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Main topics

0. Intro: assumptions of the standard treatment of transport in simple metals
Linear response: weak perturbation to equilibrium, which is then restored

1. What about systems where these assumptions are violated?
Failures of relaxation: localization by disorder; free/integrable systems

Simple guesses:
Localized systems: particles move a localization length, then stop
Conventional (Yang-Baxter) integrable systems: particles move freely
Both simple guesses miss some interesting behavior.  Will focus here on cases with initial 
inhomogeneity to observe transport.  Interlude: entanglement and numerics

2. Are there unexpected ways a system can transport charge/heat?
“Topological” transport in insulators and metals
In insulators, transport can occur by the ground state, not quasiparticles
Even metals have some interesting topological effects



Linear response theory

Einstein’s theory of motion of Brownian particles:

the diffusion constant D that appears in Fick’s law
(which is the restoration to equilibrium from a density perturbation)

is given by the dynamical correlation function of velocity at equilibrium:

Philosophy: how a system returns to equilibrium is independent of whether it was driven away or 
fluctuated away

Kubo formula for electrical conductivity in metals: dynamical correlation function of electrical current
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Standard quantum transport theory

In principle, we want to calculate the Kubo formula for electrical conductivity

using the full many-body current operator j.

Challenges: for this to be finite, need current to relax (e.g., by disorder 
scattering, but full quantum theory of disorder scattering is complicated…).

Can do perturbation theory in interactions and disorder (Feynman diagrams).  Approximations give 
Boltzmann transport theory, which we often use in practice as a simple semiclassical picture.

(This is Boltzmann for collisions in a gas with no external force; in a solid, usually add electron-
impurity collisions and applied fields).
A modern reference: J. Rammer, Quantum Transport Theory
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Standard quantum transport theory

For the velocity in Boltzmann equation

we use the semiclassical velocity of a wave packet (to be discussed in 
Lecture III).

Second term is anomalous velocity or “Berry phase” piece.

This Boltzmann approach, while widely used for transport in 3D metals, 
is only valid under approximations that miss a lot of interesting physics.
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Some major developments from past decade

About a decade ago, some key developments occurred in physics that is 
outside the above “standard model”:

The system could fail to relax back to thermal equilibrium
MBL: Basko, Aleiner, Altshuler 2006
Integrable models and CFTs: Calabrese and Cardy “quantum quench”, 2006

Transport could occur by something other than quasiparticles

1. Transport could happen in an insulator by pumping or edge excitations
Topological insulators, Kane-Mele, 2005; spin quantum Hall effect, 2004; 3D, 2006

2. Transport could occur via strongly interacting fluid without a quasiparticle 
interpretation

These build on earlier important developments that I will mention briefly but you can find in 
textbooks.  Also, relevant topics such as bosonization will be covered in other lectures (I think).

Examples: non-interacting (Anderson) localization; integer quantum Hall physics (1980s).
Another past-decade development: role of entanglement in quantum statistical mechanics



Theme
Conventional thermodynamics rests on the assumption that initial states 
thermalize to a “Gibbs ensemble”, determined by the conserved quantities 
(e.g., energy and particle number).

What about systems with infinitely many conservation laws?
(MBL = many-body localization = disorder + interactions)

Simple guesses:
MBL-type systems: particles move a localization length, then stop
Yang-Baxter type systems: particles move freely

Both simple guesses miss some interesting behavior.

Will focus here on cases with spatial inhomogeneity and connections to 
transport.

There is lots of work on homogeneous “quantum quenches” (Cardy and 
Calabrese, …) that will not be covered.



Outline of non-relaxation material and references

I. Differences between dynamics in MBL phases and in (non-interacting) 
Anderson localization.

Logarithmic entanglement growth: Jens Bardarson, Frank Pollmann, JEM, PRL 2012
Observation via Poincare “revivals”: Siddharth Parameswaran, Romain Vasseur, JEM, PRB 2014

Other work: level statistics and eigenstate properties (with Maksym Serbyn); searching for MBL in 
translation-invariant systems (with Norman Yao, Chris Laumann, Ignacio Cirac, Mikhail Lukin, PRL 2016)

2. Yang-Baxter systems without disorder also break ergodicity and have 
infinitely many conserved quantities.  How do they evolve in time?

