Scattering Amplitudes LECTURE 3

Jaroslav Trnka

Center for Quantum Mathematics and Physics (QMAP), UC Davis

Review of Lectures 1-2

What does the blob represent?

Standard picture:

Feynman diagrams

Feynman diagrams

\% Yang-Mills Lagrangian

$$
\begin{aligned}
\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu} & \sim(\partial A)^{2}+A^{2} \partial A+ \\
& \sim A^{4} \\
& \sim f^{a b c} g_{\mu \nu} p_{\alpha} \quad \sim f^{a b e} f^{c d e} g_{\mu \nu} g_{\alpha \beta}
\end{aligned}
$$

* Draw diagrams Feynman rules Sum everything

Parke-Taylor formula

\therefore Process $g g \rightarrow g g g g$
$\therefore 220$ Feynman diagrams, ~ 100 pages of calculations

 ather - otan -

> m. 1 than
> (a)- $\frac{1}{4}$ floman).

Parke-Taylor formula

Our result has succesfully passed both these numerical checks.
Details of the calculation, together with a full exposition of our techniques, will be given in a forthcoming article. Furthermore, we hope to obtain a simple analytic form for the answer, making our result not only an experimentalist's, but also a theorist's delight.
: Surprisingly simple expression for the final answer:

$$
\mathcal{M}_{6}=\frac{\langle 12\rangle^{3}}{\langle 23\rangle\langle 34\rangle\langle 45\rangle\langle 56\rangle\langle 61\rangle}
$$

Amplitude: unique object

What is the scattering amplitude?

Feynman diagrams

Unique object fixed by physical properties

Was not successful

Modern methods use both:

- Calculate the amplitude directly
- Use perturbation theory

Locality and tree-level unitarity

\% Only poles: Feynman propagators
Locality

$$
\frac{1}{P^{2}} \text { where } P=\sum_{k \in \mathcal{P}} p_{k}
$$

\therefore On the pole
Unitarity

Feynman diagrams recombine on both sides into amplitudes

$$
\mathcal{M} \underset{P^{2}=0}{ } \mathcal{M}_{L} \frac{1}{P^{2}} \mathcal{M}_{R}
$$

Loop unitarity

\because Analogue of tree-level unitarity at one-loop

$$
\mathcal{M}^{1-\text { loop }} \xrightarrow[\substack{\ell^{2}=(\ell+Q)^{2}=0 \\ \text { Unitarity cut }}]{\substack{\text { tree }}} \frac{1}{\ell^{2}(\ell+Q)^{2}} \mathcal{M}_{R}^{\text {tree }}
$$

\because In general $\mathrm{Cut} \leftrightarrow \ell^{2}=0$

New viewpoint

* Rigidity of the final answer after we provide an input
* Feynman diagrams: input = Lagrangian
\because New methods: locality, unitarity and gauge invariance
* Amplitude is a unique gauge invariant function which factorizes properly on all factorization channels

Unitarity methods

\because Expansion of the amplitude

$$
\mathcal{M}^{\ell-\text { loop }}=\sum_{j} a_{j} \int d \mathcal{I}_{j}
$$

Cuts give product Linear combinations of trees

$$
\text { of coefficients } a_{j}
$$

\% Very successful method for loop amplitudes in different theories

* Practical problems:
- Find basis of integrals
- Solve (long) system of equations

One-loop unitarity

\because Higher cuts

Triple cut
Quadruple cut
$\ell^{2}=\left(\ell+Q_{1}\right)^{2}=\left(\ell+Q_{2}\right)^{2}=0 \quad \ell^{2}=\left(\ell+Q_{1}\right)^{2}=\left(\ell+Q_{2}\right)^{2}=\left(\ell+Q_{3}\right)^{2}=0$

BCFW recursion relations

(Britto, Cachazo, Feng, Witten, 2005)

$$
z_{j}=\frac{P_{j}^{2}}{\left.2\langle 1| P_{j} \mid 2\right]}
$$

$$
\begin{aligned}
& \text { Chosen such } \\
& \text { that internal }
\end{aligned}
$$

line is on-shell

Sum over all distributions of legs keeping 1,2 on different sides

New starting point
\because Both methods are very efficient
\because Based on conservative ideas of applying general principles to uniquely fix the answer
\% Main goal of this effort (at least for me): completely new picture for Quantum Field Theory
\% No locality, unitarity - we need new starting point

What is next?

