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Motivation: soft core in dressed Rydberg gases

Ground state atoms

lockade radius

Rydberg state = Highly excited electronic state (n~200)
Couple ultracold atoms in ground-state to Rydberg state

A) Resonant light-atom coupling: hard-core freezed
effective particles [Schauss et al., Nature (2012)]

B) Off-resonant: small quantum superposition
of gs and Rydberg state, soft-core effective itinerant particles

7 [nm r [nm
@  |nS)=le) 0 1 [2 ] 3 4 100 200] 300

Henkel et al, Ei— __ w0 T,
PRL 104 (2010) % -I:=A1+A2 T af lo

Yo S o -1
E2 A -6 F 0 1 L 1 N (dl) 2
[ P) ml— ;i N O
___1 ‘ P r

[zu3 n

InoS) = rfl) r ﬁzm]
Quasi-1D: tight harmonic optical potential
Recent experiment Zeiher et al., arXiv:1705.08372

Finite lifetime ~ 1ms (lattice, still no overlap within soft-core)
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Classical soft systems: glassy behavior and polyamorphism [Mladek et al., PRL 96 (2006)]

Quantum soft systems: 2D /3D supersolids (crystals of clusters with coherence )

[Henkel et al. PRL 104 (2010), Saccani et al. PRL 108 (2012), Macri et al. PRA 87 (2013),
Ancilotto et al. PRA 88 (2013), Cinti et al. Nat. Comm. 5 (2014) ... ]

1D Cluster Luttinger Liquids on a lattice [Mattioli et al., PRL 111 (2013)]

1D Classical cluster liquids [Prestipino et al, PRE 92 (2015)]

1D bulk quantum systems?




A simple mean-field picture in 1D

b.=1461 Fix high density P = 2 /bcN 1.36

Let particle @to be free. What is
the potential it experiences if:

1) All other particles are in a lattice

= of spacingb =b /2 ?
00000 0600 00
<-—>b_

2) All other particles are in a lattice
of spacing b=b_
— —\ . (two particles per site) ?
/ r ¢ 8 & 8 3
Effective harmonic interaction: <——>b,
Stability Effective double well: Instability

Kinetic energy (quantum effect at T=0) can induce a transition.
Density fluctuations are a good witness



Dynamical Structure Factor
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Linear response to weak density perturbations
Spectral decomposition contains all many-body HOW TO MEASURE IT IN
EXPERIMENTS?

excited states, weighted with coupling to

density fluctuations QUANTUM LIQUIDS (Helium)

e [nelastic neutron scattering. Measure of

— Spectrum of Density fluctuations partial differential cross section
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(Sound or more localized quasi-particles)
One can read the dispersion relation of

coherent modes

- ©
Beauvois et al.

PRB 94 (2016)

ULTRACOLD GASES

e Bragg scattering. Photon absorption and
stimulated emission into two lasers beams

frequency

which fix q and w.
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1D: “Bosonization” of fermions (and bosons)

All low-energy modes are collective (Fermi liquid theory is not valid)

— Luttinger liquids effective hydrodynamic theory [Haldane PRL 47 (1981)]

S(q,o)
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Ideal Fermions: kinematically forbidden region for particle-hole excitatio

(flat

In general: power-law decay above threshold (no true delta functions)

Small q and w: phonons both for bosons and fermions

w
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w and statistics!)

Auttinger parameter ~ compressibility
(Galilean invariant case)
K, determines properties of correlation functions

Y } ~q Universality (independent of details of interaction
F
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Ideal Fermi Gas K =1
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spectrum )Still, phonons at small q
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Properties of Luttinger liquids

Standard Luttinger liquids have density oscillations around lattice of spacing 1/p

2K cos(2mlpr)
r) ~ 1— L+ A 2
L g( ) A (anr)z 21:1 l r2KLl \
oW momenta Umklapp momenta

— If K, < 1/2, the static structure factor shows quasi-Bragg peaks:
S(q=2mp)ocN'"**

