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Motivations

* To contribute to develop First-Principles simulation methods to a predictive level:

standard first principle simulation methods are mostly based on Density Functional
Theory, in practice a mean-field theory, with uncontrolled approximations. Our aim is
to develop simulation methods where all approximations can be controlled and
improved, hence switching from non-predictive to predictive methods.

* To study matter at extreme conditions beyond present experimental capabilities:
those methods will be able to provide reliable predictions even in absence of
experimental results. Experiments at extreme conditions are difficult and extremely
expensive, they often provide only partial information and different methods are
often in disagreement. Predictive First Principle theories will greatly help our
understanding and will reduce the cost of these activities.

* Light elements like Hydrogen, Helium, Lithium are very fundamental: their study
under extreme conditions requires considering explicitly the electronic correlation, a
fully quantum treatment of nuclei




Hydrogen: the paradigmatic system

Hydrogen is the simplest element, i.e. the element with the simplest electronic
structure.

Hydrogen is the most abundant element in the Universe: the Giant gas planets are
comprised by 70-90% of hydrogen, plus helium and other heavier elements. Developing
accurate planetary models requires accurate acknowledge of the equation of state of
hydrogen, helium and their mixtures.

Hydrogen is relevant for energy applications: nuclear fusion, etc.
The hydrogen atom and and the hydrogen molecule have been the prototype models in
developing Quantum Mechanics. Hydrogen is the ideal playground to develop new

theoretical approaches and methods.

Being the simplest element, it is desirable to be able to predict its properties from first-
principle (the Hamiltonian is known and simple) from a theoretical perspective.

Despite its simplicity Hydrogen under pressure presents a reach and difficult physics.
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Hydrogen phase diagram
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First-principles theoretical methods

* first-principle methods based on Quantum Mechanics and Statistical Mechanics.

* they treat nuclei and electrons explicitly and are unique methods to study systems
in a large variety of chemical and physical states

* they assume the non-relativistic Hamiltonian of the system of nuclei and electrons
in a volume £2 at temperature T (in condensed phase)

* Under rather general conditions, the energy scales for nuclei and electrons are
widely separated: adiabatic approximation (Born-Oppenheimer)

H — Tn—|_Hel:Tn_|_Te—|_V7
N, ) Ne 5
Iy =-— Z MV Te= =X Vi kinetic energies
I=1 i=1
. 2127 1 2]
V= - — + —— — —— = > Coulomb law
I<2J|R[—RJ| ;j|ri_rj| ;|ri_RI|

A, = 1/2, A= 1/(2M1),

First principles
McMahon, Morales, Pierleoni, Ceperley, Rev. Mod. Phys. 84, 1607 (2012)



Electrons: solve the electronic problem at given nuclear positions

ground state energy

Hy =Ko +V / nuclear coordinates (3Np)
el(I)O( (R) = Eo(R)®o(r \R) Schroedinger equation (SE)

!

ground state wave function

electronic coordinates (3Ne)

Density Functional Theory: maps the interacting electrons problem onto a single
electron problem in a self-consistent effective potential.

Solve the single electron SE as an eigenvalue problem in 3 dimensions.
Mean field solution, introduces uncontrolled approximations.

Quantum Monte Carlo: assumes an explicit form of the many-electrons wave
function based on physical insight and exploits the Variational Principle to control
the accuracy

| dr Vi(r|R) HaqVr(r|R)

Eo(R) < Er(R) = [ dr |Up(r R)[’

— trial wave function

[ dr Wy (rlR) [Ha ~ Er(R)| W(r|R)
[ dr [wr(rR)P

0 <o7(R) =



Ur(r|R) depends explicitly on some free parameters to be optimized using the
variational principle: the lower the energy and the variance the better the
quality of the solution.

The variational principle provides an internal consistency check when comparing

various trial functions.

Imaginary time projection automatically optimizes but requires an approximation for
fermions: the fixed node approximation but the method remain variational

BCC hydrogen: Np=54; 6x6x6 twist grid
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DFT

Advantages:
* DFT is reasonably fast and accurate.

* it is far more transferrable than the
effective potential approach.

« electronic dynamical properties can also
be computed in the single-electron theory
(optical spectra, transport properties....)
(not fully justified).