(Examples of Yang-Baxter “integrable” systems: Bose gas with delta-function interaction;
Heisenberg spin chain; 1D Hubbard model)

R. Vasseur, C. Karrasch, JEM, PRL 2015; also Vir Bulchandani, R. Vasseur, C. Karrasch, JEM, arXiv 2017.

Lots of recent work on “generalized hydrodynamics” like in classical integrable models;
see in particular Castro-Alvaredo/Doyon/Yoshimura and Bertini/Collura/De Nardis/Fagotti



Anderson localization and MBL

I. For non-interacting systems, we understand essentially completely the 
effects of disorder, at least away from transitions.
Review of one-particle localization, where numerics are relatively easy.

For the simplest symmetries (orthogonal and unitary ensembles), disorder is localizing 
for essentially all states in 1D and 2D.

2. The combination of interactions and disorder in closed systems (“many-
body localization”, Basko et al.) is not nearly as well understood, even in 1D.

Different properties of the MBL phase lead to different possible numerical experiments.
(Until very recently, “numerical experiments” were the only experiments!  no longer.
But the current experiments on atomic systems are possibly not in the long-time limit.)

Examples: level statistics; entanglement of eigenstates; dynamics after a quench;…



References and
questions to keep in mind

I. How is the MBL state different from ordinary Anderson localization (in 
entanglement, Bardarson, Pollmann, and JEM, PRL (2012); in random matrix ensemble, 
Serbyn and JEM, PRB (2016))?

II. How do these differences show up in observable dynamics (“revivals”, 

Parameswaran, Vasseur, JEM, PRB (2014))?
III. How is MBL-type integrability different from Yang-Baxter integrability?

Probably won’t get to:
What MBL-like behavior exists in translation-invariant systems?  Can look 
for compact density response to a weak, arbitrarily broad perturbation… 

Things that won’t be discussed:
higher dimensions; conventional or topological order; response to a local 
quench; theories of thermalizing transition



Intro to disordered electronic systems
Consider a quantum particle, described by the Schrödinger equation, moving in a random 
potential.

Intuitively, we might expect:
at low energy, eigenstates are trapped (“localized”) in potential minima
at high energy, eigenstates are scattering states

In 3D, this intuition is basically correct, and there is a specific energy (the “mobility edge”) that 
separates localized from disordered states.

Argument for mobility edge: (Mott) coexistence of localized and extended states at same 
energy is unstable, as a small perturbation will mix and give only extended states.

V (x)

E1

E2



Intro to disordered electronic systems

This intuition breaks down in one or two dimensions: all electronic states are localized up to 
arbitrarily high energies, although the localization length increases with E.

Why is 2D special (marginal)?  Consider the stability of scattering states.  We can model the 
scattering state as a random walk.

A random walk above 2D revisits any point only a finite number of times on average, so a weak 
potential fluctuation cannot be amplified infinitely.  In 2D or below, a point (say the starting 
point) is visited an infinite number of times, and a “weak” potential can become strong.
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Intro to disordered electronic systems

For non-interacting systems, we understand essentially completely the 
effects of disorder, at least away from transitions.
For the simplest symmetries (orthogonal and unitary ensembles), disorder is localizing 
for essentially all states in 1D and 2D.

The combination of interactions and disorder in closed systems (“many-
body localization”) is not well understood even in 1D.
are the only two possibilities diffusive and localized?  can there be subdiffusive scaling?  
(e.g., “glassy”: r ~ log t)

CM experimental systems typically have “dephasing” from interactions with phonons, 
which ultimately leads to a finite diffusion constant.

Systems of atoms in an ultra cold lattice do not have phonons, so may be better.



Intro to disordered electronic systems
How do we see localization experimentally?

Localization in the sense described here requires interference (constructive interference of self-
intersecting trajectories).

Hence it is a quantum property and disappears if the electrons lose their phase coherence by 
interacting with a their environment (e.g., a “bath” of phonons).

If that happens on a phase-breaking time scale

then this acts as a cutoff on the effects of localization, e.g., on the reduction of conductivity.

Treating localization perturbatively (“weak localization theory”) has been very powerful.
Interaction effects can be incorporated (Altshuler-Aronov, Finkelstein, others) in this framework.  

But in isolated systems (e.g., ultracold atomic systems), or possibly in femtosecond experiments 
on electrons, the system can be phase-coherent.

