
||

Guglielmo Mazzola (Institute Theoretical Physics, ETH, Zurich) 

M. Troyer (Microsoft ⇽ ETH) 
S. Isakov, V. Smelyanskiy (Google) 

Quantum Monte Carlo Tunneling 
from Quantum Chemistry to Quantum Annealing

1



||Guglielmo Mazzola

Outline

1. Motivation: Quantum Annealing 
2. Tunneling with Quantum Monte Carlo 
3. “Is a simulated Quantum Computer (QC) faster than a real QC?” 
4. Implication for realistic systems: quantum reaction rates from PIMC? 

5.  Many body quantum state tomography with Neural Networks
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The (exponentially) large number of local minima makes 
the problem hard. Guglielmo Mazzola 3

 Hard optimization problems

Find an optimal solution among several possibilities.

Encode the problem into a cost function, s.t. the solution is 
optimal when we find the global minimum of this function.

Ex.: TSP
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The Classical approach (benchmark)

Annealing: slowly cooling a material to eliminate 
defects, i.e. reach the stable crystal configuration.

Simulated Annealing: emulates this process with MC
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Classical vs Quantum

Efficiency = overcoming energy barriers.

Classical (Thermal)
Prob. =  exp(- F/kT)

U

F
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Classical vs Quantum

Efficiency = overcoming energy barriers.

Classical (Thermal)
Prob. =  exp(- F/kT)

U

F

Quantum (Tunneling)
Prob. =𝛥2
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Classical vs Quantum

Efficiency = overcoming energy barriers.

U

F

Quantum (Tunneling)
Prob. =𝛥2

overlap  
for tall but thin barriers,  

quantum wins!
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Can a Quantum Device solve this 
problem faster than a Classical one?

D-Wave Device
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Quantum Annealing

Time

Problem Hamiltonian

Quantum Fluctuations

Ising problem Transverse 
magnet field

Quantum adiabatic theorem: if the Hamiltonian changes 
slowly, we stay in the ground state.

The ground state at t=0 is easy to prepare, the final ground 
state t=tfin, is the classical solution to the problem.

TQA / ��2

B(t)
A(t)
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QA vs SQA

Early works on SQA are done using Quantum Monte Carlo (QMC).  
Which is an equilibrium technique!

Comparison within the same quantum approach (tunneling).

Direct integration of time-dependent Schroedinger eq. is impossible 
for more than 50 spins..

Numerical simulations of QM on classical computers.

d

dt
| (t)i = �iH(t)| (t)i

SQA as a sequence of equilibrium QMC simulations. How 
does this compare to the real QA performance?
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Experiment:  compare runtimes of QA device vs QMC

The runtime of the (ideal) Quantum 
device is dictated by the        
Quantum Adiabatic theorem:

TQA / ��2

How does the runtime of a QMC 
simulated annealing algorithm scale?

TQMC / TQA ?
11
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A simpler problem: Quantum Tunneling rate

Quantum (Tunneling)
Prob. =𝛥2

overlap  

What is the tunnelling rate of QMC compared to QM?
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Path Integral Monte Carlo… in one slide
QMC mimics quantum fluctuations, using an extended 
classical systems. It follows from the path integral formulation 
of quantum mechanics.

M = 1

quantum classical polymer
2D quantum (2+1)D classical

M = 4 M = 8 M = 16

Simulations are exact in the infinite beads limit.

particle
spins
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Path Integral Monte Carlo

q

Z =

Z
dq hq|e��H |qi =

Z
dq dq1 dq2 · · · dqM hq|e�⌧H |q1i

hq1|e�⌧H |q2i · · · hqM |e�⌧H |qi

Z =
X

paths

e�S[path]

Sum of all possible paths or 
trajectories in imaginary time  q(⌧)

Each path contributes with 
@S[q(⌧)]
@q(⌧)

= 0Dominant contributions come from paths

Form of                  is system dependent.S[q(⌧)]

e�S[q(⌧)]
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Path Integral Monte Carlo pseudodynamics

Doing the integral with Monte Carlo by sampling ring-
polymer configurations (paths) with Metropolis weight

q(⌧, t)

Evolution of the classical 
path as a function of the 
simulation time 

given by the Metropolis 
pseudo-dynamics 
(updates).

t

qx

qy

e�S[q(⌧)]
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@q(⌧, t)

