Broken symmetries and lattice gauge theory (II): chiral anomaly and the Witten-Veneziano mechanism

Leonardo Giusti
CERN, University of Milano-Bicocca, INFN

ICTP Summer School on Particle Physics - Trieste June 2017

Light pseudoscalar meson spectrum

- Octet compatible with SSB pattern

$$
\mathrm{SU}(3)_{\mathrm{L}} \times \mathrm{SU}(3)_{\mathrm{R}} \rightarrow \mathrm{SU}(3)_{\mathrm{L}+\mathrm{R}}
$$

and soft explicit symmetry breaking

$$
m_{u}, m_{d} \ll m_{s}<\Lambda
$$

- $m_{u}, m_{d} \ll m_{s} \Longrightarrow m_{\pi} \ll m_{\mathrm{K}}$
\(\left.$$
\begin{array}{ccccc}\hline \mathrm{I} & \mathrm{I}_{3} & \mathrm{~S} & \text { Meson } & \begin{array}{c}\text { Quark } \\
\text { Content }\end{array}\end{array}
$$ \begin{array}{c}Mass \\

(\mathrm{GeV})\end{array}\right]\)| 1 | 1 | 0 | π^{+} | $u \bar{d}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | -1 | 0 | π^{-} | $d \bar{u}$ |
| 1 | 0 | 0 | π^{0} | 0.140 |
| $(d \bar{d}-u \bar{u}) / \sqrt{2}$ | 0.140 | | | |
| $\frac{1}{2}$ | $\frac{1}{2}$ | +1 | $\mathrm{~K}^{+}$ | $u \bar{s}$ |
| $\frac{1}{2}$ | $-\frac{1}{2}$ | +1 | $\mathrm{~K}^{0}$ | $d \bar{s}$ |
| $\frac{1}{2}$ | $-\frac{1}{2}$ | -1 | $\mathrm{~K}^{-}$ | $s \bar{u}$ |
| $\frac{1}{2}$ | $\frac{1}{2}$ | -1 | $\overline{\mathrm{~K}}^{0}$ | $s \bar{d}$ |
| 0 | 0 | 0 | η | 0.495 |
| | | | 0.498 | |
| 0 | 0 | 0 | η^{\prime} | $\cos \vartheta \eta_{8}-\sin \vartheta \eta_{8}+\cos \vartheta \eta_{0}$ |

- A $9^{\text {th }}$ pseudoscalar with $m_{\eta^{\prime}} \sim \mathcal{O}(\Lambda)$

$$
\begin{aligned}
\eta_{8} & =(d \bar{d}+u \bar{u}-2 s \bar{s}) / \sqrt{6} \\
\eta_{0} & =(d \bar{d}+u \bar{u}+s \bar{s}) / \sqrt{3} \\
\vartheta & \sim-10^{\circ}
\end{aligned}
$$

QCD action and its (broken) symmetries

- QCD action for $N_{F}=2, M^{\dagger}=M=\operatorname{diag}(m, m)$

$$
S=S_{G}+\int d^{4} x\left\{\bar{\psi} D \psi+\bar{\psi}_{\mathrm{R}} M^{\dagger} \psi_{\mathrm{L}}+\bar{\psi}_{\mathrm{L}} M \psi_{\mathrm{R}}\right\}, \quad D=\gamma_{\mu}\left(\partial_{\mu}-i A_{\mu}\right)
$$

- For $M=0$ chiral symmetry

$$
\psi_{\mathrm{R}, \mathrm{~L}} \rightarrow V_{\mathrm{R}, \mathrm{~L}} \psi_{\mathrm{R}, \mathrm{~L}} \quad \psi_{\mathrm{R}, \mathrm{~L}}=\left(\frac{1 \pm \gamma_{5}}{2}\right) \psi
$$

Chiral anomaly: measure not invariant
SSB: vacuum not symmetric

- Breaking due to non-perturbative dynamics.