Can be treated also using powerful bosonization techniques (Giamarchi-Schulz).

Including the bath also sidesteps some basic questions.

τφ



Intro to disordered electronic systems

So one-particle localization is very sensitive to dimensionality.

It is also sensitive to symmetries.  For example, if we broke time-reversal symmetry with a 
magnetic field, then in 2D extended states survive at isolated energies.

If we assume that disorder breaks all symmetries except for two discrete symmetries T (time 
reversal) and C (chiral/charge conjugation), and that each of these can square to +1 or -1 if 
present, then there are 10 symmetry classes.

Why 10?

Just considering T gives 3 “Wigner-Dyson” classes: orthogonal (T2 = +1), symplectic (T2 = -1), 
and unitary (T broken).

Adding C gives 9 classes (3 times 3).  There is also the possibility of having CT symmetry without 
either C or T separately, hence 10 “Altland-Zirnbauer” classes.

How do we see localization experimentally?
Why is it important for some basic physics questions?
Is there more to the story than symmetry and dimensionality?



Periodic table of insulators
Schnyder et al., Kitaev: 10-fold way classification, periodic in dimension
3 Wigner-Dyson cases + particle-hole symmetry in superconductors = 10
Better to think of as 2+8: see Freed and G. Moore, “Twisted Equivariant Matter”

There can be insulator-metal transitions, like the Anderson transition at the mobility edge, 
and also insulator-insulator transitions, like the quantum Hall plateau transition.

A variety of analytical and numerical results on these transitions, but some are quite difficult.



MBL can be motivated by the basic question

Does an isolated quantum system with interactions and 
disorder show localization?

which is related to the equally basic question

When do isolated quantum systems thermalize?

The connection is that localization is the most plausible physical way to 
avoid thermalization: localized particles cannot move around and 
equilibrate.  In a delocalized system, we expect that a test particle sees 
other particles as a thermal “bath”.

Will focus on 1D.   Besides symmetry and dimensionality, what else 
controls localization in the interacting case?  What are the new 
properties of the localized phase?  Which are interaction-specific?



What about MBL versus ergodic states?

A thermalizing state should have volume-law entanglement of eigenstates according 
to the eigenstate thermalization hypothesis (ETH).

ETH=local measurements on an eigenstate of a thermalizing system are consistent 
with a thermal ensemble.

A picture of the MBL state is that it is similar to the ground state of 
a localized system and has an area law for entanglement entropy.
(Bauer and Nayak, …)

So far we have three things we can look for to diagnose an MBL transition: vanishing 
of the conductivity, or absence of thermalization, or the change in the entanglement 
properties of eigenstates.

Note that the first two are slightly different: we might have a subdiffusive but 
thermalizing phase, for example.

See Bar Lev et al ’14, Hulin et al ‘90, Agarwal et al ’14, Potter et al ’14, Vosk et al ‘14 



Strong MBL and conservation laws

As far as I know, only one model has a rigorously established MBL phase (Imbrie 
2014): an Ising model with random couplings and longitudinal & transverse fields

What is established is that there is an infinite set of local conserved quantities for a 
finite range of parameters.  Let’s call this “Strong MBL”.

Immediately implies non-thermalization.

Surprising: a stable range of “integrability”, unlike Yang-Baxter case.

Mostly people have studied interacting (Dirac) fermion models 
instead.

Recent “no-go” work suggests that strong MBL is quite difficult to achieve: 
specific to 1D; only short-ranged interactions; no SU(2) or other non-
Abelian symmetry; … but can get very long time scales for thermalization.
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Many-body localization at infinite temperature

H = Jxx

�

i

�
S

x
i S

x
i+1 + S

y
i S

y
i+1

�
+ Jz

�

i

S
z
i S

z
i+1 +

�

i

hiS
z
i

Clean XXZ chain + random z-directed Zeeman field

hi ∈ (−∆,∆)

Claim: look at “infinite-temperature” dynamics but with no dephasing;
evolve an arbitrary initial state by the Schrödinger equation

Heisenberg phase diagram:
(Oganesyan-Huse spin chain version of BAA)

∆/J = 0 ∆/J =∞∆/J =?

extended localized

or is there an intermediate “ergodic non-metal”?



