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Why it  is important to study the 

organization principles of viral shells 

 

• The highly ordered viral capsid contains  a genome and 

therefore both mechanisms of host cell infection as well as 

virulence of viruses are strongly dependent on the 

structural organization of capsids. 

• The obtained organization principles and the relation of the 

revealed structural peculiarities with the assembly 

thermodynamics can be easily generalized to the case of 

abiotic materials for nanotechnology.   

 



Why the subject we deal with is related to physics 

Several steps of the capsid self-assembly demonstrate properties 

typical of ordering in passive physical systems 

 

For the capsid shell self-assembly : 

 -  host cell is not necessary   

 -  no local energy consumption like ATP hydrolisis is needed 

 -  process can be reversible 

 -  in many cases capsid assembly does not need genome 

 -  for some capsids the assembly can be proceeded in vitro in 

purified protein solutions 

 

 =>   Principles of capsid structure formation can be related to 

physics 

  

 



Physics,  symmetry, and viruses 
• By the middle of the last century, symmetry became the robust basis 

for the exploration and formulation of the fundamental principles of 

nonliving nature. Symmetry determines the structural organization and 

dictates the dynamics of relatively simple physical and chemical 

nanoscale systems. In living organisms, which are incommensurably 

more complex than the classical objects studied by physics and 

chemistry, the role of symmetry appears to be less significant. 

Nevertheless, symmetry in its different forms remains extremely 

important for viruses representing relatively simple systems that are 

intermediate between living and nonliving matter. In particular the 

highly ordered viral capsids have  both  

      conventional and hidden symmetries 

Hidden symmetry can be detected 

only as traces of parent planar 

order, that covers locally the 

surface of nanoassembly 



Origin of the hidden symmetry in capsids 

   Ordinarily. viral shells self-assemble from 

identical proteins, which tend to form equivalent 

environments in the resulting assembly. However, 

in icosahedral capsids containing more than 60 

proteins, they are enforced to occupy not only the 

symmetrically equivalent locations but also the 

quasi-equivalent ones. Due to this important fact, 

the symmetry of viral shells can include additional 

hidden components. 



Theory of Quasi-Equivalence 
D.L.D. Caspar, A. Klug, 1962 

One type of proteins icosahedral symmetry I  

 



One type of proteins in one general 

crystallographic  position 



Classification of capsids in the frames of CK theory 

Honeycomb 

Hexagonal Lattice 

« composed of hexamers » 

 

Trinagulation Number 

T = h2 + hk + k2 

 

Number of proteins is 60T 

 

Selection rules for the 

Triangulation Number  

T=1,3,4,7...  

Mapping of the 

Honeycomb 

Hexagonal Lattice 

To the Surface of  

an Icosahedron 



T = 1  

(h,k) = (1,0) 

T = 4  

(h,k) = (2,0) 

Hidden symmetry and protein 

quasi-equivalence 



The capsids of many « spherical » viruses exhibit spatial organization 

consistent with the quasi-equivalence principle 

Experimental Confirmation 

Cowpea Chlorotic  

Mottle Virus (CCMV) 

T = 3 

Hepatitis B Virus  

(HBV) 

T = 4 

However, some don’t 

L-A Virus 

T = 2 

forbidden by  

Caspar-Klug 

selection rules 

Dengue Virus 

T = 3  

but without  

Caspar-Klug 

hexamers 



The main idea: Transfer of the primitive 

hexagonal lattice onto the icosahedron’s 

surface 

Chiral SL with the indices  <4,1>, the triangulation 

number T=21 has the rotational icosahedral symmetry 

group I.  Among 212 nodes of the SL there are 180 nodes 

(full circles) which have the trivial local symmetry and 

are compatible with the protein asymmetry.  The nodes 

with the non-trivial local symmetry (open circles) cannot 

be occupied by the asymmetric proteins. They are located 

at icosahedral 5-fold and 3-fold axes. 