Three point kinematics

* Two options

$\widetilde{\lambda}_{1} \sim \widetilde{\lambda}_{2} \sim \widetilde{\lambda}_{3}$

Spinor helicity variables

$$
\begin{aligned}
p^{\mu} & =\sigma_{a \dot{a}}^{\mu} \lambda_{a} \widetilde{\lambda}_{\dot{a}} \\
\langle 12\rangle & =\epsilon_{a b} \lambda_{1 a} \lambda_{2 b} \\
{[12] } & =\epsilon_{\dot{a} \dot{b}} \lambda_{1 \dot{a}} \lambda_{2 \dot{b}}
\end{aligned}
$$

Two solutions for 3pt kinematics

$$
p_{1}^{2}=p_{2}^{2}=p_{3}^{2}=\left(p_{1}+p_{2}+p_{3}\right)=0
$$

Three point amplitudes

* Two solutions for amplitudes

$$
\begin{gathered}
A_{3}=[12]^{+h_{1}+h_{2}-h_{3}}[23]^{-h_{1}+h_{2}+h_{3}}[31]^{+h_{1}-h_{2}+h_{3}} \\
h_{1}+h_{2}+h_{3} \geq 0
\end{gathered}
$$

Supersymmetry: amplitudes of super-fields (all component fields included)

Three point amplitudes

\because In N=4 SYM: no need to specify helicities

$$
\mathcal{A}_{3}^{(1)}=\frac{\delta^{4}\left(p_{1}+p_{2}+p_{3}\right) \delta^{4}\left([23] \widetilde{\eta}_{1}+[31] \widetilde{\eta}_{2}+[12] \widetilde{\eta}_{3}\right)}{[12][23][31]}
$$

$$
\mathcal{A}_{3}^{(2)}=\frac{\delta^{4}\left(p_{1}+p_{2}+p_{3}\right) \delta^{8}\left(\lambda_{1} \widetilde{\eta}_{1}+\lambda_{2} \widetilde{\eta}_{2}+\lambda_{3} \widetilde{\eta}_{3}\right)}{\langle 12\rangle\langle 23\rangle\langle 31\rangle}
$$

Easy book-keeping
Fully fixed in any QFT up to coupling

On-shell diagrams

* Draw arbitrary graph with three point vertices

* Products of 3pt amplitudes: gauge invariant functions
* Well defined in any Quantum Field Theory

On-shell diagrams

* Draw arbitrary graph with three point vertices

Question: Can we build amplitude from on-shell diagrams?

Recursion relations

\because Six point example

\% Implementation of known method in this language

On-shell diagrams

\because On-shell diagrams: natural gauge invariant objects

* Based on the complete rigidity of 3pt amplitudes
: Recursion relations in this language, hopefully in the future also at loops in more generality

On-shell diagrams

\% Input: 3pt amplitude = fixed by Lorentz group and helicities of particles

* Still the same physics origin as Feynman diagrams, but implemented in much better language
: However, very surprisingly they are also starting point to a completely new story which brings us to the world of geometry

Hydrogen atom of gauge theories

Toy models

\% Hard to make progress on difficult questions in full generality: time-proven method - choose toy model
\% Long history of "integrable models": exactly solvable

$$
V=1 / r
$$

$V=1 / r^{0.9}$
\because Kepler problem:

- orbits do not precess
- Runge-Lenz vector
$\vec{A}=\frac{1}{2}(\vec{p} \times \vec{L}-\vec{L} \times \vec{p})-\mu \frac{\lambda}{4 \pi} \frac{\vec{x}}{|x|}$

Toy models

$\%$ Hydrogen atom: $H=\frac{1}{2 m} p^{2}-\frac{k}{r}$

- Hidden symmetry: Runge-Lenz-Pauli vector

- Allows to find spectrum
\therefore Toy model for QFT: planar N=4 SYM theory
(Brink, Schwarz, Scherk) (1984)
- Theory of quarks and gluons, similar to QCD but no confinement
- Hidden symmetry: Yangian - connection to 2d integrable models
(Drummond, Henn, Plefka, Korchemsky, Sokatchev) (2007)
- Great theory to test new ideas in QFT

