Path-integral Monte Carlo Study of ⁴He Adsorption on Carbon Allotropes

Yongkyung Kwon and Jeonghwan Ahn

Department of Physics, Konkuk University, Seoul 05029, Korea

Using a substrate potential described by a pairwise sum of empirical ⁴He-C interatomic potentials, we have performed path-integral Monte Carlo calculations to study the ⁴He adsorption on various carbon allotropes. It is found that multiple ⁴He layers are developed on the carbon surfaces and these helium layers exhibit rich quantum phase diagrams as a result of the interplay between the ⁴He-⁴He and the ⁴He-substrate interactions. On the surface of graphite, specifically, we observe a new stable $C_{7/12}$ commensurate structure in the first ⁴He layer at the density of 0.111 Å⁻², which is not disrupted by the development of the second ⁴He layer. Furthermore, a second-layer 4/7 commensurate structure relative to the first-layer $C_{7/12}$ solid is found to be at least metastable, opening the possibility of 2D supersolidity [1].

For ⁴He on α -graphyne, a 2D network of sp- sp^2 hybridized carbon atoms in honeycomb lattice, a Mott insulating state is observed in the first ⁴He layer at the areal density of 0.0706 Å⁻² with three ⁴He atoms occupying each hexagonal cell while the helium atoms form a commensurate triangular solid at a density of 0.0941 Å⁻² [2]. Here we show that the Ising pseudo-spin symmetry introduced for two degenerate configurations of three ⁴He atoms in a hexagonal cell can be broken by additional ⁴He atoms placed at the hexagon vertices and the Mott-insulator to commensurate-solid transition is a transition from a nonmagnetic spin liquid of frustrated antiferromagnets to a spin-aligned ferromagnet under a particle-induced pseudo-magnetic field [2]. Some novel quantum phases manifested by ⁴He adatoms on other carbon surfaces [3] are also discussed in this talk.

[1] J. Ahn, H. Lee, and Y. Kwon, Phys. Rev. B **93**, 064511 (2016).

[2] Y. Kwon, H. Shin, and H. Lee, Phys. Rev. B 88, 201403(R) (2013).

[3] J. Ahn, H. Lee, and Y. Kwon, Phys. Rev. B **90**, 075433 (2014).