Broken symmetries and lattice gauge theory (I): LGT, a theoretical femtoscope for non-perturbative strong dynamics

Leonardo Giusti

CERN, University of Milano-Bicocca, INFN

ICTP Summer School on Particle Physics - Trieste June 2017

L. Giusti - ICTP Summer School on Particle Physics - Trieste June 2017 - p. 1/13

Quantum Chromodynamics (QCD)

QCD is the quantum field theory of strong interactions in Nature. Its action [Fritzsch, Gell-Mann, Leutwyler 73; Gross, Wilczek 73; Weinberg 73] 0000000 $S[A, \overline{\psi}_i, \psi_i; g, m_i, \theta]$ is fixed by few simple principles: 0000000 * SU(3)_c gauge (local) invariance * Quarks in fundamental representation $\psi_i = u, d, s, c, b, t$ * Renormalizability

Present experimental results compatible with $\theta = 0$

• It is fascinating that such a simple action and few parameters $[g, m_i]$ can account for the variety and richness of strong-interaction physics phenomena

L. Giusti – ICTP Summer School on Particle Physics - Trieste June 2017 – p. 2/13

Asymptotic freedom

The renormalized coupling constant is scale dependent

$$\mu \frac{d}{d\mu}g = \beta(g)$$

and QCD is asymptotically free $[b_0 > 0]$ [Gross, Wilczek 73; Politzer 73]

 $\beta(g) = -b_0g^3 - b_1g^5 + \dots$

The theory develops a fundamental scale

$$\Lambda = \mu \left[b_0 g^2(\mu) \right]^{-b_1/2b_0^2} e^{-\frac{1}{2b_0 g^2(\mu)}} e^{-\int_0^{g(\mu)} dg \left[\frac{1}{\beta(g)} + \frac{1}{b_0 g^3} - \frac{b_1}{b_0^2 g} \right]}$$

which is a non-analytic function of the coupling constant at $g^2 = 0$. Quantization breaks scale invariance at $m_i = 0$

Perturbative corner: hard processes

Experimental results significantly prove the logarithmic dependence in μ/Λ predicted by perturbative QCD

L. Giusti - ICTP Summer School on Particle Physics - Trieste June 2017 - p. 4/13

By comparing these measurements to theory

- $\Lambda \sim 1 \text{ GeV}$ $1/\Lambda \sim 0.2 \text{ fm} = 2 \cdot 10^{-16} \text{ m}$
- At these distances the dynamics of QCD is non-perturbative
- A rich spectrum of hadrons is observed at these energies. Their properties such as

$$M_n = b_n \Lambda$$

need to be computed non-perturbatively

• The theory is highly predictive: in the (interesting) limit $m_{u,d,s} = 0$ and $m_{c,b,t} \to \infty$, for instance, dimensionless quantities are parameter-free numbers

 $SU(3)_{L} \times SU(3)_{R} \rightarrow SU(3)_{L+R}$

and soft explicit symmetry breaking

 $m_u, m_d \ll m_s < \Lambda$

$$\blacksquare m_u, m_d \ll m_s \Longrightarrow m_\pi \ll m_K$$

• A 9th pseudoscalar with $m_{\eta'} \sim \mathcal{O}(\Lambda)$

I I ₃ S	Meson	Quark	Mass
		Content	(GeV)
1 1 0	π^+	$uar{d}$	0.140
1 -1 0	π^-	$dar{u}$	0.140
1 0 0	π^0	$(dar{d}-uar{u})/\sqrt{2}$	0.135
$\frac{1}{2}$ $\frac{1}{2}$ +1	K^+	$uar{s}$	0.494
$\frac{1}{2} - \frac{1}{2} + 1$	K^{0}	$dar{s}$	0.498
$\frac{1}{2} - \frac{1}{2} - 1$	K^-	$sar{u}$	0.494
$\frac{1}{2}$ $\frac{1}{2}$ -1	$\overline{\mathrm{K}}^{\mathrm{0}}$	$sar{d}$	0.498
<u> </u>			
0 0 0	η	$\cos\vartheta\eta_8 - \sin\vartheta\eta_0$	0.548
0 0 0	η'	$\sin\vartheta\eta_8 + \cos\vartheta\eta_0$	0.958
η_8	= ($d\bar{d} + u\bar{u} - 2s\bar{s})/\sqrt{6}$	
η_0	= ($d\bar{d} + u\bar{u} + s\bar{s})/\sqrt{3}$	
10 19	\sim –	-10°	