Spin and fermonic interpretations
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The XXZ chain + z-directed Zeeman fields

is canonically equivalent to a model of spinless interacting fermions

We often present things in spin language to avoid the hassles of sermonic
statistics, but in 1D this is not a big problem.

Anderson localization: V = Jz = 0 and
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Many-body localization at infinite temperature
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Heisenberg phase diagram:

level statistics: (Wigner-Dyson vs. Poisson) Oganesyan & Huse, 2008

dynamical correlation functions
correlation distributions Pal & Huse, 2010; Reichman et al. 2010
entanglement growth/thermalization (JHB,FP,JEM 2012)

entanglement variance (recent work of Alet et al., Bardarson et al., …)

∆/J = 0 ∆/J =∞∆/J =?

extended localized

Transition(s) should be detectable in:

This spin chain problem is a numerically easier reformulation of many-body localization 
in continuum Fermi systems at nonzero T (Basko, Aleiner, Altshuler 2007)
Hoped to be generic for 1D local interactions, disorder, U(1) symmetry.



Many-body localization at infinite temperature
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level statistics: (Wigner-Dyson vs. Poisson) Oganesyan & Huse, 2008

The idea is that diffusive and integrable systems have different level 
statistics, which is a simple property of the eigenvalues alone.

An MBL system is like an integrable system, which normally means a 
translation-invariant system with a complete set of conservation laws 
(return to this point in a moment).

The key difference (and let’s look for it numerically) is that the 
integrability of an MBL system is stable to disorder, while conventional 
integrability is not, nor even to translation-invariant perturbations that 
break the Yang-Baxter equation (factorization of scattering).



Staggered field and non-integrability

Level statistics become
Wigner-Dyson (level repulsion)

rather than Poisson
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In one region, of the phase diagram, h is 
irrelevant (system remains Luttinger 

liquid), and we can track RG flow

Argument for Poisson statistics: two nearby states are likely to be in different symmetry sectors, and 
hence do not repel each other as they are not mixed by a perturbation.



0.1
T

1

10

ch
ar

ge 0.
1

10

ch
ar

ge

2 3
K

-4

-2

ex
po

ne
nt

(b)

3 2K

= 0.99
h=0.465

K=3.2K=2.4
~T 1.67

0.05

0.05 0.2

K=2.2
~T 1.45

= 0.99, h=0.

= 0.95
h=0.4

= 0.9
h=0.31

 

Conductivity scaling

σ = lim
tM→∞

lim
L→∞
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Re
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0
�J(t)J(0)� dt.

For K not too large, linear prediction 
is self-consistent and power-laws are 
observed that are consistent with 
bosonization predictions.

Conductivity diverges at low 
temperature as the integrability-
breaking perturbation is irrelevant.

(Huang, Karrasch, Moore PRB 2013)



Interlude: entanglement and numerics

Another development in the past decade is that people care a lot more about
the quantitative behavior of entanglement, usually as measured by entanglement
entropy.

Why?

1. Often gives new insight into the structure of a phase (examples to follow).

2. Is related to the difficulty in studying a quantum model on a classical computer,
at least with one method that has become increasingly important in the last decade.

“Density matrix renormalization group” (White, 1992)

Used to produce the conductivity plots in previous slide.
How, in general terms, does it work?



Entanglement entropy
Definition: the entanglement entropy of a pure state,

with respect to a given partition into A and B,
is the von Neumann entropy of the partial density matrices

The singlet generates one bit of classical entropy when the two 
spins are separated

Note that the partial density matrix for subsystem A
gives the results of all experiments limited to A

�φ1|ρA|φ2� =
�

j

(�φ1| × �ψj |)|ψ��ψ|(|φ2� × |ψj�)

S(ρ) = −TrρA log2 ρA = −TrρB log2 ρB



To get some intuition for how entanglement behaves in statistical 
physics, consider “valence bond states” of s=1/2 systems:

Rule: every spin forms a singlet with some other spin

In these states, entanglement entropy S just counts singlets:
S = 1 bit for each singlet crossing the AB boundary.  (But real 
states are usually a bit more complicated.)

How much entanglement entropy occurs in 
ground states of local Hamiltonians?

Short-ranged VBS
(= “dimer covering”)

Long-ranged VBS



Consider partitions of a d-dimensional infinite system AB into a 
subregion A of linear size L and an infinite subregion B.