@t
= ��S[q(⌧, t)]

�q(⌧, t)
+ ⌘(⌧, t)
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Path Integral Monte Carlo pseudodynamics

Doing the integral with Monte Carlo by sampling ring-
polymer configurations (paths) with Metropolis weight

q(⌧, t)

Evolution of the classical 
path as a function of the 
simulation time 

given by the Metropolis 
pseudo-dynamics 
(updates).

t

qx

qy

⌧
d

dt
| (t)i = �iH(t)| (t)i

0  ⌧ < �

0  t < TQMC

e�S[q(⌧)]

16



||Guglielmo Mazzola

Path Integral Monte Carlo pseudodynamics

q(⌧) ! q(⌧, t)

@q(⌧, t)

@t
= ��S[q(⌧, t)]

�q(⌧, t)
+ ⌘(⌧, t)

If the classical field evolves through a Langevin equation

lim
t!1

P [q(⌧, t)] = e�S[q(⌧)]then

Stochastic quantization (Parisi, 81’)

17
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Path Integral Monte Carlo pseudodynamics

q(⌧) ! q(⌧, t)

@q(⌧, t)

@t
= ��S[q(⌧, t)]

�q(⌧, t)
+ ⌘(⌧, t)

If the classical field evolves through a Langevin equation

lim
t!1

P [q(⌧, t)] = e�S[q(⌧)]then

Stochastic quantization (Parisi, 81’)

q(⌧, t = 0)

q(⌧, t = TQMC)

Diffusion of a classical object!

q̄(t)

Most probable pathway for this 
diffusion over a time              is:TQMC

d2q̄

dt2
= � �

�q

"✓
�S
�q

◆2

� 2
�2S
�q2

#
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q(⌧, t = TQMC)

x

y Guglielmo Mazzola AQC 2016

Transition states of the dynamics: instantons
@q(⌧, t)

@t
= ��S[q(⌧, t)]

�q(⌧, t)
+ ⌘(⌧, t)Consider double well problems

�S[q(⌧, t)]
�q(⌧, t)

= 0
Transition state (TS) 
is the saddle point 
with non-trivial 
boundary conditions

q⇤⇤(⌧)

x

�0

for double well is known: the instanton
x

⇤⇤(⌧)

⌧

e�S[x⇤⇤(⌧)] ⇠ �2

q(⌧, t = 0)

�
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Transition states defined by:
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@q(⌧, t)

@t
= ��S[q(⌧, t)]

�q(⌧, t)
+ ⌘(⌧, t)

The classical field, in a PIMC simulation, evolves through a Langevin equation,

Transition states of the dynamics: instantons

k / e�S[q⇤⇤(⌧)] ⇠ �2

In a double well model, we know the transition state 
(transition path or trajectory in imaginary time) q⇤⇤(⌧)

The escape rate of this classical thermally activated event is given by 
Kramers theory (Boltzmann weight at the TS)

Therefore we expect that the QMC tunneling rate must scale as ⇠ �2

x

⌧

20March 2017
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Continous space model: 1D double well

x0

<
T
tu

n
n
>

Q
M

C

↵ �
�

�2

H = � @2

@x2
+ V (x)

q(⌧, t = 0)

q⇤⇤(⌧, t = Ttunn)

Ttunn : Number of QMC updates required to generate q⇤⇤(⌧)

1/
�

S =

Z �

0
d⌧

�
ẋ

2(⌧) + V (x(⌧))
�
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Computing the thermal density matrix requires closed paths in imag. time

Transition states of the dynamics: instantons

x

y

x

�0

x

⇤⇤(⌧)
⌧

x

⇤(⌧)

e�S[x⇤(⌧)] ⇠ �

e�S[x⇤⇤(⌧)] ⇠ �2Z =

Z
dq hq|e��H |qi
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PIMC with Open Boundary Conditions

x0

<
T
tu

n
n
>

Q
M

C
↵
0
�
�
�1
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Consider now a spin system.