Hydrogen atom of gauge theories

\% Useful playground for many theoretical ideas

Amplitudes in N=4 SYM

* $\mathrm{N}=4$ superfield
$\Phi=G_{+}+\tilde{\eta}_{A} \Gamma_{A}+\frac{1}{2} \tilde{\eta}^{A} \tilde{\eta}^{B} S_{A B}+\frac{1}{6} \epsilon_{A B C D} \tilde{\eta}^{A} \tilde{\eta}^{B} \tilde{\eta}^{C} \bar{\Gamma}^{D}+\frac{1}{24} \epsilon_{A B C D} \tilde{\eta}^{A} \tilde{\eta}^{B} \tilde{\eta}^{C} \tilde{\eta}^{D} G_{-}$
* Superamplitudes: $\mathcal{A}_{n}=\sum_{k=2}^{n-2} \mathcal{A}_{n, k}$

Component amplitudes with power $\tilde{\eta}^{4 k}$
\% Planarity: limit $N \rightarrow \infty$-simplification

Dual variables

:Generally, each diagram has its own variables

- No global loop momenta
- Each diagram: its own labels

\% Planar limit: dual variables

$$
\begin{aligned}
& k_{1}=\left(x_{1}-x_{2}\right) \\
& \ell_{2}=\left(x_{2}-x_{3}\right) \\
& \ell_{1}=\left(x_{3}-y_{1}\right) \ell_{2}=\left(y_{2}-x_{3}\right)
\end{aligned} \text { etc }
$$

Integrand

* Using these variables: define a single function

$$
\mathcal{M}=\int d^{4} y_{1} \ldots d^{4} y_{L} \mathcal{I}\left(x_{i}, y_{j}\right)
$$

* Ideal object to study: rational function, no divergencies
\because Hidden dual conformal symmetry in these variables
\because (There is a hidden symmetry in QCD at tree-level)

Momentum twistors

(Hodges 2009)
\% New variables: points in \mathbb{P}^{3}

$$
Z=\binom{\lambda_{a}}{x_{a \dot{a}} \tilde{\lambda}_{\dot{a}}}
$$

Dual Space-Time
Momentum Twistor Space

Cyclic ordering crucial

$$
p_{j}=x_{j+1}-x_{j}
$$

Momentum twistors

\because Dual conformal: SL(4) on momentum twistors
\% Dual conformal invariants: $\langle 1234\rangle=\epsilon_{a b c d} Z_{1}^{a} Z_{2}^{b} Z_{3}^{c} Z_{4}^{d}$ $\langle 1234\rangle=\langle 12\rangle\langle 23\rangle\langle 34\rangle[23]$
\because Loop momenta: $\ell \leftrightarrow Z_{A} Z_{B}$

$$
\begin{gathered}
\frac{d^{4} \ell s t}{\ell^{2}\left(\ell+k_{1}\right)^{2}\left(\ell+k_{1}+k_{2}\right)^{2}\left(\ell-k_{4}\right)^{2}} \\
\frac{\left\langle A B d^{2} A\right\rangle\left\langle A B d^{2} B\right\rangle\langle 1234\rangle^{2}}{\langle A B 12\rangle\langle A B 23\rangle\langle A B 34\rangle\langle A B 41\rangle}
\end{gathered}
$$

Back to on-shell diagrams

Historic coincidence

\because Same diagrams appeared in mathematics around 2005

* Very different motivation:
n

$$
k\left(\begin{array}{ccccc}
* & * & * & \ldots & * \\
* & * & * & \ldots & * \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
* & * & * & \ldots & *
\end{array}\right) \quad\left|\begin{array}{cccc}
* & * & \ldots & * \\
* & * & \ldots & * \\
\vdots & \vdots & \vdots & \vdots \\
* & * & \ldots & *
\end{array}\right| \geq 0
$$

* Goal: find algorithm for writing real matrices with positive minors (mod GL(k)): positive Grassmannian

Plabic graphs

*Draw a graph with two types of three point vertices

* Associate variables with the faces of diagram

with the property

$$
\prod_{j} f_{j}=-1
$$

Perfect orientation

* Arrows on all edges

Perfect orientation

White vertex: one in, two out
Black vertex: two in, one out
\% Not unique, always exists at least one
\because Two (k) incoming, two (n-k) outgoing