Precise quantitative tests are being made on the lattice

```
                                    SU(3)
\[
\mathrm{SU}(3)_{c} \times \mathrm{SU}(2)_{\mathrm{L}+\mathrm{R}} \times \mathrm{U}(1)_{\mathrm{B}}
\]
(Confinement)

\section*{Numerical challenge}
- A Monte Carlo computation of
\[
\chi_{\mathrm{L}}^{\mathrm{YM}}=\frac{1}{V}\left\langle\left(n_{+}-n_{-}\right)^{2}\right\rangle^{\mathrm{YM}}
\]
is challenging for several reasons
- \(L \sim 1 \mathrm{fm}\) and \(a \sim 0.08 \mathrm{fm} \Longrightarrow \operatorname{dim}[D] \sim 2.510^{5}\) : computing and diagonalizing the full matrix not feasible
- A standard minimization would require high precision to beat contamination from quasi-zero modes
- At large \(V\) the probability distribution has a width which increases linearly with \(V\)
\[
P_{Q}=\frac{1}{\sqrt{2 \pi V \chi_{\mathrm{L}}^{\mathrm{YM}}}} e^{-\frac{Q^{2}}{2 V \chi_{\mathrm{L}}^{\mathrm{YM}}}}\left\{1+O\left(V^{-1}\right)\right\}
\]
\(\Longrightarrow\) computing \(\chi_{\mathrm{L}}^{\mathrm{YM}}\) requires very high statistics

Algorithm for zero-mode counting
- In finite \(V\) null prob. for \(n_{+} \neq 0\) and \(n_{-} \neq 0\)
- Simultaneous minimization of Ritz functionals associated to
\[
D^{ \pm}=P_{ \pm} D P_{ \pm} \quad P_{ \pm}=\frac{1 \pm \gamma_{5}}{2}
\]
to find the gap in one of the sectors
- Run again the minimization in the sector without gap and count zero modes
- No contamination from quasi-zero modes


Non-perturbative computation for \(N_{c}=3\) [Del Debbio et al. 04; Cè et al. 14]
- With the GW definition a fit of the form
\[
r_{0}^{4} \chi^{\mathrm{YM}}(a, s)=r_{0}^{4} \chi^{\mathrm{YM}}+c_{1}(s) \frac{a^{2}}{r_{0}^{2}}
\]
gives
\[
r_{0}^{4} \chi^{\mathrm{YM}}=0.059 \pm 0.003
\]
- By setting the scale \(F_{\mathrm{K}}=109.6 \mathrm{MeV}\)
\[
\chi^{\mathrm{YM}}=(0.185 \pm 0.005 \mathrm{GeV})^{4}
\]
to be compared with

\[
\frac{F^{2}}{2 N_{F}}\left(M_{\eta}^{2}+M_{\eta^{\prime}}^{2}-2 M_{K}^{2}\right) \underset{\exp }{\approx}(0.180 \mathrm{GeV})^{4}
\]
- The (leading) QCD anomalous contribution to \(M_{\eta^{\prime}}^{2}\) supports the Witten-Veneziano explanation for its large experimental value

Non-perturbative computation for \(N_{c}=3\) [Del Debbio et al. 04; Cè et al. 14]
- With the GW definition a fit of the form
\[
r_{0}^{4} \chi^{\mathrm{YM}}(a, s)=r_{0}^{4} \chi^{\mathrm{YM}}+c_{1}(s) \frac{a^{2}}{r_{0}^{2}}
\]
gives
\[
r_{0}^{4} \chi^{\mathrm{YM}}=0.059 \pm 0.003
\]
- By setting the scale \(F_{\mathrm{K}}=109.6 \mathrm{MeV}\)
\[
\chi^{\mathrm{YM}}=(0.185 \pm 0.005 \mathrm{GeV})^{4}
\]
- With the Wilson flow definition
\[
r_{0}^{4} \chi^{\mathrm{YM}}=0.054 \pm 0.002
\]

which corresponds to
\[
\chi^{\mathrm{YM}}=(0.181 \pm 0.004 \mathrm{GeV})^{4}
\]
- From an unsolved problem to a universality test of lattice gauge theory!
- Vacuum energy and charge distribution are
\(e^{-F(\theta)}=\left\langle e^{i \theta Q}\right\rangle, P_{Q}=\int_{-\pi}^{\pi} \frac{d \theta}{2 \pi} e^{-i \theta Q} e^{-F(\theta)}\)

Their behaviour is a distinctive feature of the configurations that dominate the path integr.
- Large \(N_{c}\) predicts ['t Hooft 74; Witten 79; Veneziano 79]
\[
\frac{\left\langle Q^{2 n}\right\rangle^{\text {con }}}{\left\langle Q^{2}\right\rangle} \propto \frac{1}{N_{c}^{2 n-2}}
\]
- Various conjectures. For example, dilute-gas instanton model gives ['t Hooft 76; Callan et al. 76; ...]
\[
\begin{aligned}
& F^{\mathrm{Inst}}(\theta)=-V A\{\cos (\theta)-1\} \\
& \frac{\left\langle Q^{2 n}\right\rangle^{\mathrm{con}}}{\left\langle Q^{2}\right\rangle}=1
\end{aligned}
\]

- Vacuum energy and charge distribution are
\(e^{-F(\theta)}=\left\langle e^{i \theta Q}\right\rangle, P_{Q}=\int_{-\pi}^{\pi} \frac{d \theta}{2 \pi} e^{-i \theta Q} e^{-F(\theta)}\)

Their behaviour is a distinctive feature of the configurations that dominate the path integr.



- Lattice computations give
\[
\begin{aligned}
\frac{\left\langle Q^{4}\right\rangle^{\text {con }}}{\left\langle Q^{2}\right\rangle} & =0.30 \pm 0.11 \text { Ginsparg-Wilson } \\
& =0.23 \pm 0.05 \text { Wilson-Flow }
\end{aligned}
\]
i.e. supports large \(N_{c}\) and disfavours a dilute gas of instantons
- The anomaly gives a mass to the \(\eta^{\prime}\) thanks to the NP quantum fluctuations of \(Q\)
```

