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Impurity problems

Definition: one (or a few
particles) interacting with a
many-body environment.

How are the properties of the
particle modified by the
interaction?

Still O
(
1023

)
degrees of freedom...

Quasiparticle description?
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From impurities to quasiparticles

Structureless impurity: translational
degrees of freedom/linear
momentum exchange with the bath.

Most common cases: electron in a
solid, atomic impurities in a BEC.

Image from: F. Chevy, Physics 9, 86.

Composite impurity: translational and
internal (i.e. rotational) degrees of
freedom/linear and angular momentum
exchange.
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This scenario can be formalized in terms of
quasiparticles using the polaron.
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This scenario can be formalized in terms of
quasiparticles using the polaron.

What about a rotating particle? Can there
be a rotating analogue of the polaron quasi-
particle? The main difficulty: the non-
Abelian SO(3) algebra describing rotations.



The angulon

A composite impurity in a bosonic environment can be described by the
angulon Hamiltonian1,2,3,4 (angular momentum basis: k→ {k, λ, µ}):

Ĥ = B̂J2︸︷︷︸
molecule

+
∑
kλµ

ωkb̂†kλµb̂kλµ︸ ︷︷ ︸
phonons

+
∑
kλµ

Uλ(k)
[
Y∗λµ(θ̂, ϕ̂)b̂

†
kλµ + Yλµ(θ̂, ϕ̂)b̂kλµ

]
︸ ︷︷ ︸

molecule-phonon interaction

• Linear molecule.
• Derived rigorously for a molecule
in a weakly-interacting BEC1.

• Phenomenological model for a
molecule in any kind of bosonic
bath3.

1R. Schmidt and M. Lemeshko, Phys. Rev. Lett. 114, 203001 (2015).
2R. Schmidt and M. Lemeshko, Phys. Rev. X 6, 011012 (2016).
3M. Lemeshko, Phys. Rev. Lett. 118, 095301 (2017).
4Y. Shchadilova, ”Viewpoint: A New Angle on Quantum Impurities”, Physics 10, 20 (2017).
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• Linear molecule.
• Derived rigorously for a molecule
in a weakly-interacting BEC1.

• Phenomenological model for a
molecule in any kind of bosonic
bath3.

This talk: toy po-
tential. Can be
connected to real
PESs3.

1R. Schmidt and M. Lemeshko, Phys. Rev. Lett. 114, 203001 (2015).
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Composite impurities and where to find them

Strong motivation for the theoretical study of composite impurities
comes from many different fields. Composite impurities are realized as:

• Molecules embedded into
helium nanodroplets
(rotational spectra,
rotational constant
renormalization).

• Ultracold molecules and
ions.

• Electronic excitations in
Rydberg atoms.

• Angular momentum transfer
from the electrons to a
crystal lattice.

Image from: J. P. Toennies and A. F. Vilesov, Angew.

Chem. Int. Ed. 43, 2622 (2004).
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fective B)
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Path integral description for the angulon

PI description
of a composite,
rotating impurity

PIs for
rotations

PIs for
struc-
tureless
impurities

Main reference: GB and M. Lemeshko, arXiv:1704.02616
6/18



Path integral description for the angulon

The path integral in QM describes the transition amplitude between two
states with a weighted average over all trajectories, S is the classical
action.

G(xi, xf; tf − ti) =
⟨
xf, tf

∣∣xi, ti⟩ =

∫
Dx eiS[x(t)]

7/18



Path integral description for the angulon

The angulon’s Green function is calculated in the same way. We need

• Molecular coordinates: two angles (θ, ϕ) describing the orientation of
the molecule.

• An infinite number of harmonic oscillators bkλµ to describe the
bosonic bath.

G(θi, ϕi → θf, ϕf; T) =
∫

DθDϕ
∏
kλµ

Dbkλµ ei(Smol+Sbos+Smol-bos)

Critically the environment (bkλµ) can be integrated out exactly

G(θi, ϕi → θf, ϕf; T) =
∫

DθDϕ eiSeff[θ(t),ϕ(t)]

and included in an effective action Seff.

