Lecture 3 Outline

- DIS: Parton Dist'ns \& factorization

$$
\rho \rho \rightarrow H+X
$$

- $e^{+} e^{-} \rightarrow 2$ jets, event shapes, factorization
- $P \rho \rightarrow H+O$-jets

Deep Inelastic Scattering (DIS) $\quad e^{-p} \rightarrow e^{-x}$

- key process for foundations of $Q<D$ (quarks, asym. freedom)

$$
\begin{array}{lll}
S=(k+P)^{2} & & y=\frac{Q^{2}}{x s} \\
q^{2}=-Q^{2} & Q^{2}>0 & 0<x<1 \\
x=\frac{Q^{2}}{2 R \cdot q} & 0<y<1 & \left(\begin{array}{l}
y=1-\frac{k^{0^{\prime}}}{k^{0}}
\end{array}\right. \\
y=\frac{q \cdot p}{k \cdot l} & \begin{array}{l}
\text { in proton res. } \\
\text { frame }
\end{array} \\
\text { measurable with leptons } &
\end{array}
$$

$$
Q^{2} \gg \hat{a}^{2} c 0
$$

$$
P_{x}^{2}=(q+l)^{2}=\frac{Q^{2}(1-x)}{x} \sim Q^{2} \text { large }
$$

(proton blown apart)

$$
\frac{d \sigma}{d x d Q^{2}}=\frac{8 \pi \alpha^{2}}{Q^{4}}\left[\left(1+(1-y)^{2}\right) \underline{F_{1}\left(x, Q^{2}\right)}+\frac{(1-y)}{x}\left\{\underline{F_{2}\left(x, Q^{2}\right)}-2 x F_{1}\left(x, Q^{2}\right)\right\}\right]
$$

QCD/ hadronic dependence in dimensionlesS structure functions
hadronic tensor

$$
\begin{aligned}
\omega^{\mu \nu} & =\frac{1}{4 \pi} \sum_{x}(2 \pi)^{4} \delta^{u}\left(q+e-P_{x}\right)\langle P| J^{\mu}(0)|x\rangle\langle x| J^{\nu}(0)|p\rangle \\
& =\left(-9 \mu \nu+\frac{q_{\mu} q J}{q^{2}}\right) F_{1}\left(x, Q^{2}\right)+\left(P^{\mu}+\frac{q^{\mu}}{2 x}\right)\left(P^{\nu}+\frac{q^{\nu}}{2 x}\right) \frac{F_{2}\left(x, 0^{2}\right)}{p \cdot q}
\end{aligned}
$$

- uses current conservation $\partial^{\mu} J_{\mu}=0 \Rightarrow q^{\mu} \omega_{\mu}=0$
- Parity \& Time Reversal \& hermiticity $\mathrm{J}^{+}=J$
actually $F_{i}=F_{i}\left(x, \frac{Q^{2}}{{\Lambda Q^{2} \omega}^{\prime}}\right)$

Factorization Theorem

$$
F_{1}\left(x, \frac{Q^{2}}{\Lambda_{Q^{2} C D}}\right)=\sum_{j} \int_{x}^{1} \frac{d \xi}{\xi} C_{j}\left(\frac{x}{q}, \frac{Q^{2}}{\mu^{2}}\right) f_{j}\left(r, \frac{\mu}{\Lambda Q C D}\right)+O\left(\frac{\Lambda^{2}}{Q^{2}}\right)
$$

similar for F_{2}
parton distribution functions $f_{j}:{ }^{\Delta} f_{q_{i}} \& f_{g}$ ul
take snapshot of proton on short time scale $t \sim \frac{1}{Q}$ $x=$ mom. fraction of struck quack, $\xi=$ mon. fraction ob parton j in proton
Proof: - OPE (long), twist -2 operators

- IR structure of $Q C P$ eg. with Soft -Collinear Effective Theory $(S C E T) \rightarrow$ extra reading

$$
f_{q_{i} i}\left(\xi, \frac{\mu}{\Lambda}\right)=\int \frac{d y}{2 \pi} e^{-2 i(\xi \bar{n} \cdot e) y}\langle e| \Psi_{i}(\bar{n} y) W(\bar{n} y,-\bar{n} y) \nRightarrow \psi_{i}(-\bar{n} y)|e\rangle
$$