Limitations:

* DFT misses an internal check on the
accuracy of the various approximations

« assessment of accuracy based on
comparison with experiments or more
accurate theories (like QMC).

« dispersion interactions, band gaps and
excited states are generally bad.

 the approximation is an extra variable to
choose.

QMC

Advantages:

* electron correlation is explicitly put in the
wave function.

* the accuracy can be assessed by the
Variational Principle (internal check of the
theory).

* efficient methods to compute properties
other than the energy are available

Limitations:

* projection introduces the fixed node
approximation. But the method is still
variational.

* it needs larger computer resources.

* electronic dynamics is more difficult but,
to some extend, can be dealt with by
CFQMC (see Li et al, PRL 2010)

* the development of community codes is
much behind DFT, so the use of QMC
much less spread.



Nuclear sampling: use the electronic energy (or forces) to sample the nuclear
configurational space at physical temperature (Boltzmann):

o ° o.
classical nuclei are point particles (P=1) e o
o
o

(P>1, closed for diagonal observables)

quantum nuclei are paths in configuration space 0<§

Molecular Dynamics

or
pn (1) ~ e~ BntEr(R)]/kpT Re RN —— Monte Carlo +

importance sampling

BOMD (CPMD): uses DFT forces and MD to sample nuclear configuration space

CEIMC: uses QMC energy and Metropolis MC for nuclear sampling
QMCMD: uses QMC forces and LD for nuclear sampling



Coupled Electron-lon Monte Carlo (CEIMC):

an ab-initio simulation method with QMC accuracy

CEIMC: Metropolis Monte Carlo for finite T ions. The BO energy in the Boltzmann
distribution is obtained by a QMC calculation for ground state electrons.
e Ground state electrons:
e Variation Monte Carlo (VMC) & Reptation Quantum Monte Carlo (RQMC)
e Twist Average Boundary Conditions (TABC) within CEIMC to reduce electronic
(single particle) finite size effects.
o Efficient energy difference method
e Efficient RQMC algorithm:The bounce algorithm
e Finite temperature ions: Noisy Monte Carlo The Penalty Method
e Quantum Protons: Path Integral Monte Carlo (PIMC) within CEIMC
e Moving the nuclei: two level sampling

e The computational cost of CEIMC in the present implementation is quite higher
than for BOMD (limited to small systems ~100 protons), but the scaling is the
same (~N>).

e HPC Tier-0 systems are now available for this generation of calculations!



Moving the ions

- In Metropolis MC we generate a Markov chain of ionic states .S distributed according to
Boltzmann

P(S) x exp(—BEBO(Y))

Epo(S) = Born-Oppenheimer energy for the configuration S.
- Given an initial state S we propose a trial state S’ with probability

T(S — 8" =T(8" — 9)
and we accept the move with probability
A(S — 8') = min [1,exp {—ﬁ[EBO(S’) — EBO(S)]}}

- After a finite number of moves the Markov chain is distributed with Boltzmann (if ergodicity
holds).
- But Epp (S) from QMC is noisy = use the penalty method

JOURNAL OF CHEMICAL PHYSICS VOLUME 110, NUMBER 20 22 MAY 1999

The penalty method for random walks with uncertain energies

D. M. Ceperley and M. Dewing
Department of Physics and NCSA, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801



The Penalty Method

® Assume mean value and variance of the energy difference over the noise distribution

P(5]S, S") exist

BlEso(S") — Epo(9)] < 4(8,8") >= A(S, 5"
<(B-AP> = %885

We want to find the new acceptance probability a(S — S’) such that we satisfy detailed
balance on average:

TS — S)<a(S—S)>=T(8" — S) <a(S" — S) > exp[-BA(S,S)]

<a(S— 8" >= / dsP(6]S,S")a(8]S,S")

— OO

Under general assumption one can show that

a(@lo) = min | 1,exp (6 - “_2)}

®» The noise always causes extra rejection !



® In few simple examples the optimal noise level was found to be s? = o2 /n ~ 1.
In CEIMC other constraints imposes the noise level but as a rule of thumb we always try
to stay around 1.

