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Outline of the talk

m Contextualization: Fermions at finite Temperature

m Path Integral Molecular Dynamics

m Reweighted Sampling

m Enhanced Sampling with Metadynamics

m Results for non-interacting systems and hard spheres

m Application to Quantum Dots

m Perspectives and Conclusions
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Context
@000

T > 0 Fermions

Simulating Fermions at Finite Temperature (and continuous coordinates)

m Use the Feynman Path Integral formulation of Statistical Mechanics
P [P g L(x,%)
2= [Dlx(n)e e
m Sample closed paths in imaginary time.
m Distribution of the paths from a product of density matrices.

m Fermi symmetry: W (, Fiy ., ) =V (7 Tjy .o, )

m Inherited by the density matrix: nontrivial nodal surface

Sign problem: cancellation errors from + and — subdomains:
— signal-to-noise ratio decays exponentially with degrees of freedom.
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Context
0e00

T > 0 Fermions

Way around: go to T = 0K

m If quantum symmetry is important we are likely deep in the quantum regime:
— assume the ground state is largely the most populated.

m Easier to deal with the sign problem:

m Use a trial wave function and assume nodal surface: fixed node approximation
m Allow the nodes of the trial wave function to relax: release node methods
m Diffusion on other basis representations

m Use imaginary-time correlation functions
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Context
[e]e] o]

T > 0 Fermions

Another way around: Hamiltonian diagonalization

m Represent the Hamiltonian on a finite basis set

m Coupled Cluster: Slater Determinants

m System dependent

m Diagonalize and use eigenstates/eigenenergies to make the density matrix

m Limited to very small systems and still approximate
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Context
[eJe]e] ]

T > 0 Fermions

Remaining at finite Temperature

m Using Path Integral Monte Carlo:

m Antisymmetrize (and truncate) permutation sampling
m Antisymmetrize propagator (and use importance sampling)

m Restricted path approximation of the nodes

m Weighted sampling: simulate distinguishable particles and consider the effect of
quantum symmetry through a weight factor W.

m Exact in principle, easy in implementation
m W very hard to deal with, even for two particles
m Not easy to obtain non-local estimators

m Can be implemented in Path Integral Molecular Dynamics
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PIMD

Feynman'’s Path Integral

Thermal average of a property at 8 = kBiT :

<0 >= %Tr[ﬁ@] with the density matrix p = e BH.

Z=[dR <RlePH|R >
<0 >= 1 [dRO(R) < R|e*ﬁ’:'|R > (O diagonal on R for simplicity)

< 0 >= J dR p(R)O(R), p is a multi-dimensional probability density.
m Monte carlo: < O >= limp_s 400 % Z'M O(R;), R; sampled from p(R).

We use the Primitive Approximation: e BH — =BT . ¢—BV | 0(B?)

Small B approx.:

B @)y _y. 1 (p@M_z(@)2 _8 (@)
G(R1,R2,8) ~ %e_zz"<fv("'i )™ Zi B (70=72) ez Xicj V)
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PIMD

Quantum-Classical isomorphism

How do we express a large 8 Green's function?

m Convolution property: G(R1, R2, 81 + 82) = [ dRm G(R1, Rm, 81)G(Rm, Rz, 32)
» p(R1) = L [T15_, dRm G(R1, R2, 67 = £)--- G(Rm, Rm+1,67)-- G(Rp, Ry, 67)

~
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Py G(Rm, Renir, 37),

m=1 Rpi1 =R

is the probability distribution of a
system of special interacting closed
polymers composed of P beads.
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PIMD

The classical Lagrangian used for sampling

P
z :/ I @Rm G(Ry,R2,67) - - G(Rm, Rmy1,67) - - - G(Rp, Ry, 67)

PIMD: Z is also the configurational part of the partition function of the classical
system of polymers: to sample p(Rm), PIMD uses Molecular Dynamics in the
canonical ensemble at inverse temperature .

Z:/de...dRP e_ﬁ{m%z"q ('J )+Z' 1#( A :(MH) 2P DiciV ( (MH)) ]

Equipping each bead with a fictitous mass M; and momenta 5I.(m)

classical Lagrangian for the beads

one gets the

B v e
L= = “om; 2P 2 v( ’(m)) _ <r.(m) . r_(mﬂ))
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Method