L. Giusti - ICTP Summer School on Particle Physics - Trieste June 2017 - p. 6/13

• QCD action for
$$N_F = 3$$
, $M^{\dagger} = M = \text{diag}(m_u, m_d, m_s)$

$$S = S_G + \int d^4x \left\{ \bar{\psi} D\psi + \bar{\psi}_{\rm R} M^{\dagger} \psi_{\rm L} + \bar{\psi}_{\rm L} M \psi_{\rm R} \right\}, \qquad D = \gamma_{\mu} (\partial_{\mu} - iA_{\mu})$$

. For M = 0 chiral symmetry

$$\psi_{\mathrm{R,L}} \to V_{\mathrm{R,L}} \psi_{\mathrm{R,L}} \quad \psi_{\mathrm{R,L}} = \left(\frac{1 \pm \gamma_5}{2}\right) \psi$$

Chiral anomaly: measure not invariant SSB: vacuum not symmetric

Breaking due to non-perturbative dynamics. Precise quantitative tests are being made on the lattice $SU(3)_{c} \times SU(3)_{L} \times SU(3)_{R} \times U(1)_{L} \times U(1)_{R} \times \mathcal{R}_{Scale}$ (dim. transm., chiral anomaly) $SU(3)_{c} \times SU(3)_{L} \times SU(3)_{R} \times U(1)_{B=L+R}$ (Spont. Sym. Break.) $SU(3)_{c} \times SU(3)_{L+R} \times U(1)_{B}$ (Confinement) $SU(3)_{L+R} \times U(1)_{B}$

Lattice QCD: action [Wilson 74]

- QCD can be defined on a discretized spacetime so that gauge invariance is preserved
- Quark fields reside on four-dimensional lattice, the gauge field $U_{\mu} \in SU(3)$ resides on links
- The Wilson action for the gauge field is

$$S_G[U] = \frac{\beta}{2} \sum_x \sum_{\mu,\nu} \left[1 - \frac{1}{3} \operatorname{ReTr} \left\{ U_{\mu\nu}(x) \right\} \right]$$

where $\beta=6/g^2$ and the plaquette is

- $U_{\mu\nu}(x) = U_{\mu}(x) U_{\nu}(x+\hat{\mu}) U_{\mu}^{\dagger}(x+\hat{\nu}) U_{\nu}^{\dagger}(x)$
- Popular discretizations of fermion action: Wilson, Domain-Wall-Neuberger, tmQCD

The lattice provides a non-perturbative definition of QCD. The path integral at finite spacing and volume is mathematically well defined (Euclidean time)

$$Z = \int DU D\bar{\psi}_i D\psi_i \ e^{-S[U,\bar{\psi}_i,\psi_i;g,m_i]}$$

Nucleon mass, for instance, can be extracted from the behaviour of a suitable two-point correlation function at large time-distance

$$\langle O_N(x)\bar{O}_N(y)\rangle = \frac{1}{Z} \int DUD\bar{\psi}_i D\psi_i \ e^{-S} \ O_N(x)\bar{O}_N(y) \longrightarrow R_N \ e^{-M_N |x_0 - y_0|}$$

P For small gauge fields, the pert. expansion differs from usual one for terms of O(a)

$$= -igT^{a}\left\{\gamma_{\mu} - \frac{i}{2}(p_{\mu} + p'_{\mu})a + O(a^{2})\right\}$$

Consistency of lattice QCD with standard perturbative approach is thus guaranteed

L. Giusti - ICTP Summer School on Particle Physics - Trieste June 2017 - p. 9/13

Continuum and infinite-volume limit of Lattice QCD is the non-perturbative definition of QCD

Details of the discretization become irrelevant in the continuum limit, and any reasonable lattice formulation tends to the same continuum theory

 $M_N(a) = M_N + c_N a + \dots$

Continuum and infinite-volume limit of Lattice QCD is the non-perturbative definition of QCD

Details of the discretization become irrelevant in the continuum limit, and any reasonable lattice formulation tends to the same continuum theory

 $M_N(a) = M_N + d_N a^2 + \dots$

By a proper tuning of the action and operators, convergence to continuum can be accelerated without introducing extra free-parameters [Symanzik 83; Sheikholeslami Wohlert 85; Lüscher et al. 96]

• Finite-volume effects are proportional to $exp(-M_{\pi}L)$ at asymptotically large volumes

Correlation functions at *finite volume* and *finite lattice spacing* can be computed by Monte Carlo techniques *exactly* up to statistical errors

Look at quantities not accessible to experiments:

- * quark mass dependence
- * volume dependence
- * unphysical quantities Σ, χ, \ldots

for understanding...

