Context	Method	Enhanced Sampling	Bennett's	Interaction	Q-Dots	Conclusions
	000				00 0000	0 00 0

Quantum Symmetry from Enhanced Sampling A First Exploration

J. Runeson, Marco Nava, M. Parrinello

ETH Zurich - USI Campus

3rd July 2017

Context	Method	Enhanced Sampling	Bennett's	Interaction	Q-Dots	Conclusions
	000				00 0000	0 00 0

Outline of the talk

- Contextualization: Fermions at finite Temperature
- Path Integral Molecular Dynamics
- Reweighted Sampling
- Enhanced Sampling with Metadynamics
- Results for non-interacting systems and hard spheres
- Application to Quantum Dots
- Perspectives and Conclusions

Context	Method	Enhanced Sampling	Bennett's	Interaction	Q-Dots	Conclusions
0000	000				00 0000	0 00 0

T > 0 Fermions

Simulating Fermions at Finite Temperature (and continuous coordinates)

- Use the Feynman Path Integral formulation of Statistical Mechanics $\mathcal{Z} = \int \mathcal{D}[x(t)] e^{i \int_{0}^{h\beta} dt \frac{L(x,\dot{x})}{h}}$
 - Sample closed paths in imaginary time.
 - Distribution of the paths from a product of density matrices.
- Fermi symmetry: $\Psi\left(...,\vec{r_{i}},...\vec{r_{j}},...\right) = -\Psi\left(...,\vec{r_{j}},...\vec{r_{i}},...\right)$
- Inherited by the density matrix: nontrivial nodal surface
- Sign problem: cancellation errors from + and subdomains:
 - \rightarrow signal-to-noise ratio decays exponentially with degrees of freedom.

Context	Method	Enhanced Sampling	Bennett's	Interaction	Q-Dots	Conclusions		
0000	000 0				00 0000	0 00 0		
T > 0 Fermions								

Way around: go to T = 0K

- If quantum symmetry is important we are likely deep in the quantum regime: → assume the ground state is largely the most populated.
- Easier to deal with the sign problem:
 - Use a trial wave function and assume nodal surface: fixed node approximation
 - Allow the nodes of the trial wave function to relax: release node methods
 - Diffusion on other basis representations
 - Use imaginary-time correlation functions
 - **...**

Context	Method	Enhanced Sampling	Bennett's	Interaction	Q-Dots	Conclusions
0000	000				00 0000	0 00 0

T > 0 Fermions

Another way around: Hamiltonian diagonalization

- Represent the Hamiltonian on a finite basis set
 - Coupled Cluster: Slater Determinants
 - System dependent
- Diagonalize and use eigenstates/eigenenergies to make the density matrix
- Limited to very small systems and still approximate

Context	Method	Enhanced Sampling	Bennett's	Interaction	Q-Dots	Conclusions
0000	000				00 0000	0 00 0

Remaining at finite Temperature

- Using Path Integral Monte Carlo:
 - Antisymmetrize (and truncate) permutation sampling
 - Antisymmetrize propagator (and use importance sampling)
 - Restricted path approximation of the nodes
- Weighted sampling: simulate distinguishable particles and consider the effect of quantum symmetry through a weight factor *W*.

ETH Zurich - USI Campus

- Exact in principle, easy in implementation
- W very hard to deal with, even for two particles
- Not easy to obtain non-local estimators
- Can be implemented in Path Integral Molecular Dynamics

Context	Method	Enhanced Sampling	Bennett's	Interaction	Q-Dots	Conclusions
	•00 0				00 0000	0 00 0

Feynman's Path Integral

Thermal average of a property at $\beta = \frac{1}{k_B T}$: $\langle \hat{O} \rangle = \frac{1}{Z} \text{Tr}[\hat{\rho}\hat{O}]$, with the density matrix $\hat{\rho} = e^{-\beta \hat{H}}$.