— not a crystal (linear scaling) unless K =0 (namely, not a Luttinger liquid, but Mott

insulator)

1
Coherence <1PT<r)‘P(O)> = K

r=>oo r L

Algebraic decay (like 2D superfluids at finite T). Slow decay if K >>1/2

2K,—1
Drag force (dissipated power due to impurity with velocity v) F, o« v
v=>0



Our model and methods

N bOSOl’lS in pure 1D at zero temperatute | ZN @2
Z (| ] .|)
i<j I J

H=—=Y "0
21 0x

We tully solve Schroedinger equation

in imaginary time

A) Path integral quantum Monte Carlo at T=0

Note: Hamiltonian description, we neglect dissipation
Close analogy to the Extended Bose-Hubbard model
Warning: strong interaction or high density would induce losses or quasi-1D
zig-zag transition

B) Statistical analytic continuation of imaginary-time correlations
Warning: ill-posed problem, needs regularization or stochastic approach

F(q,Tt)?S(q,w)



A) Path Integral Ground State method °

“Exact” Path Integral Ground State (PIGS) quantum Monte Carlo method
[Sarsa et al., J. Chem. Phys. (2000)]

Imaginary-time projection of initial trial wavefunction
_ ,—TH
\IIT = € \IJT

For smooth potentials: Pair-Suzuki-Chin propagator

[Rossi et al., J. Chem. Phys. 131, (2009)] Mapping Nlmeae
olymers
We calculate energy N atoms éz e

() o =
Pair distribution function g(r ):<F3(r )FA)(O)> ©
/

\_

Static structure factor S(q)=1+pf dre " [g(r)—1]

Central chain in the paths equilibrates to ground state: exact imaginary-time correlation
functions are available
Intermediate scattering function in imaginary time F(g,t)= (Pq (t) P_g (0))
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A) Details about trial wavefunction

Trial initial wavefunction _ H 1.2
‘PT o <] f (r IJ) Example at U=80
of 2-body Jastrow type J

0.8 |
f(r) is solution of 2-body problem with 0.6 |
effective interaction oal |
Veff( ) C V +CZZ V _lb) 05 y f}r)—_
eff(N/U -
V(U

and f(c,)=1 0.0
(times a long range phonon contribution a la Reatto-Chester, Phys. Rev. 155 1967)

Parameters are optimized within Variational Monte Carlo with simulated annealing,
minimizing energy plus the difference of g(r) with preliminary PIGS simulations

A= A(B,€) A, (B,€) = exp{—B[E (&) + {x (&)]}
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B) Numerical analytic continuation

No single exact solution of numerical inverse Laplace transform:
we use a stochastic method
Genetic Inversion via Falsification of Theories (GIFT)

F(d,7)=(p;(v)p_3(0))=] , dwe " s(q, o)
[Vitali et al, PRB 82 (2010), Bertaina et al, PRL 116 (2016),

Bertaina et al, Adv. Phys. X 2 (2017)]

No explicit entropic prior (unlike MaxEnt)
Genetic dynamics: survival of the fittest in a population of spectral functions.

Average over many solutions with X* ~ 1 (like Sandvik's ASM)
Initial sampling of imaginary-time data to “explore” error-bars
Sum rules or other exact information can be enforced

Good capability to resolve low energy sharp or broad features

Other stochastic methods:

[Sandvik, PRB 57 (1998), Mishchenko et al. PRB 62 (2000),
Reichman and Rabani JCP 131 (2009), w
Fuchs et al., PRE 81 (2010), Goulko et al. PRB 95 (2017)]
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B) Details about GIFT

Initial Population: large random collection of models s(w) = sum of delta functions

Generation: replace the population (with elitism: the best s(w) is cloned) with a new one using
genetic processes:

Selection: couples of individuals are selected for reproduction depending on their fitness

Crossover: an amount of spectral weight is exchanged between the two selected s(w), at the
same W