[Galileo – CINECA]

Typical lattice parameters:

a = 0.05 fm $(a\Lambda)^2 \sim 0.25\%$ $L = 3.2 \text{ fm} \implies M_{\pi}L \ge 4, \ M_{\pi} \ge 0.25 \text{ GeV}$

 $V = 2L \times L^3 \qquad \qquad \# \text{points} = 2^{25} \sim 3.4 \cdot 10^7$

 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Monte Carlo algorithms integrate over 10⁷-10⁹
 SU(3) link variables

A typical cluster of PCs:

- * Standard CPUs [Intel, AMD]
- * Fast connection [40Gbit/s]
- ▲ Lattice partitioned in blocks which are distributed over the nodes $(256 \times 16 \text{ a good example})$
- Data exchange among nodes minimized thanks to the locality of the action

- Extraordinary algorithmic progress over the last 30 years, keywords:
 - * Hybrid Monte Carlo (HMC) Duane et al. 87
 - * Multiple time-step integration Sexton, Weingarten 92
 - * Frequency splitting of determinant Hasenbusch 01
 - * Domain Decomposition Lüscher 04
 - * Mass preconditioning and rational HMC Urbach et al 05; Clark, Kennedy 06
 - * Deflation of low quark modes Lüscher 07
 - * Avoiding topology freezing Lüscher, Schaefer 12
 - * Factorization of fermions

Cè, LG, Schaefer 16-17

Light dynamical quarks can be simulated. Chiral regime of QCD is accessible

Algorithms are designed to produce exact results up to statistical errors

L. Giusti – ICTP Summer School on Particle Physics - Trieste June 2017 – p. 12/13

- Extraordinary algorithmic progress over the last 30 years, keywords:
 - * Hybrid Monte Carlo (HMC) Duane et al. 87
 - * Multiple time-step integration Sexton, Weingarten 92
 - * Frequency splitting of determinant Hasenbusch 01
 - * Domain Decomposition Lüscher 04
 - * Mass preconditioning and rational HMC Urbach et al 05; Clark, Kennedy 06
 - * Deflation of low quark modes Lüscher 07
 - * Avoiding topology freezing Lüscher, Schaefer 12
 - * Factorization of fermions
 - Cè, LG, Schaefer 16-17

Light dynamical quarks can be simulated. Chiral regime of QCD is accessible

Algorithms are designed to produce exact results up to statistical errors

L. Giusti – ICTP Summer School on Particle Physics - Trieste June 2017 – p. 12/13

- Lattice QCD is the femtoscope for studying strong dynamics. Its lenses are made of quantum field theory, numerical techniques and computers
- It allows us to look also at quantities not accessible to experiments which may help understanding the underlying mechanisms
- Femtoscope still rather crude. Often we compute what we can and not what would like to
- An example: the signal-to-noise ratio of the nucleon two-point correlation function

$$\frac{\langle O_N \bar{O}_N \rangle^2}{\Delta^2} \propto n \, e^{-(2M_N - 3M_\pi)|x_0 - y_0|}$$

decreases exp. with time-distance of sources. At physical point $2M_N-3M_\pi \simeq 7 \text{ fm}^{-1}$ The problem is being attacked and solved (?) over the last two years

- Lattice QCD is the femtoscope for studying strong dynamics. Its lenses are made of quantum field theory, numerical techniques and computers
- It allows us to look also at quantities not accessible to experiments which may help understanding the underlying mechanisms
- Femtoscope still rather crude. Often we compute what we can and not what would like to
- A rather general strategy is emerging: design special purpose algorithms which exploit known math. and phys. properties of the theory to be faster
- Results from first-principles when all syst. uncertainties quantified. This achieved without introducing extra free parameters or dynamical assumptions but just by improving the femtoscope