- $\bar{n}^{2}=0$ light cone matrix elenet
$\left(\rightarrow\right.$ twist 2 , symmetric $\$$ traceless, $\bar{n}^{\mu_{1}} \ldots \bar{n}^{\mu_{k}}$)
- $W=p_{\exp } \int_{-y}^{y} d s \bar{n} \cdot A(\bar{n} s)$ for gouge
wilson Line
a fundamental nom. distribution of proton Scale Separation
- μ divides long \& short distance physics

$-\cdots \mu$

$$
\begin{aligned}
\ln \left(\frac{Q}{\Lambda Q C D}\right)= & \ln \left(\frac{Q}{\mu}\right)+\ln \left(\frac{\mu}{1 Q C D}\right) \\
& \text { in } C_{j} \quad \text { in } f_{j}
\end{aligned}
$$

$f_{j}\left(\eta, \frac{\mu}{\lambda}\right)$ depending on scale " μ " where we probe the parton j the distribution changes (more later)

Tree Level

$$
C_{j}\left(\frac{x}{q}, \frac{Q^{2}}{\mu}\right)=\frac{\theta_{j}^{2}}{2} \delta\left(1-\frac{x}{\xi}\right)
$$

\Rightarrow measurements of
$\therefore F_{1}\left(x, \frac{Q^{2}}{\Lambda^{2}}\right)=\sum_{j} \frac{Q_{j}^{2}}{2} f_{q j}\left(x, \frac{\mu}{\lambda}\right) \xrightarrow{\text { universal } f_{q_{j}^{\prime}} \text { 's }}$
"parton model", independent ob $\mathbb{Q} \rightarrow$ scaling
Also $F_{2}=2 \times F_{1} \Rightarrow$ spin- $1 / 2$ quarks
Scaling violation from han Q dependence at higher orders (excellent ogreenat ω data)

IR divergences
virtual

real

$$
\begin{aligned}
& 4 F_{1}^{V}=\frac{\alpha_{s} C_{F}}{\pi} Q_{f}^{2}\left(\frac{\mu^{2}}{Q^{2}}\right)^{\epsilon}\left(\frac{-1}{\epsilon^{2}}-\frac{1}{2 \epsilon}+\cdots\right) \delta(1-x) \\
& 4 F_{1}^{R}=\frac{\alpha s C_{F}}{\pi} Q_{f}^{2}\left(\frac{\mu^{2}}{Q^{2}}\right)^{\epsilon}\left[\frac{-\left(1+x^{2}\right)}{2 \epsilon(1-x)^{1+\epsilon}}+\frac{1}{4(1-x)^{1+\epsilon}}+\cdots\right]
\end{aligned}
$$

Treat $(1-x)^{-1-\epsilon}$ as distribution, test fin $g(x)$

$$
\begin{gathered}
\int_{0}^{1} d z \frac{g(x)}{(1-x)^{1+\epsilon}}=\int d z \frac{g(x)-g(1)+g(1)}{(1-x)^{1+\epsilon}}=\frac{-g(1)}{\epsilon}+\int d z \frac{g(x)-g(1)}{1-x} \\
\therefore \quad \frac{1}{(1-x)^{1+\epsilon}}=-\frac{1}{\epsilon} \delta(1-x)+\frac{1}{(1-x)+}+\cdots
\end{gathered}
$$

Now $1 / \epsilon^{2}$ cancels $-\frac{1}{\epsilon^{2}}+\frac{1}{\epsilon^{2}}=0$

$$
\operatorname{sun}=\frac{\alpha s C_{F}}{2 \pi} Q f^{2} C_{F}\left[-\frac{1}{\epsilon} P_{q q}(x)-\ln \frac{\mu^{2}}{Q^{2}} P_{q q}(x)+\ldots 0\right]
$$

where $p_{q q}(x)=\left[\frac{1+x^{2}}{(1-x)+}+\frac{3}{2} \delta(1-x)\right]$
splitting furetion with distal

$$
\int_{0}^{1} d x P_{88}(x)=0 \Rightarrow \text { works conserved }
$$

- left over $\frac{1}{\epsilon}$ collinear divergence Pg // PIn
which is port of $f_{q}(\xi)$

$$
f_{q}(q, \mu)^{\text {portoric }}=\delta(1-\xi)-\frac{\alpha_{s}(\mu)}{2 \pi \epsilon} P_{q_{q}}(\xi) \quad \begin{aligned}
& \overline{m s} \\
& \text { def }
\end{aligned}
$$