$$Z = \int dR < R |e^{-\beta \hat{H}}|R >$$

$$< \hat{O} >= \frac{1}{Z} \int dR O(R) < R |e^{-\beta \hat{H}}|R > (\hat{O} \text{ diagonal on } R \text{ for simplicity})$$

$$\rightarrow < \hat{O} >= \int dR p(R)O(R), p \text{ is a multi-dimensional probability density.}$$

$$Monte \text{ carlo:} < \hat{O} >= \lim_{M \to +\infty} \frac{1}{M} \sum_{i}^{M} O(R_{i}), R_{i} \text{ sampled from } p(R).$$

$$We \text{ use the Primitive Approximation: } e^{-\beta \hat{H}} = e^{-\beta \hat{T}} \cdot e^{-\beta \hat{V}} + O(\beta^{2})$$

$$Small \beta \text{ approx.:}$$

$$G(R_1, R_2, \beta) \simeq \frac{1}{\Gamma} e^{-\frac{\beta}{2} \sum_{i < j} v(r_{ij}^{(1)})} e^{-\sum_i \frac{1}{4\lambda_i \beta} \left(\vec{r}_i^{(1)} - \vec{r}_i^{(2)}\right)^2} e^{-\frac{\beta}{2} \sum_{i < j} v(r_{ij}^{(2)})}$$

Universit della Svizzera Italiana

ETH Zurich - USI Campus

< ロ > < 同 > < 回 > < 回 > < 回

ETH Eidgenössische Technische Hochschule Zürich

Context	Method	Enhanced Sampling	Bennett's	Interaction	Q-Dots	Conclusions
	0 00 0				00 0000	0 00 0

PIMD

Quantum-Classical isomorphism

How do we express a large β Green's function?

- Convolution property: $G(R_1, R_2, \beta_1 + \beta_2) = \int dR_m G(R_1, R_m, \beta_1) G(R_m, R_2, \beta_2)$

$$\prod_{m=1}^{P} G(R_m, R_{m+1}, \delta \tau), \quad R_{P+1} \equiv R_1$$

is the probability distribution of a system of special interacting closed polymers composed of *P* beads.

ETH Zurich - USI Campus

Context	Method	Enhanced Sampling	Bennett's	Interaction	Q-Dots	Conclusions
	000 0				00 0000	0 00 0
PIMD						

The classical Lagrangian used for sampling

$$\mathcal{Z} = \int \prod_{m=1}^{P} dR_m \ G(R_1, R_2, \delta\tau) \cdots G(R_m, R_{m+1}, \delta\tau) \cdots G(R_P, R_1, \delta\tau)$$

PIMD: \mathcal{Z} is also the configurational part of the partition function of the *classical* system of polymers: to sample $p(R_m)$, PIMD uses Molecular Dynamics in the canonical ensemble at inverse temperature β .

$$\mathcal{Z} = \int dR_{1}...dR_{P} e^{-\beta \left[\cdots\frac{1}{2P}\sum_{i < j} v\left(r_{ij}^{(m)}\right) + \sum_{i=1}^{N} \frac{P}{4\lambda\beta^{2}}\left(\vec{r}_{i}^{(m)} - \vec{r}_{i}^{(m+1)}\right)^{2} + \frac{1}{2P}\sum_{i < j} v\left(r_{ij}^{(m+1)}\right)\cdots\right]}$$

Equipping each bead with a fictitous mass M_i and momenta $\vec{p}_i^{(m)}$ one gets the classical Lagrangian for the beads

$$\mathcal{L} = \sum_{i,m} \left\{ \frac{\left(\vec{p}_{i}^{(m)}\right)^{2}}{2M_{i}} - \frac{1}{2P} \sum_{j \neq i} v(r_{ij}^{(m)}) - \frac{P}{4\lambda_{i}\beta^{2}} \left(\vec{r}_{i}^{(m)} - \vec{r}_{i}^{(m+1)}\right)^{2} \right\}$$

ETH Zurich - USI Campus

Context Method	Enhanced Sampling	Bennett's	Interaction	Q-Dots	Conclusions
0000 000 •				00 0000	0 00 0

Reweighting Quantum Symmetry

Quantum Symmetry for two particles

- Two possible permutations at each bead
- Reconnect two kinetic springs
- For fermions Vo configurations carry a minus sign
- (anti)symmetrized propagator: $\mathcal{Z} = \Gamma \int dR_1 ... dR_P \left(e^{-\beta V_{oo}} \pm e^{-\beta V_O} \right)$
- Factorize out $e^{-\beta V_{oo}}$: $\mathcal{Z} = \Gamma \int dR_1 ... dR_P e^{-\beta V_{oo}} W$
- \blacksquare Simulation of distinguishable particles, W contains the effect of the exchanges

Context	Method	Enhanced Sampling	Bennett's	Interaction	Q-Dots	Conclusions
	000	0000			00 0000	0 00 0
The seconds						

Two ideal 1D particles in a harmonic potential (T = 1K)

- The negative domain is poorly sampled.
- Energy difference is also poorly sampled.
- For Bosons results affected only marginally: most of the statistical weight is elsewhere.
- Fermions: negative tail of p(s) is important.