Entries of matrix

\% Define elements of $(k \times n)$ matrix product of all face variables to the

\because Example: $c_{11}=c_{22}=1 \quad c_{12}=c_{21}=0$

$$
c_{13}=*, c_{14}=*, c_{23}=*, c_{24}=*
$$

Entries of matrix

Apply on our example

$$
c_{a b}=-\sum_{\Gamma} \prod_{j}\left(-f_{j}\right)
$$

$$
-c_{13}=-f_{0} f_{3} f_{4}
$$

$$
-c_{14}=f_{0} f_{4}
$$

$$
-c_{23}=f_{0} f_{1} f_{3} f_{4}
$$

$$
-c_{24}=f_{0} f_{1} f_{4}
$$

Entries of matrix

\% The matrix is

$$
C=\left(\begin{array}{cccc}
1 & 0 & f_{0} f_{3} f_{4} & f_{4}\left(1-f_{0}\right) \\
0 & 1 & -f_{0} f_{1} f_{3} f_{4} & -f_{0} f_{1} f_{4}
\end{array}\right) \quad \begin{gathered}
f_{2} \\
\text { eliminated }
\end{gathered}
$$

\therefore There always exists choice of signs for f_{i} such that

$$
C \in G_{+}(k, n)
$$

\because For our case:

$$
\begin{array}{lll}
m_{12}=1 & m_{23}=-f_{0} f_{3} f_{4} & f_{3}>0 \\
m_{13}=-f_{0} f_{1} f_{3} f_{4} & m_{24}=-f_{4}\left(1-f_{0}\right) \\
m_{14}=-f_{0} f_{1} f_{4} & m_{34}=f_{0} f_{1} f_{3} f_{4}^{2} & f_{4}<0
\end{array}
$$

All minors positive

Positive Grassmannian from on-shell diagram

\because On-shell diagram: method how to generate $C \in G_{+}(k, n)$

* All such matrices generated using on-shell diagrams

It is very interesting that the same objects appear in physics and mathematics.

But is it useful for something?

Physics from Grassmannian

Connection

$$
R=\mathcal{M}_{1}^{\text {tree }} \mathcal{M}_{2}^{\text {tree }} \mathcal{M}_{3}^{\text {tree }} \mathcal{M}_{4}^{\text {tree }} \quad C=\left(\begin{array}{cccc}
1 & 0 & f_{0} f_{3} f_{4} & f_{4}\left(1-f_{0}\right) \\
0 & 1 & -f_{0} f_{1} f_{3} f_{4} & -f_{0} f_{1} f_{4}
\end{array}\right)
$$

Connection

$R=\mathcal{M}_{1}^{\text {tree }} \mathcal{M}_{2}^{\text {tree }} \mathcal{M}_{3}^{\text {tree }} \mathcal{M}_{4}^{\text {tree }} \quad C=\left(\begin{array}{cccc}1 & 0 & f_{0} f_{3} f_{4} & f_{4}\left(1-f_{0}\right) \\ 0 & 1 & -f_{0} f_{1} f_{3} f_{4} & -f_{0} f_{1} f_{4}\end{array}\right)$

$$
R=\frac{d f_{0}}{f_{0}} \frac{d f_{1}}{f_{1}} \frac{d f_{2}}{f_{2}} \frac{d f_{3}}{f_{3}} \delta(C \cdot Z)
$$

Momentum conservation

$$
\delta(C \cdot Z)=\delta(C \cdot \widetilde{\lambda}) \delta\left(C^{\perp} \cdot \lambda\right)
$$

* Simple motivation: linearize momentum conservation

$$
\delta(P)=\delta\left(\sum_{a} \lambda_{a} \widetilde{\lambda}_{a}\right)
$$

\because We want to write it as two linear factors

$$
\delta\left(C_{a b} \tilde{\lambda}_{b}\right) \delta\left(D_{a b} \lambda_{b}\right)
$$

and get the condition: $D_{a b}=C_{a b}^{\perp}$

Dual picture for on-shell diagrams

For arbitrary on-shell diagram

- Label face variables

- Find perfect orientation
- Construct the Grassmannian matrix
- Write a logarithmic form

$$
R=\frac{d f_{0}}{f_{0}} \frac{d f_{1}}{f_{1}} \frac{d f_{2}}{f_{2}} \ldots \frac{d f_{d}}{f_{d}} \delta(C \cdot Z) \leftrightarrow \mathcal{M}_{1}^{\text {tree }} \mathcal{M}_{2}^{\text {tree }} \ldots \mathcal{M}_{m}^{\text {tree }}
$$

Definition of the theory

\% Why is this for N=4 SYM? What about other theories?
\% Diagrams and connection to Grassmannian is general
\% Specific for theory: differential form
planar $\mathbf{N}=4$ SYM: $\Omega=\frac{d \alpha_{1}}{\alpha_{1}} \frac{d \alpha_{2}}{\alpha_{2}} \ldots \frac{d \alpha_{n}}{\alpha_{n}} \delta(C \cdot Z)$

Definition of the theory

\therefore Why is this for $\mathrm{N}=4$ SYM? What about other theories?
\% Diagrams and connection to Grassmannian is general
\therefore Specific for theory: differential form

$$
\begin{array}{l|l}
\text { General QFT: } & \Omega=F(\alpha) \delta(C \cdot Z)
\end{array}
$$

\% In a sense $F(\alpha)$ defines a theory (as Lagrangian does)

At least for planar N=4 SYM we established

Hopefully for other theories in following years....