Then

$$
C_{1}\left(\frac{x}{\xi}, \frac{Q^{2}}{\mu^{2}}\right)=\frac{Q_{f}^{2}}{2}\left[\delta\left(1-\frac{x}{r}\right)-\frac{\alpha s}{2 \pi} \ln \frac{\mu^{2}}{Q^{2}} P_{8 q}\left(\frac{x}{q}\right)+\cdots\right]
$$

indeed direct calculation from def'n above \circledast :

$$
f_{q}\left(\xi_{q}\right)^{\text {bare }}=\delta(1-\xi)+\frac{\alpha_{s}}{2 \pi}\left(\frac{1}{\epsilon u r}-\frac{1}{\epsilon \pm R}\right) P_{8 q}(\xi)
$$

UV renormalization grus RGE equation

$$
\mu \frac{d}{d \mu} f_{j}(\xi, \mu)=\int_{\xi}^{1} \frac{d \xi^{\prime}}{\xi^{\prime}} P_{j k}\left(\frac{\xi}{\xi^{\prime}}\right) f_{k}\left(\xi^{\prime}, \mu\right)
$$

DGLAP equations

Exercise (next page): Explore PDF s

- dist'n terms in splitting functions.
- action of this RGE

Lectures on Perturbative QCD

Iain Stewart, ICTP Summer School 2017

Problem: Splitting Functions

Infrared enhancements in the quark and gluon branching processes $q \rightarrow q g, g \rightarrow g g$, and $g \rightarrow q \bar{q}$ are key ingredient in the formation of jets. The structure of collinear enhancements is described by splitting functions $P_{a b}$, which to first order in the strong coupling α_{s} are:

$$
\begin{align*}
& P_{q q}^{(0)}(x)=\frac{\alpha_{s}(\mu)}{2 \pi} C_{F}\left[\frac{1+x^{2}}{(1-x)_{+}}+a_{q} \delta(1-x)\right] \tag{1}\\
& P_{q g}^{(0)}(x)=\frac{\alpha_{s}(\mu)}{2 \pi} T_{R}\left[x^{2}+(1-x)^{2}\right] \\
& P_{g q}^{(0)}(x)=\frac{\alpha_{s}(\mu)}{2 \pi} C_{F}\left[\frac{1+(1-x)^{2}}{x}\right], \\
& P_{g g}^{(0)}(x)=\frac{\alpha_{s}(\mu)}{2 \pi} 2 C_{A}\left[\frac{x}{(1-x)_{+}}+\frac{1-x}{x}+x(1-x)\right]+a_{g} \delta(1-x) .
\end{align*}
$$

Here the color factors are $C_{F}=4 / 3, T_{R}=1 / 2$, and $C_{A}=3$, and you will determine the constants a_{q} and a_{g} below. Each $P_{a b}^{(0)}(x)$ should be thought of as the probability of finding a parton of type a inside an initial parton b, with a having a fraction x of the parent b 's momentum. These expressions include the familiar Dirac δ-function, and the less familiar + -function. The latter is defined by $1 /(1-x)_{+}=1 /(1-x)$ for any $x<1$, and by the fact that the singularity at $x=1$ is regulated such that

$$
\begin{equation*}
\int_{0}^{1} d x \frac{1}{(1-x)_{+}} g(x)=\int_{0}^{1} d x \frac{1}{(1-x)}[g(x)-g(1)] \tag{2}
\end{equation*}
$$

for any function $g(x)$.
a) Derive results for the constants a_{q} and a_{g} such that quark number is conserved:

$$
\begin{equation*}
\int_{0}^{1} d x P_{q q}^{(0)}(x)=0 \tag{3}
\end{equation*}
$$

and momentum is conserved by the quark and gluon splittings:

$$
\begin{equation*}
\int_{0}^{1} d x x\left[P_{q q}^{(0)}(x)+P_{g q}^{(0)}\right]=0, \quad \int_{0}^{1} d x x\left[P_{g g}^{(0)}(x)+2 n_{f} P_{q g}^{(0)}\right]=0 \tag{4}
\end{equation*}
$$

Here n_{f} is the number of light quarks. Show that you can rewrite $P_{q q}^{(0)}$ as $P_{q q}^{(0)}(x)=$ $\left(\alpha_{s}(\mu) C_{F} / 2 \pi\right)\left[\left(1+x^{2}\right) /(1-x)\right]_{+}$.