® ° ~ T2 lowering the temperature requires smaller noise level, i.e. longer electronic
runs



Quantum Protons in CEIMC

PIMC: we need to consider the thermal density matrix of the nuclei
p(B) = e PH (3 is the physical inverse temperature

o for diagonal observables we map protons onto ring polymers
» we limit to distinguishable particles so far, but nuclear Bose or Fermi statistics could
be considered.

» to minimize the time step error in the Trotter break-up, we introduce pairwise
effective potentials between nuclei:

H(B) = o BH _ = BIKp+Verr+(Her—Very)]

p(S,S8'|T) ~ (S]e_T[’CpJFVeff] SVe™ 2 (Epo—=Vess)(S)+(Epo—Vers)(S")]

e we use the pair action approximation for the effective many body density matrix

(Sle= et Versl| &y w [ 0P (ri, i 717) = po(S, §'|)e” 2y Ui I7)
]

w=—log[p® /p{?] D.M. Ceperley, Rev.Mod.Phys. (1995)



Quantum Protons in CEIMC

* for molecular state we use bonding and non- .
bonding effective potentials Verr(S) = 5 Zvnb(nj) - va(dz)
* at molecular dissociation only non-bonding one. i7J g

Potentials obtained at reference thermodynamic states by Boltzmann Inversion
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Pair action obtained by the matrix squaring method, stored in numerical tables and used
during the simulation.

p(z)('r, r'127) :/ dr” p(2)('r, r”|7)p(2)(r”,r’|T)

The form of the potential only affects the convergence with the number of
proton slices, not the accuracy of the calculation!!!

8 slices at T=600K and at molecular dissociation are enough for convergence.



Sampling the nuclear paths in CEIMC

we want to displace all protons simultaneously because any nuclear move changes
the wave function.

we employ a 2-level Metropolis scheme to pre-screen proposed configurations
before performing the VMC calculation.
Splitting of the Hamiltonian:

H, = K, + Egne =K, + Vepsl+[Eape — Veps)+[Egme — Eap)

pair action
primitive approximation 15t Metropolis test
primitive approximation 2" Metropolis test

Propose the new configuration by a drifted random walk

§/:§—I— hﬁ—l—g ﬁ:ﬁkin+ﬁu+ﬁdft_ﬁeff <fi€j >= QthT(Sij
Fin Force from kinetic action (spring term)
F,=-VU U= Zuij pair action
1<J



Sampling the nuclear paths in CEIMC

15t Metropolis test (noiseless)

— —

§ - § G ., & ! B[Eapt(S)=Ver s ()]
44(§ = §) =min [1,¢:(5 > §) (S > §) = 71(8'B)e”

)oe
S (518 P Vs

G(S = 5
G(—>

202

G(S — ') o exp { (5/ ~5- hﬁ(S))

2"d Metropolis test with penalty (only if the first step is passed)

¢~ B[Eame(S")=Ear: ()]

e_B[Equ(S)_Edft (9)]

—

A5(8 = §) = min [1,:(S > §)| @)= —BX*(5,5)

€

This scheme is implemented in the normal mode basis of the path (kinetic action)
to decouple the amplitude of the centroid move (q=0) from the amplitude of the
internal modes (q>0) moves and to adjust them according to their order for an
optimal sampling (Cao-Berne, Tuckerman).

With this scheme we can sample systems of 100 protons with paths of 32 beads
with no major problems.



in CEIMC quantum nuclei are not more expensive than classical nuclei !!

In the penalty method we need to run QMC calculations to reduce the noise on the energy
difference to an acceptable level. We do this by running many independent QMC calculations
with different twisted boundary conditions to reduce the size effects.

Suppose we run classical ions with a given noise level (Boc)?.

Consider now representing the quantum ions by P slices. To have a comparable extra-
rejection we need a noise level per slice given by

(Boe)? = P(Bog/P)? which provides: o= 0cF/P.
We can allow the noise P times larger on each slice, i.e. consider P times less independent
estimates of the energy difference per slice.

However we need to run P different calculations one for each time slice, so that the amount
of computing for a fixed global noise level is the same as for classical ions.

With TABC, we replicate all twists for each time slices: optimal for parallel computers.



CEIMC: trial functions for hydrogen

QMC for fermions exploits the fixed node approximation and the accuracy depends on
the accuracy of the many body trial wave function.