How should entanglement entropy scale with L?

If we can ignore entanglement between points farther apart than 
some length scale !, then entanglement entropy should be 
determined by a shell of thickness ~ ! around the AB boundary:

If there is no notion of locality, any site in A is as likely to be 
entangled with a site in B as with another site in A, and 

How much entanglement entropy occurs in 
ground states of local Hamiltonians?

S ∼ Ld−1ξ ⇒ S ∼ Ld−1as L → ∞ with system parameters fixed

S ∼ L
d

the “area law”



How much entanglement entropy occurs in 
ground states of local Hamiltonians?

We start with “pure” (translation-invariant), local Hamiltonians in 
one dimension.

Consider a partition for which A is a contiguous set of N spins 
inside an infinite chain:

Away from critical points (i.e., when correlations are short-ranged), 
entanglement is localized in the vicinity of the boundary and the 
“area law” is satisfied:

But what about quantum critical states?  Is there qualitatively more entanglement?

( )
A BB

lim
N→∞

S = C < ∞



How much entanglement entropy occurs in critical 
states of local Hamiltonians?

Example of a quantum critical ground state: (c=1) Heisenberg AF

At criticality, the entanglement of a connected subset of N spins, 
with the remaining spins, is (note: violates area law)

At clean and conformally invariant quantum critical points in 
d=1, there is logarithmically divergent entanglement with a 
coefficient related to the “central charge” of associated CFT.
(Holzhey, Wilczek et al. 94, Vidal 03, Calabrese and Cardy 04).
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Uses of entanglement entropy in d=1

For the subset of 1D quantum critical points that are described by 2D 
conformal field theories:

The appearance of the central charge in the ground-state 
entanglement is consistent with its appearance in other quantities 
related to entropy, such as the free energy at finite temperature

The central charge is an important quantity, but only defined for a 
subset of quantum critical points.

Entanglement entropy can be defined at any quantum critical point.  
Does it still show similar behavior, with a universal coefficient?  Yes!
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Entanglement entropy beyond conformal invariance

Numerical check of universal coefficient (Refael and Moore, PRL 
2004) for simplest case (XX chain) by N. Laflorencie (PRB 2005)

HXXZ = J!
j
"1

2
#Sj

+Sj+1
− + Sj

−Sj+1
+ $ + !Sj

zSj+1
z % , #5$

the noncritical regime #achieved if &!&"1$ can be investi-
gated using the corner transfer matrices of the corresponding
two-dimensional #2D$ classical problem.11,12 On the other
hand, along the critical line #−1#!#1$, an analytical com-
putation of S#x$ is more difficult and conformal field theory
#CFT$ tools are then required.6 Another alternative consists
in performing numerical exact diagonalizations #ED$ of finite
lengths spin chains, but it is limited to Lmax'40 spins 1

2
when !!0.13 Nevertheless, the XX point !=0 is special
because the spin Hamiltonian can be rewritten using the
Jordan-Wigner transformation as a free-fermions model

HXX =
J

2!
j

(cj
†cj+1 + cj+1

† cj) #6$

for which the density matrix can be expressed as the expo-
nential of a free-fermion operator.14 It turns out that the re-
duced density matrix is completely determined by the x$x
correlation matrix C#x$, defined by

C#x$ =*+c1
†c1, +c1

†c2, ¯ +c1
†cx,

+c2
†c1, +c2

†c2, ! ]
] !

+cx
†cx,
- . #7$

The matrix elements Cij = +ci
†cj, can be calculated either nu-

merically by diagonalizing the free-fermion Hamiltonian in
momentum space or analytically in some special cases.15 The
entanglement entropy of a subsystem of size x embedded in
a larger system is then given by

S#x$ = − !
k

(%k ln %k + #1 − %k$ln#1 − %k$) , #8$

where the %k are the eigenvalues of C#x$.
Let us now concentrate on the disordered XX spin-1

2
chain, governed by the random hopping Hamiltonian on a
periodic ring of length L