Given an initial distribution of quarks $q\left(\xi, \mu_{0}\right)$ and gluons $g\left(\xi, \mu_{0}\right)$ at a momentum scale μ_{0}, the distribution of quarks at a scale μ_{1} is given by

$$
\begin{equation*}
q\left(x, \mu_{1}\right)=q\left(x, \mu_{0}\right)+\int_{\mu_{0}}^{\mu_{1}} \frac{2 d \mu}{\mu} \int_{x}^{1} \frac{d \xi}{\xi}\left[P_{q q}^{(0)}\left(\frac{x}{\xi}\right) q(\xi, \mu)+P_{q g}^{(0)}\left(\frac{x}{\xi}\right) g(\xi, \mu)\right], \tag{5}
\end{equation*}
$$

where the terms in the integral account for the possibility that the quark we observe came from a splitting rather than the initital distribution.
b) By iterative use of Eq. (5) derive a series in α_{s} that writes $q\left(x, \mu_{1}\right)$ in terms of terms only involving q 's and g 's at $\mu=\mu_{0}$. Draw Feynman diagrams to describe physically what is happening with the various terms in your infinite series.

The subtraction term from the plus function in $P_{q q}^{(0)}$ in Eq. (5) sets $\xi=x$, and is related to evolution to the scale μ_{1} without branching, so strictly speaking Eq. (5) does not yet have a clean separation between branching and no-branching. To better distinguish the two possibilites we will rewrite this equation in a different way. To simplify the formulas below, we'll set $P_{q g}^{(0)}=0$. The probability that a quark does not split when it evolves from μ_{0} to μ_{1} is then given solely by the quark Sudakov form factor:

$$
\begin{equation*}
\Delta_{q q}\left(\mu_{1}, \mu_{0}\right)=\exp \left[-\int_{\mu_{0}}^{\mu_{1}} \frac{2 d \mu}{\mu} \int d x \hat{P}_{q q}^{(0)}(x)\right] . \tag{6}
\end{equation*}
$$

Here $\hat{P}_{q q}^{(0)}(x)=\left(\alpha_{s}(\mu) C_{F} / 2 \pi\right)\left(1+x^{2}\right) /(1-x)$ and we will assume that the limits on the x integration keep us away from the singularity at $x=1$ (more on this in part d).
c) Taking $\mu_{1} d / d \mu_{1}$ derive differential equations for $q\left(x, \mu_{1}\right)$ and $\Delta_{q q}\left(\mu_{1}, \mu_{0}\right)$. Next derive an equation for $\mu_{1} d / d \mu_{1}\left(q / \Delta_{q q}\right)$ and show that its solution yields

$$
\begin{equation*}
q\left(x, \mu_{1}\right)=\Delta_{q q}\left(\mu_{1}, \mu_{0}\right) q\left(x, \mu_{0}\right)+\int_{\mu_{0}}^{\mu_{1}} \frac{2 d \mu}{\mu} \frac{\Delta_{q q}\left(\mu_{1}, \mu_{0}\right)}{\Delta_{q q}\left(\mu, \mu_{0}\right)} \int \frac{d \xi}{\xi} \hat{P}_{q q}^{(0)}\left(\frac{x}{\xi}\right) q(\xi, \mu) \tag{7}
\end{equation*}
$$

Since this result does not involve the +-function we can interpret the second term as the probability from splitting, and the first term as the probability of having no splitting. Thus the Sudakov form factor in the first term gives the no-splitting probability when we evolve from μ_{0} to μ_{1}. Can you provide an interpretation for the presence of the ratio of $\Delta_{q q}$'s in the second term? This result with its probabilistic interpretation is used in parton shower Monte Carlo programs that describe parton branching and QCD jets.