Derived from the
Hamiltonian

8/18
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Path integral description for the angulon

A closer look at the effective action:

Seff =
∫ T

0
dt BJ2︸ ︷︷ ︸
S0

+
i
2

∫ T

0
dt

∫ T

0
ds

∑
λ

Pλ(cos γ(t, s))Mλ(|t− s|)︸ ︷︷ ︸
Sint

• A term describing a free molecule ∼ BJ2.
• A memory term accounting for the many-body environment, a
function of the angle γ(t, s) between the angulon position at
different times.

	
t

Legendre polyno-
mials

Memory kernel
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Path integral description for the angulon

t

• The many-body problem is
reformulated in terms of a
self-interacting free molecule.

• Time-non-local interaction (cf.
Caldeira-Leggett, polaron, more
generally: open quantum
systems)

• The interaction term is very
difficult to treat: it encodes
exactly the many-body nature of
the problem.

10/18



Diagrammatic theory of angularmomentum in amany-bodybath

We treat the interaction as a perturbation

G =

∫
DθDϕ eiS0+iSint =

∫
DθDϕ eiS0(1+iSint−

1
2S

2
int+. . .) = G(0)+G(1)+G(2)+. . .

The result can be interpreted as a diagrammatic expansion (solid lines
represent a free rotor, dashed lines are the interaction)

• G(0)(θi, ϕi → θf, ϕf; T) is the Green’s function for a free rotor

• G(1)(θi, ϕi → θf, ϕf; T) is the one-loop correctionΣλ
(1)

 (ω) = - i 

• G(2)(θi, ϕi → θf, ϕf; T) is the two-loop correction

Σλ
(2,A)

 (ω) = - +Σλ
(2,B)

 (ω) = - 

• and so on…

11/18



Angulon spectral function

Let us use the theory! The plan is simple:

1. Self-energy (Σ)
2. Dyson equation to obtain the angulon Green’s function (G)
3. Spectral function (A)
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1. Self-energy (Σ)
2. Dyson equation to obtain the angulon Green’s function (G)
3. Spectral function (A)

First order: =

Equivalent to a simple, 1-phonon variational Ansatz (cf. Chevy Ansatz for
the polaron)

|ψ⟩ = Z1/2LM |0⟩ |LM⟩+
∑
kλµ
jm

βkλjCLMjm,λµb
†
kλµ |0⟩ |jm⟩
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Angulon spectral function
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Second order: = +
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Angulon spectral function

Let us use the theory! The plan is simple:

1. Self-energy (Σ)
2. Dyson equation to obtain the angulon Green’s function (G)
3. Spectral function (A)

Dyson equation

angulon quantum
rotor

many-body field
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Angulon spectral function

Let us use the theory! The plan is simple:

1. Self-energy (Σ)
2. Dyson equation to obtain the angulon Green’s function (G)
3. Spectral function (A)

Finally the spectral function allows for a study the whole excitation
spectrum of the system:

Aλ(E) = − 1
π
ImGλ(E+ i0+)

12/18



Angulon spectral function

Angulon spectral function as a function of the density:

Key features:
1. Low density
2. Intermediate instability
3. High density
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Angulon spectral function: low density

Density range: from ultra-
cold atoms to superfluid
helium.

Low density: free rotor
spectrum, E ∼ L(L+ 1).

Many-body-induced fine
structure: upper phonon
wing (one phonon with
λ = 0, isotropic interac-
tion).

14/18



The appearance of the ``phonon'' state can be understood as a resonance in the many-body...



spectrum emerging due to coupling between the molecule and phonon states outside of the scattering continuum.



Angulon spectral function: instability

Intermediate region: angu-
lon instability.

Corresponding to the emis-
sion of a phonon with λ =

1 (due to anisotropic inter-
action).

Experimental observation: I. N. Cherepanov, M. Lemeshko, “Fingerprints of angulon instabilities in the

spectra of matrix-isolated molecules”, arXiv:1705.09220.
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Angulon spectral function: high density

High density: the two-loop corrections start to be relevant.

16/18



Conclusions

• The problem of angular momentum redistribution in a many-body
environment has been treated through the path integral formalism
and reformulated in terms of diagrams.

• It allows for a simple, compact derivation of angulon properties,
including higher order terms.

• Future perspectives:
• Dynamics.
• Diagrammatic Monte Carlo.
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