Reweighting Quantum Symmetry

Quantum Symmetry for two particles

e
¢ 00 o6 ¢ o0 ©
¢-o- y oo ¢-o- [y

de dRp e BVeo = / dR;...dRpe PVo

Two possible permutations at each bead

m Reconnect two kinetic springs
m For fermions Vo configurations carry a minus sign
(anti)symmetrized propagator: Z =T [ dR;...dRp (e~#Vee £ e~8Vo)

m Factorize out e BVeo: Z = Ff dRy...dRpe=PVeo W

m Simulation of distinguishable particles, W contains the effect of the exchanges

mW=1+e"" s = % (71’1' — ngj) (F1’j+1 — Fz’j+1)
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Enhanced Sampling
@000

The sampling problem

Two ideal 1D particles in a harmonic potential (T = 1K)

Pair distribution function
m Slightly inaccurate for Bosons
m Extreme noise for Fermions
m Energy difference is also poorly sampled. - ~

m The negative domain is poorly sampled.

m For Bosons results affected only marginally: 0.15F
most of the statistical weight is elsewhere.

° Bose
o Distinguishable
° Fermi

m Fermions: negative tail of p(s) is important. o1

LA s S I e e o N 008
— Fermi —0.1
— Bose .

p(d)[nm"]
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Enhanced Sampling
[o] le]e}

The sampling problem

Metadynamics

m Hamiltonian becomes “time" dependent: H — H + Vj(s(t), t)
m V), increases the energy of the visited configurations ...
m ... these configurations are identified with one (or more) collective variable s

Algorithm in a nutshell

While the simulation is running...

— Compute the instantaneous value of s, say s = s;
(=)
— Add a gaussian to V,: Vi, — Vp + wie 202

— After some simulation time 7 repeat.

In Well-Tempered Metadynamics w; is monotonically
decreasing and history dependent: V}, converges asymptotically
[PRL 112, 240602 (2014)]

V}, is accounted for through reweighting
[J. Phys. Chem. B 119, 736 (2015)]

(Credit: Giovanni Bussi)
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Enhanced Sampling
[e]e] e}

The sampling problem

Two ideal 1D particles again...

Fermi

m Now sampling a broader region
. — Bose 005 g
m Cancellation errors under control &
0 E‘\m
+
0.05 =

m Pauli “repulsion” for Fermions

m Bosons: it's the T = 0 distribution:
reminiscent of condensation
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Enhanced Sampling
[e]ele] ]

The sampling problem

m Can be obtained from s as E,¢) — Ey

m Follow the theoretical curves but...

m ... become hard to compute in the T = OK regime.

80
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Bennett's
[ Je]

Free energy difference

m Energy at low T can be obtained with the Bennett's method
m From the free energy difference (FED) of two systems:
s B
Voo 4 N
o, T
o = (e Yo, { o6 ®
¢ ¢
o-o’ 0o
. (17 Zo) > Z:/d]?l dRpe <
m Fermi partition function Zp: ZE = 3 Zee/
’ S 9~e—e- %29
(because Zp(F) = %) .\ .’.\ ©®
oo/ oo
\ /thl {dRp e /
L J
m FED between Fermi and Bose systems -5 Iog ZE

m Assumption: at low T, FED ~ ED
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Bennett's
oe

Free energy difference

Energy vs Temperature for two ideal particles

m Can get the FED between Fermi and Distinguishable (or Bose) states

m At low T is also good approximation for the energy difference

(. h
5} 1D =
W s
3f 7]
2 ]
g I — ]
£ r | + Distinguishable |
w © ; T o Bose T '
s 2D © Fermi
v_Bennett
6 i
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Interaction
e0

The interparticle interaction

m With interaction: < W > further away from 0
m Core repulsion suppresses exchanges
m Connecting springs are more stretched

— correspond to higher energy differences

o a
8- 1 Example...
30 1
) m Two Lennard-Jones particles in a well
>4 1 m Different core “sizes” o
» J
s s
0 2 4 6
r [nm]
L J
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Interaction
oe

The interparticle interaction

m High o: distinguishable limit.
s N

012 g=4nm

p () [nm

rrrrrrrrrr 3 m Average weight rapidly deviates from the
1 noninteracting limit (o = 0)

08

m < W >=1: no quantum symmetry effects
in any sampled configuration.