Ferromagnetic Ising system
H = J

X

i,j

�z

i

�z

j

+ �
X

i

�x

i

Path integral construction lead to 
an extended lattice (formally 
similar to the previous ring 
polymer)

�

m =< �z >�1 1

 L  R

 0 =
1p
2
( L +  R)

24
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Ferromagnetic Ising system

25

Path integral construction lead to 
an extended lattice (formally 
similar to the previous ring 
polymer)

Consider now a spin system. H = J
X

i,j

�z

i

�z

j

+ �
X

i

�x

i
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QMC tunneling rate in ferromagnetic Ising system

S.V. Isakov, G. Mazzola, V.N. Smelyanskiy, Z. Jiang,            
S. Boixo, H. Neven, and M. Troyer

< TOBC >⇠ 1/�

�
�1 ⇡ a

p L e
bL

Let’s measure QMC tunneling time as a function 
of the system size L.

< TPBC >⇠ 1/�2

26Phys. Rev. Lett. 117, 180402 (2016)
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QMC annealing performance

27

“Google” instances

Denchev et. al. 2016
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Is this property general?

28

A. “Topological obstructions”

single path two degenerate paths

activation energy to reach paths c,d is not degenerate with a,b

from Andriash and Amin, arXiv:1703.09277 (2017)
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Is this property general?

29

B. Explore physical system to explore 
possible counterexamples: 
multidimensional tunnelling in quantum 
chemistry reactions.

Tanaka et. al. J. Chem. Phys. 100 (l), 98 (1994) 

1. Intrinsic multidimensionality 
2. Multiple equivalent tunneling 

paths.

e.g.: proton transfer in malonaldehyde 
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Is this property general?

30
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Yes.  
QMC ground state tunnelling is 
always mediated by instantons.

G. Mazzola, V.N. Smelyanskiy, and M. Troyer

arXiv: 1703.08189 (2017)

PIMC Instanton samples
MEP
RPI

-1 -0.5 0 0.5 1
x

-0.5

0

0.5

1

1.5

2

2.5

y

0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4



||Guglielmo Mazzola

Conclusions/1

31

PIMC/PIMD tunneling rate scales as incoherent quantum tunneling rate for 
tunneling in double well-like models.

Since incoherent tunneling is the driving process occurring in a AQC, PIMC 
is as efficient as a QC to solve optimisation process.

Of course this holds only for sign-problem free quantum driving hamiltonians!

PIGS tunnels faster than PIMC (quadratic speed-up): more efficient of 
present AQC!
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Quantum State Tomography

Can we “learn” a quantum state from a limited set of measurements?
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Quantum State Tomography

From a limited set of simple measurements, reconstruct the full  
many-particle quantum state.

Example: W state

Standard QST for an 8 site system requires 656.000 measurement for 99% 
fidelity! Hilbert space scales exponentially with N.

It’s clear that for structured problem a more “compact” representation should 
exist.
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Quantum State Tomography
Neural networks (NN) are very good variational wavefunctions! 
Solving the quantum many-body problem with artificial neural networks,
G. Carleo and M. Troyer. Science 355,  pp. 602-60 (2017)

Here, we train a NN using configurations extracted from the ground 
state. So that NN can learn quantum mechanics. 
Many-body quantum state tomography with neural networks, 
G Torlai, G Mazzola, J Carrasquilla, M Troyer, R Melko, G Carleo, arXiv:1703.05334 (2017) 

https://scholar.google.it/citations?view_op=view_citation&hl=it&user=XXYqrywAAAAJ&citation_for_view=XXYqrywAAAAJ:SpbeaW3--B0C
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Quantum State Tomography

From a limited set of simple measurements, reconstruct the full  
many-particle quantum state.

Example: W state

Standard QST for an 8 site system requires 656.000 measurement for 99% 
fidelity! Hilbert space scales exponentially with N.

Our NN only requires about ~100 measurements!
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Tomography of PIMC

March 2017

h h

1d-TFIM 2d-TFIM

QMC QMC QMC

�

2d-XXZ

h�z�zi � RBM1/4

h�x�xi � RBM1/4

h�zi � RBM1/4

h�xi � RBM1/4h�xi � RBM1/2

h�zi � RBM1/2

a b c

We generate syntetic measurements for several models and train the NN.
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Tomography of PIMC

March 2017

Once we have a NN representation of the ground state, trained with PIMC 
samples, we can reconstruct all possible quantities.

Example: n-spin correlation functions, but also entanglement entropy…
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Tomography of Quantum Systems

March 2017

Generalization to states with complex phase is also possible!

Example: unitary evolution of transverse field Ising.

N=12 spin system, i.e. reconstruction of 2^12=4096 phases, here re-arranged as a 2d array.
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                           Thank you!
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