Even for planar N=4 SYM not completely satisfactory:

Prelude

Volume of polyhedron

\because Study tree-level scattering amplitude $A_{6}\left(1^{-} 2^{-} 3^{-} 4^{+} 5^{+} 6^{+}\right)$
\therefore BCFW recursion relations in momentum twistor space

Volume of polyhedron

$\%$ Study tree-level scattering amplitude $A_{6}\left(1^{-} 2^{-} 3^{-} 4^{+} 5^{+} 6^{+}\right)$
\because BCFW recursion relations in momentum twistor space

Volume of polyhedron

\% Study tree-level scattering amplitude $A_{6}\left(1^{-} 2^{-} 3^{-} 4^{+} 5^{+} 6^{+}\right)$
\because BCFW recursion relations in momentum twistor space

Volume of tetrahedron in momentum twistor space!

Each face labeled by
$\langle a b c d\rangle$

Volume of polyhedron

\% Study tree-level scattering amplitude $A_{6}\left(1^{-} 2^{-} 3^{-} 4^{+} 5^{+} 6^{+}\right)$
\because BCFW recursion relations in momentum twistor space

Volume of tetrahedron in momentum twistor space!

(1235$\rangle\langle 1256\rangle\langle 2356\rangle\langle 1236\rangle$

Volume of polyhedron

$\%$ Study tree-level scattering amplitude $A_{6}\left(1^{-} 2^{-} 3^{-} 4^{+} 5^{+} 6^{+}\right)$
\because BCFW recursion relations in momentum twistor space

Amplitude is a volume of polyhedron

Each face labeled by
$\langle a b c d\rangle$

$$
\frac{\langle 1345\rangle^{3}}{\langle 1234\rangle\langle 1245\rangle\langle 2345\rangle\langle 1235\rangle}
$$

$$
\frac{\langle 1356\rangle^{3}}{\langle 1235\rangle\langle 1256\rangle\langle 2356\rangle\langle 1236\rangle}
$$

"Conjecture"

Amplitudes are volumes of some regions in some space

"Conjecture"

Amplitudes are volumes

of some regions in some space

Must be related to
positive Grassmannian

Strategy

* Simple intuitive geometric ideas
\% Use suitable mathematical language to describe them
\% Generalize to more complicated (non-intuitive) cases

Inside of the triangle

Inside of the triangle

\% Let us consider three points in a projective plane

$$
\begin{aligned}
& Z_{2} \bullet Z_{j}=\left(\begin{array}{c}
* \\
* \\
*
\end{array}\right) Z_{j} \sim t Z_{j} \\
& Q^{Z_{3}} \quad \begin{array}{c}
\text { We can } \\
\text { also fix }
\end{array} \\
& Z_{j}=\left(\begin{array}{c}
1 \\
a_{j} \\
b_{j}
\end{array}\right)
\end{aligned}
$$

Inside of the triangle

\therefore Point inside the triangle

$$
\begin{aligned}
& Z_{j}=\left(\begin{array}{c}
* \\
* \\
*
\end{array}\right) \quad Z_{j} \sim t Z_{j} \\
& \text { We can } \\
& \text { also fix }
\end{aligned} Z_{j}=\left(\begin{array}{c}
1 \\
a_{j} \\
b_{j}
\end{array}\right) .
$$

\because Point inside the triangle

$$
Y=c_{1} Z_{1}+c_{2} Z_{2}+c_{3} Z_{3} \quad c_{1}, c_{2}, c_{3}>0
$$

Projective: one of c_{j} can be fixed to 1

Inside of the triangle

\therefore Point inside the triangle

$$
\begin{gathered}
Y=c_{1} Z_{1}+c_{2} Z_{2}+c_{3} Z_{3} \\
\text { On the boundary } \\
c_{3}=0
\end{gathered}
$$