HXX = !
j=1

L−1

Jj(cj
†cj+1 + cj+1

† cj) + JL exp#i&N$#cL
†c1 + c1

†cL$ ,

#9$

where Jj are positive random numbers chosen in a flat uni-
form distribution within the interval (0,1),16,17 and the second
term in the right-hand side ensures that periodic boundary
conditions are imposed in the spin problem. The total num-
ber of fermions is N=L /2 in the ground-state #GS$. The way
to diagonalize HXX is straightforward and has already been
explained by several authors.18,19 As a check, we have first
computed the entanglement entropy #8$ for clean systems
#i.e., Ji is a constant$ of total sizes L=500 and L=2000.
Technically, this only involves computing the elements +ci

†cj,
by diagonalizing the free-fermions Hamiltonian #6$, and then
one needs to diagonalize C (Eq. #7$) using standard linear
algebra routines.20 The results are shown in Fig. 2 where we
can see that S#L ,x$ is perfectly described by the CFT pre-
diction Eq. #3$. Note also that the constant term is found to
be s1'0.726, in excellent agreement with the recent analyti-
cal prediction of Jin and Korepin.21

For the random case, the same technique has been used
but a bigger computational effort was necessary to average
over a large number of independent random samples. Practi-
cally the number of samples used was 2$104 for L=100,
200, 300, 400, and 104 for L=500,1000,2000 which re-
quired 2000 h of CPU computational time. The results for

FIG. 2. #Color online$ Entanglement entropy of a subsystem of size x embedded in a closed ring of size L, shown vs x in a log-linear plot.
Numerical results obtained by exact diagonalizations performed at the XX point. For clean nonrandom systems with L=500 and L=2000
#open circles$, S#x$ is perfectly described by Eq. #3$ #red and blue curves$. The data for random systems have been averaged over 104

samples for L=500, 1000, 2000, and 2$104 samples for 100#L#400. The expression 0.8595+ #ln 2 /3$ln x #dashed line$ fits the data in the
regime where finite size effects are absent.

NICOLAS LAFLORENCIE PHYSICAL REVIEW B 72, 140408#R$ #2005$
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Most numerics on MBL so far were done with “exact diagonalization” (ED): 
find all eigenvalues, or a subset, of the Hamiltonian matrix.

ED is great for small systems as it gives essentially complete information and 
its implementation and convergence are well understood.

It doesn’t scale very well: cost for all eigenvalues goes as the cube of the 
matrix dimension, so beyond 20 spin-half sites becomes expensive.

Good news: there has been enormous progress 1992-present in 
DMRG/“matrix product state” methods to solve many-particle quantum 
problems in low spatial dimensions (especially 1D).

Understanding when these methods work well requires us to understand 
entanglement, which also leads to another useful definition of the MBL state.

Numerics



Studying quantum correlations with classical 
algorithms: applied entanglement entropy

Basic (hazy) concept: “Entanglement entropy determines how much 
classical information is required to describe a quantum state.”

Example:
how many classical real numbers are required to describe a product (not 
entangled) state of N spins?

Answer: ~ N    (versus exponentially many for a general state)

How do we efficiently manipulate/represent moderately entangled states?

|ψ〉 = As1
As2

As3
As4

|s1s2s3s4〉simple product



Applied entanglement entropy

The remarkable success of the density-matrix renormalization 
group algorithm in one dimension (White, 1992; Ostlund and 
Rommer, 1995) can be understood as follows:

DMRG constructs “matrix product states” that retain local 
entanglement but throw away long-ranged entanglement.

Graphical tensor network representation:

|ψ〉 = Aij
s1

Ajk
s2

Akl
s3

Ali
s4
|s1s2s3s4〉

|ψ〉 = As1
As2

As3
As4

|s1s2s3s4〉simple product

matrix product

Example states for four spins:

A
i j

A
j k

A
k l

s1 s2 s3

...



“Infinite system” methods

Note that we can impose translation invariance simply by 
requiring constant matrices A.

In other words, for quantities in a translation-invariant system, 
we just calculate A, rather than a large finite system.
(Idea 1 of renaissance; see Vidal ’07, for example)

So where is the approximation?
A finite matrix A can only capture a finite amount of entanglement.