Pair distribution function

- Slightly inaccurate for Bosons
- Extreme noise for Fermions

ETH Zurich - USI Campus

Context	Method	Enhanced Sampling	Bennett's	Interaction	Q-Dots	Conclusions			
	000	0000			00 0000	0 00 0			
The sampling problem									

Metadynamics

- Hamiltonian becomes "time" dependent: $H \rightarrow H + V_b(s(t), t)$
- V_b increases the energy of the visited configurations ...
- \blacksquare ... these configurations are identified with one (or more) collective variable s

Algorithm in a nutshell

While the simulation is running...

- \rightarrow Compute the instantaneous value of s, say $s = s_i$
- ightarrow Add a gaussian to V_b : $V_b
 ightarrow V_b + w_t \mathrm{e}^{-rac{(s-s_i)^2}{2\sigma^2}}$

 \rightarrow After some simulation time $\tau_{\rm g}$ repeat.

< < p>< < p>

ETH Zurich - USI Campus

[J. Phys. Chem. B 119, 736 (2015)]

(Credit: Giovanni Bussi)

Context	Method	Enhanced Sampling	Bennett's	Interaction	Q-Dots	Conclusions
	000 0	0000			00 0000	0 00 0
The sampling	r problem					

Two ideal 1D particles again...

- Now sampling a broader region
- Cancellation errors under control

- Pauli "repulsion" for Fermions
- Bosons: it's the T = 0 distribution: reminiscent of condensation

Università della Soltzera Italiana

Context	Method	Enhanced Sampling	Bennett's	Interaction	Q-Dots	Conclusions		
	000	0000			00 0000	0 00 0		
The sampling problem								

The energies...

- Can be obtained from s as $E_{b(f)} E_d$
- Follow the theoretical curves but...
- ... become hard to compute in the T = 0K regime.

Context	Method	Enhanced Sampling	Bennett's	Interaction	Q-Dots	Conclusions		
	000		•0		00 0000	0 00 0		
Free energy difference								

- Energy at low T can be obtained with the Bennett's method
- From the free energy difference (FED) of two systems:

$$\frac{\mathcal{Z}_{O}}{\mathcal{Z}_{oo}} = \frac{\left\langle f_{w} e^{-V_{oo}} \right\rangle_{O}}{\left\langle f_{w} e^{-V_{O}} \right\rangle_{oo}}$$

• Fermi partition function
$$Z_F$$
: $\frac{Z_F}{Z_B} = \frac{\left(1 - \frac{Z_O}{Z_{OO}}\right)}{\left(1 + \frac{Z_O}{Z_{OO}}\right)}$
(because $Z_{B(F)} = \frac{Z_{OO} \pm Z_O}{2}$)

Universit della Svizzera Italiana

FED between Fermi and Bose systems
$$-\frac{1}{\beta} \log \frac{Z_E}{Z_B}$$

 \blacksquare Assumption: at low T, FED \simeq ED

J. Runeson, <u>Marco Nava</u>, M. Parrinello Quantum Symmetry from Enhanced Sampling

ETH Eidgenössische Technische Hochschule Ziric

Context	Method	Enhanced Sampling	Bennett's	Interaction	Q-Dots	Conclusions
	000		00		00 0000	0 00 0
Free energy	difference					

Energy vs Temperature for two ideal particles

- Can get the FED between Fermi and Distinguishable (or Bose) states
- At low T is also good approximation for the energy difference

J. Runeson, <u>Marco Nava</u>, M. Parrinello Quantum Symmetry from Enhanced Sampling

ETH Zurich - USI Campus

Context	Method	Enhanced Sampling	Bennett's	Interaction	Q-Dots	Conclusions		
	000 0			● 0	00 0000	0 00 0		
The interparticle interaction								

- With interaction: $\langle W \rangle$ further away from 0
- Core repulsion suppresses exchanges
- Connecting springs are more stretched
 - \rightarrow correspond to higher energy differences

Example...