Inside of the triangle

\therefore Point inside the triangle

$$
Y=c_{1} Z_{1}+c_{2} Z_{2}+c_{3} Z_{3}
$$

On the boundary

$$
c_{1}=0
$$

Inside of the triangle

\therefore Point inside the triangle

$$
Y=c_{1} Z_{1}+c_{2} Z_{2}+c_{3} Z_{3}
$$

On the boundary

$$
c_{2}=0
$$

Inside of the triangle

\therefore Point inside the triangle

$$
\begin{gathered}
Y=c_{1} Z_{1}+c_{2} Z_{2}+c_{3} Z_{3} \\
\text { On the boundary } \\
c_{2}=c_{3}=0
\end{gathered}
$$

Logarithmic form

\therefore Point inside the triangle

*Form with logarithmic singularities on boundaries

$$
\Omega=\frac{d c_{2}}{c_{2}} \frac{d c_{3}}{c_{3}}
$$

Logarithmic form

\therefore Point inside the triangle

* Form with logarithmic singularities on boundaries

$$
\Omega=\frac{d c_{2}}{c_{2}} \frac{d c_{3}}{c_{3}} \rightarrow \frac{d c_{2}}{c_{2}}
$$

Logarithmic form

\therefore Point inside the triangle

* Form with logarithmic singularities on boundaries

$$
\Omega=\frac{d c_{2}}{c_{2}} \frac{d c_{3}}{c_{3}} \rightarrow \frac{d c_{3}}{c_{3}}
$$

Logarithmic form

\therefore Point inside the triangle

*Form with logarithmic singularities on boundaries

$$
\Omega=\frac{d c_{2}}{c_{2}} \frac{d c_{3}}{c_{3}} \rightarrow \frac{d c_{3}}{c_{3}} \rightarrow 1
$$

\because Other boundaries can correspond to $c_{2}, c_{3} \rightarrow \infty$

Logarithmic form

\% Form with logarithmic singularities on boundaries

$$
\Omega=\frac{d c_{2}}{c_{2}} \frac{d c_{3}}{c_{3}} \quad\left\langle X_{1} X_{2} X_{3}\right\rangle=\epsilon_{a b c} X_{1}^{a} X_{2}^{b} X_{3}^{c}, ~ d^{2} Y=d c_{2} d c_{3} Z_{2} Z_{3}
$$

\because Solve for c_{2}, c_{3} from $Y=Z_{1}+c_{2} Z_{2}+c_{3} Z_{3}$
\downarrow

$$
\Omega=\frac{\left\langle Y d^{2} Y\right\rangle\langle 123\rangle^{2}}{\langle Y 12\rangle\langle Y 23\rangle\langle Y 31\rangle}
$$

Projective in all variables

Polygon

Point inside the polygon

* Consider a point inside a polygon in projective plane

$$
\begin{gathered}
Y=c_{1} Z_{1}+c_{2} Z_{2}+\ldots c_{n} Z_{n} \\
c_{j}>0
\end{gathered}
$$

interior of the polygon

* Convex polygon: condition on points Z_{i}

$$
Z=\left(\begin{array}{ccccc}
\uparrow & \uparrow & \uparrow & \uparrow & \uparrow \\
Z_{1} & Z_{2} & Z_{3} & \ldots & Z_{n} \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow
\end{array}\right) \quad \begin{gathered}
\text { All main minors po }
\end{gathered}\left|\begin{array}{lll}
* & * & * \\
* & * & * \\
* & * & *
\end{array}\right|>0
$$

Logarithmic form

: Easiest way how to write the form is to triangulate

Logarithmic form

: Easiest way how to write the form is to triangulate

Logarithmic form

\% Now it makes sense to sum them
$\Omega=\frac{\left\langle Y d^{2} Y\right\rangle\langle 123\rangle^{2}}{\langle Y 12\rangle\langle Y 23\langle\langle Y 1\rangle}+\frac{\left\langle Y d^{2} Y\right\rangle\langle 134\rangle^{2}}{\langle Y 13\rangle\langle Y 34\langle Y 41\rangle}+\frac{\left\langle Y d^{2} Y\right\rangle\langle 145\rangle^{2}}{(Y 14)\rangle Y 45\rangle(Y 51\rangle}+\frac{\left\langle Y d^{2} Y\right\rangle\langle 156\rangle^{2}}{(Y 15)\langle Y 56\rangle\langle Y 61\rangle}$
\because Boundaries of the polygon are $\langle Y i i+1\rangle=0$