Slater-Jastrow form: Ur(R|S) = exp [~U(R|S)] Det (ZT) Det (El)
U(RIS) is a (two-body + three-body + ...) correlation factor (bosonic).
2. is a Slater determinant of single electron orbitals 0(Z;,04|5)

The nodes are determined by the form of the orbitals only. They are the most important
part of the trial function since the nodes are not optimized by projection.

Hydrogen trial function

® Single electron orbitals obtained from a DFT calculation (with various approxs) for each
proton configuration.

® Analytical electron-electron and electron-proton backflow transformation (BF) to
improve the nodes [Holzmann, Ceperley, Pierleoni, Esler PRE 68, 046707 (2003)].

® Analytical form for the single and 2-body Jastrow within RPA (Gaskell, 1967)

® Addition of numerical |-body, 2-body, 3-body Jastrows and backflow terms (3-body e-e
is not-effective)

® few variational parameters to be optimized (on selected configurations only).

13 variational parameters only ! effect of optimization: ~1 mH/at on the energy
~40% on the variance



. . Holzmann et al, Phys. Rev. E 68,046707 (2003)
Backflow-3 Body trial function pirieonietal Comp. Phys. Comm. 179, 89-97 (2008).

N N, Ny
- = - — = ]_ = - - ]. =
Ur(IS) = detlOn (7] exp [ =3 |5 teelri) = 3 (i = S1l) = 51Gil?
i=1 j#i I=1
Zbody iig(r) = ufPA(r) + A5, expl—(r/uw5,)’] o = (ee, ep)
Ne
backflow T; =T; + Z [yEePA (T’ij) T Nee (T’LJ)(FZ — 77])}
JFi
Np
+ 3 [yEPA (I = Sul) + e (I = S1) G5 = S
I=1



. . Holzmann et al, Phys. Rev. E 68,046707 (2003)
Backflow-3 Body trial function pirieonietal Comp. Phys. Comm. 179, 89-97 (2008).

Ne

3-body Z RPA r’l,j T gee(rzg)} (7:; - Fj)
75

+ [ Sl = S1l) + Eep(lri = St))] (7 = Si)
I=1

Sa(r) = Ag, exp[—((r — 75,) /w5,)”] a = (ee, ep)



. . Holzmann et al, Phys. Rev. E 68,046707 (2003)
BaCkﬂOW'3 BOd)’ trlal funCtlon Pierleoni et al, Comp. Phys. Comm. 179, 89-97 (2008).

.. ’4

Ne “~. "
3-body Z eRPAT (e gee< i) (7 = 75)
;é ..

+ [ Sl = S1l) + Eep(lri = St))] (7 = Si)
I=1

Sa(r) = Ag, exp[—((r — 75,) /w5,)”] a = (ee, ep)

| 3 variational parameters only !
effect of optimization: ~| mH/at on the energy
~40% on the variance

Optimizing each newly proposed nuclear configuration prior its acceptance is
a major bottleneck for the efficiency of the method
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CEIMC: T=600K classical

Pressure (GPa)

Pressure (GPa)
200 300 400

ateets®

PBE -
vdW-DF i #

..§§u

—{ 11

100 200 300 400 100
— T T T
o | | o |
% 1 ]
145 — & I —1
B ® I _
\¢ i
1.4 — I 1
R, 1.35 i —
1.3+ “ —_1
125~ o : —+
12 b f
C e ! il
3 ", ii —1
—~ L ...00 ii 4
g %, ! |
p - [ ] 1
v& 2 — "ii L
(@) | * 1
1 e —+
- B aa T
O ] | ] | :: IH_.l_. ] P
100 200 300 400 100

Pressure (GPa)

200 300 400
Pressure (GPa)

Pierleoni, Morales, Rillo, Holzmann, Ceperley PNAS 113,4953 (2016)

® absence of hysteresis

500 allows to detect the
transition pressure
. directly
5
o ® Electrical
Y conductivity from
= Kubo-Greenwood
> with DFT on nuclear
1 6"\ configurations from
% CEIMC

oD (r, 1)

|

P single electron
9 density matrix

0 1 [ drdr
a7
V

10r

electron localization
function

2



. T=600K classical protons
25 j

, molecular dissociation is abrupt
- at variance with DFT predictions

HIM ;
Ars=0.01 .
An~0.001 ao3
OJ l I 1



Convergence of the nuclear Pl : we assume an effective pair interaction V. and use pair action

