>4 L \quad \text { Extra delta functions } \\ P=4 L \quad \text { Function of external data only } \\ P<4 L\end{array}\right.$ Unfixed parameters (forms)

On-shell diagrams

\therefore Draw arbitrary graph with three point vertices

On-shell diagrams with $P \leq 4 L$ are cuts of the amplitude
\because Parametrized by n, k $k=2 B+W-P$

On-shell diagrams

\therefore Draw arbitrary graph with three point vertices

Question: Can we build amplitude from on-shell diagrams?

Recursion relations

BCFW shift

* Consider following diagram

One more loop
Three more on-shell conditions

Adding one parameter

BCFW shift

* Consider following diagram

One more loop
Three more on-shell conditions

Adding one parameter

New formula: $\quad K_{1}(z)=\frac{d z}{z} K_{0}(z)$

BCFW shift

\because Consider following diagram

One more loop
Three more on-shell conditions

Adding one parameter

New formula:

$$
\begin{array}{r}
K_{1}(z)=\frac{d z}{z} K_{0}(z) \rightarrow \begin{array}{r}
\text { Old on-shell diagr } \\
\text { with shift }
\end{array} \\
\\
\\
\\
\\
\lambda_{n} \rightarrow \lambda_{n}+z \lambda_{1} \\
\tilde{\lambda}_{1} \rightarrow \widetilde{\lambda}_{n}-z \widetilde{\lambda}_{1}
\end{array}
$$

BCFW recursion relations

* Suppose the blob is the amplitude

Shifted amplitude $\quad \lambda_{n} \rightarrow \lambda_{n}+z \lambda_{1}$

$$
=\mathcal{A}_{n}(z) \quad \widetilde{\lambda}_{1} \rightarrow \widetilde{\lambda}_{n}-z \widetilde{\lambda}_{1}
$$

* Cauchy formula $\quad \partial \mathcal{A}_{n}(z)=0$

Take the residue on $z=z_{k} \leftrightarrow$ Erase an edge in the diagram

BCFW recursion relations

\% Recursion relations for amplitude

\because Tree-level amplitude = sum of on-shell diagrams
\% Term-by-term identical to terms in BCFW recursion

Simple examples

\therefore Four point: only one factorization channel

: Five point amplitude
Bridge 5,1 on 3pt and 4pt amplitudes

Six point example

\because Three diagrams

Six point example

\because Three diagrams

Loop recursion relations

(Arkani-Hamed, Bourjaily, Cachazo, Caron-Huot, JT 2010)
$\%$ Recursion relations for ℓ-loop integrand (limited use)

Loop recursion relations

(Arkani-Hamed, Bourjaily, Cachazo, Caron-Huot, JT 2010)

* Recursion relations for ℓ-loop integrand (limited use)

* Loop orders:

$$
(\ell-1)
$$

$$
\begin{gathered}
\ell_{1}, \ell_{2} \\
\ell_{1}+\ell_{2}=\ell
\end{gathered}
$$

$\%$ New loop momentum $\ell^{(L)}=\ell_{0}^{(L)}+z \lambda_{1} \widetilde{\lambda}_{n}$

$$
\left(\ell_{0}^{(L)}\right)^{2}=0
$$

Four point one loop amplitude

: It is given by one diagram

$$
\ell=\ell_{0}+z \lambda_{1} \tilde{\lambda}_{4}
$$

* 4 complex parameters $->$ impose reality condition
* 5-loop on-shell diagram = 1-loop off-shell box

Dimensionality of diagrams

\therefore Tree-level recursion: diagrams with $P=4 L$ contribute rational functions of external kinematics no delta functions, no free parameters

*These are also leading singularities of loop amplitudes
: Loop level: free parameters left components of loop momenta

$$
\begin{array}{cc}
\text { free }=4 L-P & P=16 \\
L=5 \\
& \text { free }=4
\end{array}
$$

On-shell diagrams in other theories

\because On-shell diagrams are well defined in any QFT

* Gauge invariant on-shell functions, product of amplitudes
: Open question: how to reconstruct amplitudes from them?

Thank you for attention!