Spurious poles

Cancel in the sum

Logarithmic form

\% Now it makes sense to sum them

$$
\Omega=\frac{\left\langle Y d^{2} Y\right\rangle\langle 123\rangle^{2}}{\langle Y 12\rangle\langle Y 23\langle\langle\overline{Y 31\rangle}}+\frac{\left\langle Y d^{2} Y\right\rangle\langle 134\rangle^{2}}{(\langle Y 13)\langle Y 34\langle\langle Y 41\rangle}+\frac{\left\langle Y d^{2} Y\right\rangle\langle 145\rangle^{2}}{(\langle 14)\langle Y 45)\langle Y 51\rangle}+\frac{\left\langle Y d^{2} Y\right\rangle\langle 156\rangle^{2}}{(Y 15)\langle Y 56\rangle\langle Y 61\rangle}
$$

* Boundaries of the polygon are $\langle Y i i+1\rangle=0$

$$
\Omega=\frac{\left\langle Y d^{2} Y\right\rangle \mathcal{N}\left(Y, Z_{j}\right)}{\langle Y 12\rangle\langle Y 23\rangle\langle Y 34\rangle\langle Y 45\rangle\langle Y 56\rangle\langle Y 61\rangle}
$$

From Y to supersymmetry

\because Let us take the form for the triangle

$$
\Omega=\frac{\left\langle Y d^{2} Y\right\rangle\langle 123\rangle^{2}}{\langle Y 12\rangle\langle Y 23\rangle\langle Y 31\rangle}
$$

\& Rewrite external Z:
: Also define

$$
Z_{j}=\left(\begin{array}{c}
z_{j}^{(1)} \\
z_{j}^{(2)} \\
\left(\phi \cdot \eta_{j}\right)
\end{array}\right) \quad \begin{aligned}
& z_{j} \in \mathbb{P}^{2} \quad \text { bosonic } \\
& \eta_{j}^{A} \\
& \text { ferimionic }^{A} \\
& \phi^{A} \\
& \text { auxiliary }
\end{aligned} \quad A=1,2
$$

$$
Y_{0}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

From Y to supersymmetry

\because We plug them into the form for triangle:
$\frac{\left\langle Y d^{2} Y\right\rangle\langle 123\rangle^{2}}{\langle Y 12\rangle\langle Y 23\rangle\langle Y 31\rangle} \rightarrow \frac{\left(\langle 12\rangle\left(\phi \cdot \eta_{3}\right)+\langle 23\rangle\left(\phi \cdot \eta_{1}\right)+\langle 31\rangle\left(\phi \cdot \eta_{2}\right)\right)^{2}}{\langle 12\rangle\langle 23\rangle\langle 31\rangle}$
$\%$ Final step: integrate over ϕ :

$$
\int d^{2} \phi \int \Omega \delta\left(Y-Y_{0}\right)=\frac{\left(\langle 12\rangle \eta_{3}+\langle 23\rangle \eta_{1}+\langle 31\rangle \eta_{2}\right)^{2}}{\langle 12\rangle\langle 23\rangle\langle 31\rangle}
$$

Amplituhedron

Definition

space specified by a set of inequalities

Triangulation

 space specified $\quad \Omega$ by a set of \rightarrow logarithmic $\longrightarrow \mathcal{M}_{n, k}^{\ell-\text { loop }}$

Triangulation

space specified

 by a set of \rightarrow logarithmic $\longrightarrow \mathcal{M}_{n, k}^{\ell-\text { loop }}$triangulate in terms of "simplices"
$\Omega_{0} \sim \frac{d x}{x}$ for each

High school problem $\quad g g \rightarrow g g$

\% Positive quadrant

High school problem $\quad g g \rightarrow g g$

* Positive quadrant
\therefore Vectors

$$
\vec{a}_{1}=\binom{x_{1}}{y_{1}} \quad \vec{b}_{1}=\binom{z_{1}}{w_{1}}
$$

$$
\operatorname{Vol}(1)=\frac{d x_{1}}{x_{1}} \frac{d y_{1}}{y_{1}} \frac{d z_{1}}{z_{1}} \frac{d w_{1}}{w_{1}}
$$

High school problem $\quad g g \rightarrow g g$

\% Positive quadrant
\because Vectors

$$
\begin{aligned}
& \vec{a}_{1}=\binom{x_{1}}{y_{1}} \quad \vec{b}_{1}=\binom{z_{1}}{w_{1}} \\
& \vec{a}_{2}=\binom{x_{2}}{y_{2}} \quad \vec{b}_{2}=\binom{z_{2}}{w_{2}}
\end{aligned}
$$