P (S, 8| = 5|6—Tp[ﬁe+(EBo—Ve)]|5/>
~ ( Sle" ™S ¢ — 3 [Epo(8)~Ve(S)+[Epo(S")~Ve(5")] (92)
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Pressure (GPa)

Nuclear Quantum Effects (NQE) in DFT

Morales, McMahon, Pierleoni, Ceperley PRL 110, 065702 (2013)
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from g(r): intramolecular NQE are relevant
intermolecular NQE are less relevant
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LLPT by DFT: structure and DC conductivity

ler; Ceperley PNAS 108, 12799 (2010)
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PPT is elusive on the basis of the molecular
fraction but is quite clear on the basis of the DC
conductivity (in the single-electron theory)

® PPT is a first order phase transition below
T.~1000-1500K

* Molecular dissociation is driven by metallization
* Above T, the metallization and the molecular
dissociation are continuous processes
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FIG. 4: The DC electronic conductivity of hydrogen as a
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formula and DFT. The black, red and blue points correspond
to averages over protonic configurations sampled from the
BOMD, CEIMC and PIMD simulations, respectively.



Pierleoni, Morales, Rillo, Holzmann, Ceperley PNAS 113,4953 (2016)
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Fig. 3. Comparison of CEIMC results for the transition line with previous
theoretical predictions. Blue circles and squares are CEIMC transition pres-
sures for hydrogen and systems with classical protons, respectively. Contin-
uous lines are predictions from FPMD with different X-C approximations:
vdW-DF2 (black lines), vdW-DF (red lines), GGA-PBE (green lines), HSE (or-
ange dashed line). For each approximation, except HSE, the line at lower
pressure corresponds to quantum protons whereas the line at higher pres-
sure corresponds to classical protons. For HSE only the classical protons line

- NQE decreases the transition
pressure by ~ 80GPa at T=600K
(CEIMC)

- best functionals are HSE and
vdW-DF, but the quality depends

on temperature!!
(see also R. Clay et al, PRB 2014)

- HSE is too expensive to be
routinely used

- PIMD with DFT-PBE predicts
dissociation and melting of phase |
not in agreement with experiments

- optical properties (reflectivity)
are also much larger (100%) than
in experiments (Morales et al
PRL 2013)

- vdW-DF2 tends to overbind
molecules and predicts a larger

dissociation pressure (by
~150GPa).



computational details

« CEIMC: (BOPIMC)
» 54-128 protons with 64 twists (4x4x4)
 Slater-dastrow wfs with DFT orbitals + BF
* VMC with RQMC corrections (small ~5Gpa)
» Size corrections on the transition line are also small (~10Gpa)
* PIMC with 8 slices at 600K (smart MC with DFT forces for normal-mode sampling)
* We have checked all main biases

« BOMD: (VASP & QuantumESPRESSO)
 PBE xc functional with a Troullier-Martins pseudopot. (r.=0.5a.u.)
 PAW with VASP (HSE)
 energy cutoff of 90 Ry
» 432 protons at the I" point for PPT (strong size effects in DFT!!!)
» 432 protons in the liquid and 360 protons in the solid for the melting line
calculation

« PIMD: imaginary time step 1=(4800 K)-1 providing a 8 slice paths at T=600K

Morales, Pierleoni, Schwegler, Ceperley PNAS 108, 12799 (2010)
Morales, McMahon, Pierleoni, Ceperley PRL 110, 065702 (2013)
Pierleoni, Morales, Rillo, Holzmann, Ceperley, PNAS 113, 4953 (2016)
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Initial configurations relaxed at constant pressure with DFT

with DFT-vdW-DF, C2/c is dynamical unstable towards:
* layered structures at intermediate densities
* metallic Cmca-4 structure at rs=1.27

with CEIMC no instabilities are seen, molecules progressively disappear with pressure