Achiral SL with the indices <6,0>, the 

triangulation number T=36 and the full 

icosahedral symmetry group Ih.  Among its 362 

nodes only 120 nodes (colored circles) belong to 2 

orbits of general positions with the trivial local 

symmetry. In addition, these general nodes have to 

contain both left-handed (red circles) and right-

handed (blue circles) SUs, but this constraint is 

incompatible with the fixed protein handedness. 

Smaller achiral SLs do not contain nodes with the 

non-trivial symmetry. 

b 

a 



Modified CK capsid model 

The upper line shows the first chiral spherical lattices: (a) <2,1>, (T=7, N=1); (b) <3,1>, (T=13, N=2); (c) <3,2>, 

(T=19, N=3); (d) <4,1>, (T=21, N=3); (e) <4,2>, (T=28, N=4). The nodes with the non-trivial local symmetry 

which are not suitable for occupation by the asymmetric proteins are represented by small open circles. The 

nodes with the trivial local symmetry occupied by the asymmetric proteins are shown by big colored circles.  

 

The experimental capsids structures* are shown in the bottom line: (a) Satellite Tobacco Mosaic Virus (N = 1); 

(b) L–A Virus (N = 2); (c) Dengue Virus (N = 3); (d) Chlorosome Vigna Virus (N = 3); (e) Sindbis Virus (N = 4). 

Protein centers of mass are located in the vicinity of the occupied nodes of the spherical lattices. 

 
*Experimental structures are reproduced using the UCSF Chimera package. E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. 

Meng and T. E. Ferrin, J. Comput. Chem., 2004, 25, 1605. 

 



Commensurate concentric nanoshells and double-

shelled capsid structures of reoviridae and cystoviridae 

families 

(a) Spherical tiling based on the SL with the indices <3,1>. The inner shell proteins are located in the nodes of 

the SL (full circles) while the outer shell proteins occupy the general positions of the underlying 

hexagonal lattice and form the hexamers around the SL nodes.  

(b) Standard schematic representation* of the capsid with T=13 satisfying the original CK model 

requirements. It corresponds to the outer shell structure with N=13 in the capsids of the reoviridae and 

cystoviridae families.  

(c) Standard schematic representation* of the inner and outer shell structures in the capsids of the reoviridae 

and cystoviridae families. 

 

* ViralZone. 2015. [July 2015, date last accessed]. http://www.expasy.ch/viralzone 

http://www.expasy.ch/viralzone


The structures of icosahedral 

viruses with the double-shelled 

capsids related to the SLs 

In the inner capsid shells the proteins occupy only the lattice nodes with the trivial symmetry (colored circles). 

Different positions are shown in different colors. The nodes with the non-trivial symmetry are excluded. These 

inner shell structures are similar to the experimentally observed single-shelled capsids.  
 

The outer shells are shown as the honeycomb spherical “lattices” with the cells of the “lattice” occupied by the 

capsomers. Hexagonal cells are occupied by the hexamers while the pentamers are situated in the cells with the 

pentagonal shape. (a, c-e) Possible double-shelled structures predicted by the present approach and based on the 

following SLs: (a) <2,1>,  (c) <3,2>; (d) <4,1>; and  (e) <4,2>. (b) The structure with the indices <3,1> 

experimentally observed in the reoviridae and cystoviridae families.  



Experimental capsid structure of the cyanobacterial virus 

Syn5* and its slightly symmetrized model 

(a) The main capsid proteins in Syn5 and 

similar viruses are organized in the shell 

which corresponds to the original CK model 

with the indices <2,1> and the triangulation 

number T1=7.  The main protein capsid shell 

contains 60 hexamers. Knob-like proteins 

protruding from each hexamer are shown in 

green. 

(b) Slightly symmetrized capsomers and positions of 

the protruding knob-like proteins. The edges of the 

SL with the indices <2,1> are given by yellow lines. 