$[\operatorname{Vol}(1)]^{2}=\frac{d x_{1}}{x_{1}} \frac{d y_{1}}{y_{1}} \frac{d z_{1}}{z_{1}} \frac{d w_{1}}{w_{1}} \frac{d x_{2}}{x_{2}} \frac{d y_{2}}{y_{2}} \frac{d z_{2}}{z_{2}} \frac{d w_{2}}{w_{2}}$

High school problem $\quad g g \rightarrow g g$

\% Positive quadrant
\because Vectors

$$
\begin{aligned}
& \vec{a}_{1}=\binom{x_{1}}{y_{1}} \quad \vec{b}_{1}=\binom{z_{1}}{w_{1}} \\
& \vec{a}_{2}=\binom{x_{2}}{y_{2}} \quad \vec{b}_{2}=\binom{z_{2}}{w_{2}}
\end{aligned}
$$

\% Impose:

$$
\left(\vec{a}_{2}-\vec{a}_{1}\right) \cdot\left(\vec{b}_{2}-\vec{b}_{1}\right) \leq 0
$$

$$
\phi>90^{\circ}
$$

Subset of configurations allowed: triangulate

High school problem $\quad g g \rightarrow g g$

* Positive quadrant
\therefore Vectors

$$
\begin{aligned}
& \vec{a}_{1}=\binom{x_{1}}{y_{1}} \quad \vec{b}_{1}=\binom{z_{1}}{w_{1}} \\
& \vec{a}_{2}=\binom{x_{2}}{y_{2}} \quad \vec{b}_{2}=\binom{z_{2}}{w_{2}}
\end{aligned}
$$

$\operatorname{Vol}(2)=\frac{d x_{1}}{x_{1}} \frac{d y_{1}}{y_{1}} \frac{d z_{1}}{z_{1}} \frac{d w_{1}}{w_{1}} \frac{d x_{2}}{x_{2}} \frac{d y_{2}}{y_{2}} \frac{d z_{2}}{z_{2}} \frac{d w_{2}}{w_{2}}\left[\frac{\vec{a}_{1} \cdot \vec{b}_{2}+\vec{a}_{2} \cdot \vec{b}_{1}}{\left(\vec{a}_{2}-\vec{a}_{1}\right) \cdot\left(\vec{b}_{2}-\vec{b}_{1}\right)}\right]$

High school problem $\quad g g \rightarrow g g$

* Positive quadrant
\because Vectors

$$
\vec{a}_{1}, \vec{a}_{2}, \ldots, \vec{a}_{\ell} \quad \vec{b}_{1}, \vec{b}_{2}, \ldots, \vec{b}_{\ell}
$$

\because Conditions

$$
\left(\vec{a}_{i}-\vec{a}_{j}\right) \cdot\left(\vec{b}_{i}-\vec{b}_{j}\right) \leq 0
$$

for all pairs i, j
Let me know if you solve it!
$\operatorname{Vol}(\ell)=\ldots \ldots$.

Why true?

* No QFT proof because it is not QFT but geometry
* It is correct: the result satisfies locality and unitarity

* Totally different approach: same answer
* Many open questions: triangulations, mathematical structure.....

Physics vs geometry

: Dynamical particle interactions in 4-dimensions

\because Static geometry in high dimensional space

What is scattering amplitude?

What is scattering amplitude?

Step 1.1.1.

\% It is very early to say if/how this can generalize
\% Some encouraging news but more work needed
\% New formulation of QFT?

- Integrals
- Masses
- RG flow

Establish as an efficient computational tool

- Correlation functions
- Beyond perturbation theory

Fantasy

* Beyond understanding QFT better there is one more motivation

Fantasy

* Beyond understanding QFT better there is one more motivation

We have a theory of quantum gravity: string theory

New geometric picture for string theory?

Amplitudes as a new field

$\%$ This is one of the directions in fast developing field
\% More: scattering equations, BCJ duality, string amplitudes, supergravity finiteness, hexagon bootstrap, cluster polylogarithms, worldsheet models, integration techniques, LHC calculations,.....

* Zeroth order problems open, many chances for young people to make big discoveries!

Resources

Books and reviews

https: / / arxiv.org/ abs / 1308.1697
https: / / arxiv.org/ abs / 1310.5353
https: / / arxiv.org/abs / 1610.05318

Conferences

Summer school in July in Edinburgh, you can still apply!

Thank you for your attention