Two Lennard-Jones particles in a well
 Different core "sizes" σ

ETH Zurich - USI Campus

Context	Method	Enhanced Sampling	Bennett's	Interaction	Q-Dots	Conclusions
	000			00	00 0000	0 00 0
The interpar	ticle interaction					

• High σ : distinguishable limit.

< A

Università della Setzera Tallena Estapositatiche Technische Hachachule Zirich Seiss Federal Institute of Technische Zirich

ETH Zurich - USI Campus

- Average weight rapidly deviates from the noninteracting limit (σ = 0)
- < W >= 1: no quantum symmetry effects in any sampled configuration.
- For $\sigma = 4$ nm, $\langle W \rangle = 0.97$

Context	Method	Enhanced Sampling	Bennett's	Interaction	Q-Dots	Conclusions
	000				00 000	0 00 0
The model						

Two electrons in a 2D harmonic potential

$$\hat{H} = \hat{T} + \hat{V}_{coul} + \hat{U}$$

External potential \hat{U} : elongation $\frac{\omega_x}{\omega_y}$ depends on the nature of the confinement

$$\hat{U} = \frac{1}{2}m^{\star}\left(\omega_x^2 x^2 + \omega_y^2 y^2\right)$$

• Coulomb potential $\hat{V}_{coul} = \frac{\gamma e^2}{kr_{12}}$

- k and m* are the dielectric constant and the effective mass
- γ: correction parameter for finite size of z direction
- Wigner parameter R_W: ratio of typical Coulomb interaction strength and single-particle energy level splitting

 \rightarrow at high R_W : interaction dominated

ETH Edgenössische Technische Hachschule Zirk

ETH Zurich - USI Campus

Experimental and theoretical data available in literature

Context	Method	Enhanced Sampling	Bennett's	Interaction	Q-Dots	Conclusions
	000				0000	0 00 0
The model						

The two electrons are in...

Singlet: $\Psi_{s}(\vec{r}_{1},\vec{r}_{2}) = \frac{1}{\sqrt{2}}\phi_{B}(\vec{r}_{1},\vec{r}_{2})(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle)$ Triplets: $\Psi_{t}(\vec{r}_{1},\vec{r}_{2}) = \phi_{F}(\vec{r}_{1},\vec{r}_{2})\begin{pmatrix}|\uparrow\uparrow\rangle \\ |\downarrow\downarrow\rangle \\ \frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle)\end{pmatrix}$

• ϕ_B and ϕ_F are symmetric and antisymmetric wavefunctions of "bosonic" and "fermionic" particles.

< < p>< < p>

ETH Zurich - USI Campus

- Access to:
 - Structural properties of the triplet and singlet states.
 - Energy and Free energy differences between those states.

Context	Method	Enhanced Sampling	Bennett's	Interaction	Q-Dots	Conclusions				
	000				00 ●000	0 00 0				
Results for th	Results for the Quantum Dot									

- R_W and $\frac{\omega_x}{\omega_y}$: different temperatures for transition to zero-temperature behavior
- Compare with literature: T in the zero T regime.

Università della Soltzera Italiana

ETH Zurich - USI Campus

Eidgenüssische Technische Hochschule Züric

 Comparison with experiments and exact diagonalization

Context	Method	Enhanced Sampling	Bennett's	Interaction	Q-Dots	Conclusions		
	000 0				00 0 0 00	0 00 0		
Results for the Quantum Dot								

Three confinements:

- Circular (C): $r_W = 1.4$ and $\hbar \omega = 5.1 meV$
- Elliptic (E): $r_W = 1.34$ and $\frac{\omega_x}{\omega_y} = 1.38$
- More Elliptic (EE): $r_W = 1.4$ and $\frac{\omega_X}{\omega_Y} = 3.0$

- Electron density $\rho(\vec{r})$ ■ Singlet: $|\phi_1(\vec{r})|^2$
 - Triplet: $|\phi_1(\vec{r})|^2 + |\phi_2(\vec{r})|^2$
 - Partial contribution to triplet $\rho(\vec{r}) : |\phi_2(\vec{r})|^2$
- Pair densities
- Breaking degeneracy of states:
 - Symmetry breaking in the density
 - Interplay between T and energy splitting between x and y levels