=ik

6)) W 6))
Mutation: shift spectral weight between two intervals

s(w)|

() ‘ fml () Iﬂﬂ
s@l|ll | 5 sa)

w w
Simulated annealing : moves are accepted with a weight Exp[-X?/T], with T decreasing (this is
only a way to avoid destructive moves, no detailed balance)
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Phase Diagram (T=0)

Density The classical T=0 state would be a cluster crystal
N N CLUSTER LUTTINGER LIQUIDS
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S. Rossotti, M. Teruzzi, D.E. Pini, D.E. Galli, G. Bertaina, in preparation
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Dilute regime (p<0.01)

At low density the scattering length

only is relevant 0 /A S
[ ]
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is valid

[M. Teruzzi, D.E. Galli, and G. Bertaina, J. Low Temp. Phys. 187, 719 (2017)]
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Static structure factor — _
Bogoliubov treatment (lines) is good
at intermediate densities.

The maximum of S(k) goes to q.— Divergence _

Departure from homogeneous Luttinger liquid,
Which has maximum in 2k, = 2mp

Article in preparation

Homogeneous liquid (U~1.09)

< Pair distribution function: at
high density maxima in zero and

b.=2n/q.~ 1.46 R
Independent of density!

(usually: peak at ~ 1/density)

0 L%




CLUSTER LUTTINGER LIQUIDS
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Dynamical Structure Factor (U~1.09)

Dilute regime: Almost
flat spectrum

System still behaves as
Tonks-Girardeau

~ Ideal Fermi Gas

Higher density: spectrum
starts to peak

SB(Q)=\/%2 q—2+2pV(Q))
SFA(q>:%(q)

(Bogoliubov) Roton softening at P U =20.6
+ Universal point at q, : Vi(g,)=0



Focus on N =2 particles per cluster

0=N_/b_~1.36

Notice that clusters show algebraic

long-range order (1D: not a solid)

— Cluster Luttinger Liquid

3.5 T T T
3 U 500 —=——
+| 60 H—eo—
3 . 20 | 4
:.‘ I 15 ——
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25 ." | o 1 —e—
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Commensurate cluster phase(s)

500 =

D e i = 2
P e Bdibara = =

r/ bC

Here Bogoliubov theory predicts roton
softening at U ~ 15
We observe a divergence of S(q ) at U~13

(notice that at this density q =k_

— dimerization)



Cluster Luttinger liquids and K|
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Standard Luttinger liquids: density oscillations around auxiliary lattice of spacing 1/p

2K, cos(2mlpr)

glr)=1- 5 toe Y, A

Cluster Luttinger liquids [Mattioli et al., PRL 111 (2013)] oscillate around auxiliary

lattice depending on Fourier transtorm of the potential

2K, I’
r L

o We focus on commensurate Cluster Luttinger liquids (lattice spacing b ) and obtain:

2K, cos(2mlpr/N,)

g(l")zl— (2ﬂpr)2+21:1 Al r2KL12/Ni

« K '=K /N_*, while in standard LL: K '=K/
e Estimate number of excess particles

5=vK,/K,' -1

e Sudden increase after U~18
e Also K| changes behavior (but dominant U™/ trend)
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Spectra in cluster regime (N =2)

Double harmonic chain spectrum (see also [Nehaus,Likos J. Phys.: Condens. Matter(2011)])
well describes acoustic mode () p=14 U=100 -0.30

(notice 1D harmonic chain is not a crystal)

10 EFA =0.25
2 —~10 K5 L

Pho L HCA

Hy = o T % Z (Tno — Tnyip)? H'-E €T 0.20

no - n,o,u @) 8
8HCA(Q>:2\/NC€hSiH<qu/2> % 0.15
£.00(q)=V2N_g, (dispersionless) ; 0.10
1<

&n(b) = \/ —(4m2/b3) X7 j2V (27 j/b) 0.05

0.00
0020406081.01214161.8

q (units of 2kg)

.;:;Dm-l'-*nm

Higher frequencies:
multiphonons or optical mode
with anharmonic contributions [see also Saccani et al PRL 2012]

We have a liquid phase at small U, but also a liquid (cluster) phase at large U

Interesting behavior of the two modes at the transition... g .
Article in preparation
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1) Secondary mode present
also in liquid regime!
Seems to avoid crossing
Bogoliubov mode.