Next you will calculate the form of the exponent in $\Delta_{q q}\left(\mu_{1}, \mu_{0}\right)$. The result can be thought of as an infinite series in $\alpha_{s}\left(\mu_{0}\right)$, but to keep things simple for this calculation we'll freeze $\alpha_{s}(\mu)=\alpha_{s}\left(\mu_{0}\right)$ and approximate $P_{q q}^{(0)}(x) \simeq\left(\alpha_{s}\left(\mu_{0}\right) C_{F} / \pi\right) /(1-x)$ which will allow us to determine the dominant term for $\mu_{1} \gg \mu_{0}$.
d) Lets identify the evolution scale parameter as the parton's virtual mass squared, $\mu^{2}=p^{2} \equiv t^{\prime}$, and hence impose the corresponding kinematic limits on the x-integral: $\mu_{0}^{2} / \mu^{2}<x<1-\mu_{0}^{2} / \mu^{2}$ (obtained for particles with large energy and expanding $\left.\mu_{0} \ll \mu\right)$. With the approximations above and these limits perform the double integral in Eq. (6), and show that your result involves a $\ln ^{2}\left(\mu_{1} / \mu_{0}\right)$. This double log is related to the presence in the branching and no-branching probabilities of the soft $(x \rightarrow 1)$ singularity and the collinear singularity described by the splitting function equations.

$$
F_{1}\left(x, \frac{Q^{2}}{\Lambda_{\alpha^{2}, 0}}\right)=\sum_{j} \int_{x}^{1} \frac{d \xi}{\xi} C_{j}(\frac{x}{q}, \underbrace{}_{\substack{Q^{2} \\ \mu^{2}}}) f_{j}\left(q, \frac{\mu}{1 Q C D}\right)
$$

Evolve PDF to appropriate scale:

$$
f_{j}(\xi, \mu)=\int_{\xi}^{1} \frac{d \xi^{\prime}}{\xi^{\prime}} U_{j k}\left(\frac{\xi}{\xi^{\prime}}, \mu_{1}, \mu_{0}\right) f_{k}\left(\xi^{\prime}, \mu_{0}\right)
$$

$$
\mu \simeq Q
$$

perturbative evolution of PDFS
sums ∞ series of large
$\mu_{0} \simeq$ taco

$$
L=\ln \left(\frac{\mu}{\mu_{0}}\right)^{\prime} s: 1+\alpha_{s} l+\alpha_{s}^{2} l^{2}+\ldots
$$

(numerical solution here) [like $\left.\alpha_{s}(\mu)\right]$
$j \neq k$ PDF mixing

Note: μ dependence cancels order-by-order in expansion between $\left.C_{j}\left(\frac{x}{\xi}\right) \frac{Q^{2}}{\mu^{2}}\right) \& f_{j}(\xi, \mu)$
often use residual μ dependence to estimate higher order terms: $\mu=\frac{Q}{2}, Q, 2 Q$ \Rightarrow perturbative theory uncertainty
Same story for $p p$ collisions:

$$
\sigma=\int d x_{a} d x_{b} f_{g}\left(x_{a}, \mu\right) f_{g}\left(x_{b}, \mu\right) \quad \hat{\sigma}_{g \rightarrow H+x}\left(x_{a}, x_{b}, \mu, m_{H}\right)
$$

evolve from

$$
\mu \simeq m_{H}
$$

Mo ~ 人 OCD to

$$
\mu \approx M_{H}
$$

$$
e^{+} e^{-} \rightarrow \gamma^{*}(q) \rightarrow q \bar{q}
$$

- factorization theorems con also be derived for processes involving jets
jet,

combine

$$
\begin{aligned}
& \text { ombime } \\
& T \equiv \frac{m_{a}^{2}+M 3^{2}}{Q^{2}} \quad \begin{array}{l}
\text { [related } \\
\text { to } \\
\text { "thrust"] }
\end{array}
\end{aligned}
$$

demanding $T \ll 1$ ensures z-jets "event shape"
Collinear radiation with $P^{0} \sim Q \& P_{\perp} \sim Q \sqrt{\tau}$ contributes \rightarrow Jet Functions $\sim P_{\perp}^{2} \sim[Q \sqrt{\tau}]^{2}$