‘ ‘ ‘ ‘ m For o =4 nm, (W) =0.97
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The model

m Two electrons in a 2D harmonic potential
H=T+ Veou + U
m External potential U: elongation Z—" depends on the nature of the confinement
y
() — 1, %x( 2.2 2.2
U=3m (wxx +wyy )
. \; e
m Coulomb potential V., = Zr?
m k and m™ are the dielectric constant and the effective mass

m y: correction parameter for finite size of z direction

m Wigner parameter R\y: ratio of typical Coulomb interaction strength and
single-particle energy level splitting
— at high Ryy: interaction dominated

m Experimental and theoretical data available in literature
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The model

The two elec s are in...

m Singlet: Vs (A, R) = %tﬁs (F, 2) (I ™) =1 41)

)
m Triplets: V¢ (Fi, ) = ¢f (A, 2) | W)
Tz (1) +141)

m ¢p and ¢f are symmetric and antisymmetric wavefunctions of “bosonic” and
“fermionic” particles.
m Access to:

m Structural properties of the triplet and singlet states.
m Energy and Free energy differences between those states.
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Results for the Quantum Dot

. s ~
m Ry and 2x: different temperatures : w
y
for transition to zero-temperature behavior asf-
30
m Compare with literature: T in the zero T regime. | 3
251
w
20
15 -
‘ ‘ ‘ ‘
0 20 40 60 80
T (K]
e 2 ~ -
181 &M 4
cil 5O i
2 [PRL 96, 126806 (2006)]
Wl | m Comparison with experiments and
PP 5, 205208 (2001 exact diagonalization
12 = |
. . PRB 63, ‘HSSIG (2001)|
12 14 16 18 2 22
RW
L J
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Results for the Quantum Dot

m Three confinements:

m Circular (C): rw = 1.4 and hw = 5.1meV

m Elliptic (E): rw = 1.34 and z—; =1.38

m More Elliptic (EE): ry = 1.4 and i—; =3.0

m Electron density p (7)
m Singlet: |¢1 (F)|?

m Triplet: |¢1 (F)]2 + |92 (F)|?

m Partial contribution to triplet p (F) : |¢2 (F)|?

m Pair densities

m Breaking degeneracy of states:
m Symmetry breaking in the density

m Interplay between T and energy splitting between x and y levels
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Results for the Quantum Dot

-
Singlet |H)](1 Partial
- 0.64
2 0.56
0.48
El 0.10
g {032
= 0.24
9 0.16
N 0.08
30 0.00
~30-20-10 0 10 20 30 —20-10 0 10 20 30 —20-10 0 10 20 30
x (nm) r (nm) x (nm)
Rw = 20
Singlet Partial
E 0.00
=30-15 0 15 30 -30-15 0 5 5 5
x (nm) x (nm) x (nm)
L : : J

m Higher ryy: broader distributions due to larger repulsion
|1 (F)|? depletion at (0,0) ("p-like" orbital)

m The circular symmetry of ¢; is challenging
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Results for the Quantum Dot

r
Singlet
x (nm)
Singlet
—40-20 0 20 40 —40 —20 0
a (nm)
-

0o}

—30=20-10 0 1020 30 =20-10 0 1020 30 —20-10 0 1020 30

(EE)
Triplet

m Singlet state on (EE): peaked density, “solid” like
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m @1 circular symmetry broken discontinously (but can be different if T is higher)
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Conclusions
[ ]

Magnetic field

Add an external magnetic field H ?

m Primitive approx. for non-interacting particles in a magnetic field:

G(Ry, Re; Hy) = Fe= M1 Zie—72Rie 5 (1ty2)a—x2)

m Hard to treat imaginary phase

Can apply the same weighted sampling approach but...
m s acquires an imaginary part
o< (%25 = x1,j) (a1 — Yaje1) + Oajen — X2 j41) (Ve — v2,4)

m An additional sign function in the reweighting for the imaginary phase

m Metadynamics on a complex CV ?

m Steered sampling on the real axis ?
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Conclusions
0

More than two particles...

Beyond two particles...

The Singlet/Triplet approach can be extended only in part:

m i.e. "maximal" spin projection states are totally antisymmetryc

m Generally for N, spins states may have not defined symmetry

m Generalization: method for spinless Bose/Fermi particles

Considering all the permutation families:
V. ,5& ,g&
for N =3: e BVeoo (1 +3e™ " Vooo + e " Vooo

m Enhancing the sampling becomes increasingly harder...
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Conclusions

oe

More than two particles...

m For N = 3 particles there are different choices for the CV s:

m Consider only the problematic — term: s = 3(Eoo — Eooo)

m Use the log of everything with a regularization term:
s = log ()1 + 3¢ (Eoo—Eeoe) | o—A(Eo—Eooo)| | 77)

m For higher N: approximate by neglecting infrequent exchange patterns

m Resort to Replica Exchange methods
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Conclusions

Conclusion

m A proof of principle:
m Non-interacting: where the exchanges are “worse”
m Hard-spheres: a test for the handling of the interaction

m Quantum Dot: a comparison with other methods/experiments

m Explore the idea: can we use free energy methods to get the effects of quantum
exchanges?

m Free energy difference between Bosonic and Fermionic states
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