Positions of the protruding knob-like proteins (green 

circles) form the SL with the indices <4,1> and the 

triangulation number  T2=21. The ratio T2/T1=3 

corresponds to the simplest nontrivial commensurate 

relation between concentric icosahedral shells. 

* P. Gipson, M.L. Baker, D. Raytcheva, C. Haase-Pettingell, J. Piret, J.A. King, and W. Chiu, Nature Comm., 2014, 5, 4278 



Landau theory of crystalization: Irreducible density waves on a sphere 
V.L. Lorman and S/B. Rochal (2007) 

Asymmetric Protein Units have no Proper Symmetry. Because of the Asymmetry the final structure has 

neither spatial inversion nor symmetry planes elements  =>  only odd spherical harmoniques in critical 

deviation 

r = r 0 + D r 
Density in the 

self-assembled 

state 

2D spherical distribution of proteins reads:   

D r = lN   m  l rlm Y
l
m (Q, f) 

Main contribution to D r is caused by a critical density deviation 

from its value r 0   In classical thery this deviation  is irreducible.  

System of Waves on a Sphere with the fixed wave number l 

l = 15 + 6i + 10j ;    i, j N  l=21 l =  6i + 10j ;    i, j N  l=10 

 

D r <0 

 

D r <0 D r >0 D r >0 



Chiral sferical lattices and iIrreducible even icosahedral density functions 

Density functions  small icosahedral viruses 
 

a) l = 15; T = 1 (Caspar-Klug structure)            ===== SL <2,1>   

b) l = 21; T = 2 (non Caspar-Klug structure) ===== SL <3,1> 

c) l = 25; T = 3 (non Caspar-Klug structure) ===== SL <3,2> 

d) l = 27; T = 3 (Caspar-Klug structure)            ===== SL <4,1> 

e) l = 31; T = 4 (Caspar-Klug structure)            ===== SL <4,2> 



Free energy expansion near the isotropic 

phase :  

 
F0 + F2 + F3 + F4 + … 

 

F2 = A(T, c)  m a m rlm rl(-m) 

 

F3 = B(T, c) m1, m2, m3 a m1, m2, m3 rlm1 rlm2 rlm3 d(m1 + m2 

+ m3 )  0 

 

F4 =  k C k(T, c)  m1, m2, m3, m4 a m1, m2, m3, m4 rlm1 rlm2 rlm3 

rlm4 d(m1 + m2 + m3 + m4 )  

 



 

• So such odd  (l+1, l-1) functions yield the second order 

contribution to D r in addition to the primary contribution of the 

even Ir function. Effective third order invariant appears [Robijn 

Bruinsma]  and the crystallization becomes  the (weak) first order 

phase transition. 

Taking into account of nearest even 

irreducible icosahedral functions   

Odd and even density 

functions can couple. 

This coupling should be 

more strong between 

functions with closest l 

values. 

•  



-We have modified the CK geometrical model, which is the basic paradigm in structural 

virology. Our approach gives rational physical interpretation for a variety of the 

experimentally obtained small viral capsid structures including anomalous  ones. In our 

theory the CK projection scheme is preserved but the position are filled with proteins 

only after the order is transferred onto the icosahedron surface. 

 

-The “parent” hexagonal lattice is the common origin of both the “anomalous” and 

conventional capsid structures. Even for small capsids described within the original CK 

approach, the modified model points out the additional hidden symmetry in the capsid 

structure. 

 

-The developed approach clarifies the peculiarities in structural organization of double-

shelled capsids. We have demonstrated the commensurability between the inner and outer 

capsid shells of these composite concentric nanoassemblies. Our approach also explains 

the location of the protruding knob-like proteins in some marine viruses. 

 

-. The main results of the proposed geometrical approach are in a good agreement with 

the conclusions obtained previously in the frame of the thermodynamic Landau 

crystallization theory. 
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