2) Gap of secondary mode
at q_ goes to zero at

transition U~18, but is
finite in both phases.

3) At the transition the
secondary mode and the
Luttinger-HC mode are
linear at q_with the same

velocity (within
uncertainty)

S. Rossotti, M. Teruzzi, D.E. Pini, D.E. Galli, G. Bertaina, in preparation



We extract the gap of the secondary excitation at q_

(uncertainty comes from slow convergence
close to transition and from analytic continuation)

- Gap is linear close to transition

- Two gapless modes with same velocity at U~18
Conformal Field Theory can tell us something

- Dalmonte et al, PRB 92 (2015) Transition on a lattice
Central charge ¢~3/2=1+1/2
(Free boson class + free fermion class)
From entanglement entropy
- We extract it from size effects in energy
e(N)=¢,—cE./(6 K,N?)
(most difficult point U=18: presence of small energy

excitation)
Article in preparation
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Evidence of quantum criticality
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1/N?
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Quantum Ising model (N =2)

Emergent transverse Ising model describing the secondary excitation
(dual to 2D classical Ising, by mapping imaginary time to space dimension)
Hry=-JY,0;0: —hY), 0}
Alignment < Quantum Delocalization
Let us call the eigenstates of 6” : |L> and |[R> (hint: cluster left, cluster right)
If h = O: classical ferromagnet (T=0): all |L> or all |[R>
Transverse field gives lowest energy to symmetrized state |+>=(|L> + |[R>)/+/2
— delocalization: tunneling in a double well paramagnet

Exact spectrum is known, via a Jordan-Wigner
transformation and Bogoliubov diagonalization

A=|]-h]| eri(q) = \/A2+4Jh (singa/2)*

Critical

2n/b

- Lattice spacing is b_in our spectra: spins «< pairs of particles
- Dithicult to microscopically determine
]~\/ U optical modes, h~./{J ¢=¢"(U) double-well tunneling (role of anharmonicity)



Quantum Ising model (N =2)

Effective double well potential in space of A
3 particle distances, keeping center-of-mass \\ CLUSTER LUTTINGER LIQUIDS
and all other particles fixed 10 |
S N Loy ®),
O D L VR
N Q. 1oy
(@) 1} E /)/?Q ANA
N - =
1.37 *
| - CLLN =
N
LUTTINGER LIQUIDS N
| TONKS GIRARDEAU HARD-ROD REGIME
1 10 18 100 U

cmmee AAAA

QUANTUM Liquid ... Cluster liquid
PHASE TRANSITION Paramagnet ... Ferromagnet
+ +++ o0 L1
Note: both are Luttinger liquids; close to transition Ising adds up
A non local order parameter is probably needed (no lattice is present)



Concluding Messages

v PIGS+GIFT methods wuseful to infer novel spectra, and
theoretical interpretation with known models is complementary

v Clustering in a simple system of soft bosons, from rotons to
harmonic chain spectrum

» Evidence of quantum critical behavior: peaks in S(q ) ; change in
behavior of K ; sudden increase of discrepancy & ; secondary

mode becoming gapless; central charge increasing

v Interpretation in terms of quantum Ising transition. Relevance

for recent studies on ¢ = 3/2 CFT



Interesting questions

» Higher N _: what transitions?

v Consider non-commensurate density in the cluster phases

v Inhomogeneous systems to study boundary eflects

v Microscopic study of Ising sector and definition of appropriate
correlators

v Further investigation of what happens to optical modes across
superfluid/supersolid transition in higher dimensions

v Use of quantum information measures to study the transition