Universit della Svizzera Italiana

ETH

ETH Zurich - USI Campus

Eidgenössische Technische Hochschule Zür

Context	Method	Enhanced Sampling	Bennett's	Interaction	Q-Dots	Conclusions
	000				00 0000	0 00 0

Results for the Quantum Dot

- Higher r_W : broader distributions due to larger repulsion
- $|\phi_1(\vec{r})|^2$ depletion at (0,0) ("p-like" orbital)
- The circular symmetry of ϕ_1 is challenging

Università della Setzera Tallena Estaposisative Technische Hichschule Zirich Seiss Federal Institute of Technische Zirich

ETH Zurich - USI Campus

Context	Method	Enhanced Sampling	Bennett's	Interaction	Q-Dots	Conclusions
	000				00 0000	0 00 0

Results for the Quantum Dot

- Singlet state on (EE): peaked density, "solid" like
- ϕ_1 circular symmetry broken discontinously (but can be different if T is higher)

Context	Method	Enhanced Sampling	Bennett's	Interaction	Q-Dots	Conclusions
	000 0				00 0000	00 0
Magnetic fiel	4					

Add an external magnetic field H?

Primitive approx. for non-interacting particles in a magnetic field:

$$G(R_1, R_2; H_z) = \Gamma e^{-\gamma_1 Z_{12}^2} e^{-\gamma_2 R_{12}^2} e^{\frac{im\omega}{\hbar} (y_1 + y_2)(x_1 - x_2)}$$

ETH Zurich - USI Campus

Hard to treat imaginary phase

- Can apply the same weighted sampling approach but...
 - s acquires an imaginary part $\propto (x_{2,j} - x_{1,j})(y_{1,j+1} - y_{2,j+1}) + (x_{1,j+1} - x_{2,j+1})(y_{1,j} - y_{2,j})$
 - An additional sign function in the reweighting for the imaginary phase
- Metadynamics on a complex CV ?
- Steered sampling on the real axis ?

Context	Method	Enhanced Sampling	Bennett's	Interaction	Q-Dots	Conclusions
	000				00 0000	
More than t	wo particles					
		1				

ETH Eidgenössische Technische Hachschule Zirf

ETH Zurich - USI Campus

Beyond two particles...

- The Singlet/Triplet approach can be extended only in part:
 - i.e. "maximal" spin projection states are totally antisymmetryc
 - Generally for N, spins states may have not defined symmetry
- Generalization: method for spinless Bose/Fermi particles
- Considering all the permutation families: for N = 3: $e^{-\beta V_{ooo}} \left(1 \pm 3e^{-\beta \frac{V_{Oo}}{V_{ooo}}} + e^{-\beta \frac{V_{O}}{V_{ooo}}} \right)$
- Enhancing the sampling becomes increasingly harder...

Context	Method	Enhanced Sampling	Bennett's	Interaction	Q-Dots	Conclusions	
	000				00 0000	0 00 0	
More than two particles							

- For N = 3 particles there are different choices for the CV s:
 - Consider only the problematic term: $s = \beta(E_{Oo} E_{ooo})$
 - Use the log of everything with a regularization term: $s = \log \left(\left| 1 \pm 3e^{-\beta(\textbf{E}_{Oo} - \textbf{E}_{ooo})} + e^{-\beta(\textbf{E}_{O} - \textbf{E}_{ooo})} \right| + \eta \right)$
- For higher N: approximate by neglecting infrequent exchange patterns
- Resort to Replica Exchange methods

Image: A matrix and a matrix

ETH Edgenissische Technische Hachschule Zirich

Context	Method	Enhanced Sampling	Bennett's	Interaction	Q-Dots	Conclusions
	000				00 0000	0 00 •
Conclusion						

- A proof of principle:
 - Non-interacting: where the exchanges are "worse"
 - Hard-spheres: a test for the handling of the interaction
 - Quantum Dot: a comparison with other methods/experiments
- Explore the idea: can we use free energy methods to get the effects of quantum exchanges?
- Free energy difference between Bosonic and Fermionic states