Cmca-12: CEIMC vs vdW-DF

* Good agreement between DFT and CEIMC
* No mixed phases

* molecules progressively disappear with
pressure




Molecular Lindemann ratio

300

Pressure (GPa)
400

200
3

025
02—
015

0.1—

0.3

C2c

0.25

02

0.15

0.1

® CEIMC

B DFT

Cmcai2

200

250

300

350 400
Pressure (GPa)

450

Classical melting ~ 0.15

Quantum melting ~ 0.3



0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

Molecular Orientation Order

Pressure (GPa)

200 250 300 350 400 450 500
T 1 T 1T T T T T T T
C2c O o _
O
| | $ | E | ﬁ | ﬁ | | | —
® i
@ o i B
i e ]
E —
% ® CEIMC |
B DFT
Cmcai2 —
I T T T D
200 250 300 350 400 450 500

Pressure (GPa)

<O>=1 perfect alignment

<0>=0 no alignment



1.6

1.55

1.5

1.45

1.4

1.35

1.6

1.55

I.5

1.45

1.4

Molecular bond length

Pressure (GPa)

200 300 400 500
| ' | ' | '
C2c —
i
‘ ﬂ ]
® _
B o ]
E —
i ) i
| | | | | =
Cmca-12 ]
. ]
ﬂ —
® &
E _
® &

- B ® CEIMC
@ DFT i

L] I T R
200 250 300 350 400 450 500

Pressure (GPa)



Electrical conductivity (Qcm)-!

Pressure (GPa)

30062 . 3?0 | 4?0 | 500 e Cmcal2 more “conductive” than
- - C2/c
- C2c i -

2000 {— — e C2/c at 350GPa at the edge of

Longitudinal . . .
. @ g . the conductive behavior in

B Transverse T .
qualitative agreement with recent
1000 = N experiments

- EH@
HEH

e Eremets2016:arXiv:1601.04479

6000 & .

- § 2000 | | g 120ES008 | I I I If I -
c i \ 1
4000 — — 1,00E+008 | ? -

I Cmca-12 | £ ° | !
- s o B.O0E+00T | \ -

B 1 ® € o
2000 — i _ ?; g B,00E+007 | % i
- = . iﬁ o 4,00E+007 | q -

= r

i $ | | | | ] é 2,00E+007 | 7 %% -
O | | | | | | © | O\ ) ]
200 250 300 350 400 450 SO(F 0,00E+000 | oo\@o/O‘o‘a% o L \o\,;& a
Pressure (GPa)
282 K 0 50 100 150 200 250 300

5(1)0 l 1000 (a) Temperature, K

-1
Wavenumbers, cm

(a)



Conclusions

* BOMD is reasonably accurate in a large region of the thermodynamic space but
breaks down near metallization and molecular dissociation in hydrogen.

* Hydrogen metallization and dissociation in the liquid phase occur simultaneously
through a weakly first order phase transition below some critical temperature

(Tc~2000K ?).

* The precise location of the transition line and of the critical point depend on the
level of theory, the CEIMC’s ones being intermediate between PBE and vdW-DF2.
Different experiments are also in disagreement.VVe are closer (but at slightly
higher pressure) to the static compression experiments (Silvera) than to the
dynamic compression experiments (Knudson).

* Molecular crystalline structures: PE surface from CEIMC seems to be more

structured than from DFT-vdW-DF1. DFT accuracy seems to depend on the
specific structure.




Conclusions

* Hydrogen remains a very interesting system with many open questions in its
high pressure regime
* the structure of crystalline molecular phases (from Il to Vl) in the insulating
molecular crystal
e the mechanism of metallization at low temperature and its interplay with
molecular dissociation and melting (recent claim of metallization at 500GPa and

80K)

* Hydrogen has confirmed itself as the ideal system for method development:

* how to deal with quantum nuclei in DFT?
e QMC benchmark of DFT functionals

* what about hydrogen in more complex systems (water)?

e CEIMC is a method to perform ab-initio simulation with QMC accuracy
* It is suitable to investigate systems (heavier elements?) around the MIT
* |t is unique in its ability to treat quantum protons without a major
computational bottleneck
* |t is the obvious method to study hydrogen at intermediate temperature
(T>100K)
* How to treat nuclear statistics efficiently ?
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