In the early DMRG days, it was often thought:
1. To study an infinite system, we should study a large finite one.
2. Gapless/critical systems are hard.  (Gapped uniform systems converge…)
3. Dynamical properties are hard
4. Finite temperature is hard
But none of these is strictly correct.

|ψ〉 = Aij
s1

Ajk
s2

Akl
s3

Ali
s4
|s1s2s3s4〉matrix product



• find the ground state of a system by using imaginary time 
evolution (almost unitary for small time steps) 

• parallel updates for infinite/translational invariant 
systems: iTEBD [Vidal ‘07] 

• example,  transverse Ising model:         
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critical point 
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Criticality: finite-entanglement scaling
All numerical methods have difficulty with quantum critical points.
In DMRG-type approaches, this can be understood from the 
divergence of entanglement entropy at such points: the 
entanglement in a matrix product state is limited by dim A.

Quantitatively, it is found that dim A plays a role similar to imposing 
a finite system size:                             
     (Tagliacozzo et al., PRB 2008).

Finite matrix dimension effectively moves the system away from the 
critical point.

What determines this “finite-entanglement scaling”?
Is it like “finite-size scaling” of CFT’s (cf. Blöte, Cardy, & Nightingale)

|ψ〉 = Aij
s1

Ajk
s2

Akl
s3

Ali
s4
|s1s2s3s4〉matrix product

Leff ∝ χκ, χ = dim A



A way to picture the entanglement of a state 

• Schmidt decomposition of the state (SVD): 
•  
 
 
 
 
 
 
with               and                         

• a natural measure of the entanglement is the entropy:

T TTTTTTT
...

A B

λα ≥ 0

|ψ� =
NA�

i=1

NB�

j=1

Cij |i�A|j�B

=
min(NA,NB)�

α=1

λα|φα�A|φα�B

�
α λ2

α = 1

SA = SB = S = −
�

α

λ2
α log(λ2

α)



Efficient representation of quantum states? 

• Hilbert-space dimension of many-body problems increases 
exponentially with number of sites 
example: spin 1/2 system on “classical” computers  
(store one state in double precision) 

• need an efficient way to “compress” quantum states so 
that the matrices studied remain finite-dimensional 

!slightly entangled 1D systems: Matrix Product States 

!DMRG, TEBD, ... 
 
 



χ = 4

χ = 16



χ = 64

χ = 256



• (Li-Haldane) “entanglement spectrum” [Calabrese et al ‘08] 
 
 
 
 
 
 
continuum of Schmidt values 

• Want to explain how at a critical point, finite matrix size 
effectively moves the system away from criticality, leading 
to universal relations like

n(λ) = I0

�
2
�
−b2 − 2b log λ

�

with b =
S

2
=

c

12
log ξ = −2 log λmax

# of    ‘s greater 

than
λ̂

λ

|ψ� =
�∞

α=1 λα|φα�A|φα�B

χ

Leff ∝ χκ, χ = dim A



• A heuristic argument for the asymptotic case  
(using a continuum of Schmidt values and              ) 

!universal finite-entanglement scaling relations

χ→∞

F. Pollmann, S. Mukerjee, A. Turner, and J.E. Moore, PRL 2009  
Some checks for various critical theories are in that paper, and the recent work 
B. Pirvu, G. Vidal, F. Verstraete, L. Tagliacozzo, arXiv:1204.3934 

So critical points are worse than gapped points, but in a controlled way. 
What does this mean in practice? 

Remark: Entanglement spectra are qualitatively different for random critical spin chains 
than for pure ones, though entanglement entropies similar (M. Fagotti, P. Calabrese, JEM). 

κ =
6

c
��

12
c + 1

� ⇒ S =
1�

12
c + 1

log χ



Integrability in MBL

H = Jxx
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Another way to define the MBL phase and explain its lack of 
thermalization is in terms of a complete set of conserved quantities that 
are genuinely local (Serbyn, Papic, Abanin; Imbrie)

(i.e., local as in the non-interacting case, not translation-invariant sums of 
local objects) 

We expect to see Poisson statistics in the MBL phase simply because 
nearby states are likely to be localized in different parts of the 
sample, and hence not repel each other.  Will come back to this.



Many-body localization at infinite temperature

H = Jxx
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“Extended phase”: expect S grows linearly with t (Calabrese and Cardy)

“One-particle localized phase”: (Jz = 0) eigenstates are Slater determinants 
of localized one-particle states; S saturates to a finite value.

What happens if we add interactions to the localized phase?

Note: this is efficiently simulable because for early times the system has small entanglement (Prelovsek et al., 
2007; see also De Chiara et al., 2006)

Numerical experiment: start with an arbitrary product state (local Sz 
eigenstate) and evolve under H.  Can view as a “global quench”.