Soft radiation with $k^{\mu} \sim Q \tau$ contributes
\rightarrow Soft function $\quad(P+k)^{2} \sim 2 p \cdot k \sim(Q)(Q \tau)$

$$
\begin{aligned}
& M^{2} \simeq(P+k)^{2}=P^{2}+2 P \cdot k+U\left(k^{\prime}\right)=S+Q k^{+} \Rightarrow Q^{2} \uparrow \simeq S+s^{\prime}+Q k \\
& \frac{d \sigma}{d \tau}=\sigma_{0} H(Q, \mu) \int d s d s^{\prime} \underbrace{J(s, \mu) J\left(s^{\prime}, \mu\right.}_{\text {hard } f_{n} .}) S(\underbrace{Q \tau-\frac{s+s^{\prime}}{Q}}, \mu) \\
& \text { hard } f_{n} \text {. } \\
& \text { jet functions soft ff } \\
& \text { virtual }
\end{aligned}
$$ corrections

$$
\mu^{2} \sim Q^{2} \gg \mu^{2} \sim Q^{2} \tau>\mu^{2}-Q^{2} \tau^{2}
$$

renormalization group evolution in μ suns $\alpha_{s} \operatorname{hn}^{2} \tau$ factors

RGE for $H(Q, \mu)$: Solution is Sudakuv Form Factor
\rightarrow Exercise in EFTX course, chapter 13

$$
P \rho \rightarrow H+O-j e t_{s}
$$

anti-kT with R not jets with $P_{T}>P_{T}$ cut

LL
ML
NULL
$N 3 L L+O\left(\alpha_{s}{ }^{3}\right)$ Known 1\% precision
multijet $\quad \Rightarrow$ extract $\alpha_{s}\left(M_{z}\right)$

$$
\begin{aligned}
\sigma\left(p_{T}^{\text {cut }}\right)= & \sigma_{0} H_{g g}\left(m_{t}, M_{H}, \mu\right) \int d Y B_{g}\left(m_{H}, P_{T}^{\text {cut }}, R, x_{a}, \mu, \nu\right) \\
& * B_{g}\left(m_{H}, P_{T}^{\text {cut }}, R, x_{b}, \mu, \nu\right) S_{g g}\left(P_{T}^{\text {cut }}, R, \mu, \nu\right)
\end{aligned}
$$

$$
x_{a, b}=\frac{m_{H}}{E_{c m}} e^{ \pm Y}
$$

extra rapidity scale parameter
with

$$
B_{g}\left(M_{H}, P_{t}^{c u t}, R, x, \mu, 0\right)=\sum_{j} \int_{x}^{1} \frac{d \xi}{\xi} \Psi_{g j}\left(M_{H}, P_{T}^{\omega+t}, R, \frac{x}{\xi}, \mu, 0\right) f_{j}(\xi, \mu)
$$

usual PDF s
Sun $\alpha_{s} h^{2}\left(\frac{p_{T}^{\omega t}}{m H}\right)$ to higher orders all other functions NNLL gives $\sim 7 \%$ precision perturbative

Active Areas in Collider Physics

- loop corculations, connection to Amplitudes, spinor/helicity techniques
- loops+legs, combining so that $\frac{1}{e}$'s cancel phase space slicing or subtractions
- Improvirg Parton Shower Monte Corlo
- Global Fits for determining PDF S
- Factorization (new formula, now universal functions, factorization violation \& MPI)
- Resummation, higher orders / precision, new types of logs $(\log , \log R) \&$ multiple variables
- Jet Substructure
* boosted particles that de cay hadronically con be identified by substructure

2 prong
substructure
find new observables

3 prong
substructure

* also techniques to "groom" jets, remove soft contanimotion inside jets to better probe the hood mother porticle

References for Fucthur Reading

- Effective Field Theory, including Soft-Collinear EFT for collider physics, see EFT course: http://www2.Ins.mit.edu/~iains/registerEFTx
(video lectures, SCET review notes, online problems)
- QCO Concepts (Renormalization Group, β-function,
Fadeeu-Popor, ...)
http://www2.Ins.mit.edu/~iains/talks/QFT3_Lectures_Stewart_2012.pdf
- Collider physics: "QCD and Collider Physics"

Book by Ellis, Stirling, and webber

- Parton Shower Review, Buckley et al: https://arXiv.org/abs/1101.2599
- Review on Jets by Gavin Salam: https://arxiv.org/abs/0906.1833