Jens Bardarson, Frank Pollmann, and JEM, PRL 109, 017202 (2012).



Many-body localization at infinite temperature

H = Jxx
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Numerical experiment: start with an arbitrary z-product state (local 
Sz eigenstate) and evolve under H.  Can view as a “global quench”.
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Half-chain entanglement saturates with no 
interactions.

Interactions increase entanglement 
growth (consistent with previous work: De 
Chiara et al., Prelovsek et al.).

Surprise:
Interactions are a singular perturbation.

Even a very weak interaction leads 
eventually to a slow but unbounded increase 
of entanglement.



Many-body localization at infinite temperature
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Numerical experiment: start with an arbitrary z-product state (local 
Sz eigenstate) and evolve under H.  Can view as a “global quench”.

What about transport of the U(1) quantity?

Effect of interactions is less obviously 
singular--it could be that conductivity is 
zero.

We cannot rule out that the only physics 
with interactions is extended and that 
there is eventually thermalization.

But there is a long, possibly infinite, time 
range over which dynamics is very slow.

(Slower log log dynamics at low energy in 
random singlet phase--Igloi et al. PRB 2012)
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Eigenstates versus dynamics of observables

One way to view the MBL phase: all eigenstates are basically similar, because a slight change in 
the potential will change which eigenstate is the ground state.

For example, all (or almost all) eigenstates are area-law (cf. Bauer-Nayak).

Different from the diffusive case, where the ground state is special (area law versus volume law, 
for example).

The arbitrariness in the MBL phase suggests that it may be difficult to prepare a single excited 
eigenstate; more generally, it is nontrivial to connect dynamics of observables (e.g., after a 
quench) to the properties of eigenstates.

Question: Is entanglement “physical”?

Yes, but hard to measure (although see Greiner et al. 
2015); are other properties sensitive to this 

logarithmically slow dynamics?



Testing “dephasing without delocalization”

Favored scenario: (Huse-Oganesyan, Papic-Serbyn,-Abanin, Vosk-Altman, …)

The entanglement increase can be understood in terms of independent pairs with interaction 
energy scale

which under the (short-time) assumption that pairs contribute independently to entanglement gives

An experimentally practical way to test this log: Romain Vasseur, Siddharth Parameswaran, and 
JEM, PRB 2015 

“Revivals”: how often, in a single realization of disorder, does a single spin’s expectation return to its 
original value?

This is basically a probe of how many frequencies are involved in the spin’s dynamics.  That increases 
dramatically between Anderson localization and MBL.

The dephasing picture has to break down as we approach the transition to a delocalized phase.

Jeff = J0 exp(−L/ξ0)

S ∼ ξ0 log(J0t)
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Model: XXZ chain plus “probe spin” at edge
(Rossini, Calarco, Giovannetti, Montangero, Fazio, 2007)

Question: “revivals”

If probe spin is initially polarized, how frequently does its 
polarization return to nearly the initial value?

Qualitative motivation:
already in a classical system, Poincare recurrence time is a 
measurement of phase space volume.
Larger phase space to explore = lower rate of revivals.



Numerical experiment

Initial state is probe spin up and random initial state of chain
(with and without constraint of total Sz = 0).

Evolve in time and record a “revival” whenever average probe spin is 
within (1-epsilon) of initial value.

Sz
∞ ≡

�

α

�α|Sz|α� |�Ψ0|α�|2,

1. Estimate phase diagram via 
residual magnetization
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Numerical experiment

2. How does the revival rate show the effects of interactions?

Quantum Revivals. Disorder-averaged revival rate N (T )/T as function of
total time, T . Upon adding interactions of strength Jz, revivals are suppressed
beyond T ∗ ∼ J−1

z . (Inset) The same data collapses onto a universal curve when
plotted against JzT .
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Scaling collapse

We can do better than just saying that interactions = fewer 
revivals.  Actually the same phenomenology that explains 
entanglement growth appears here as well: the difference in 
revival rates is

where \nu(N) is the revival rate when N different frequencies 
matter (expect an exponential dependence, but details turn 
out to be irrelevant).

The numerics show that the revival rate indeed shows a 
collapse with logarithmic time over most of the MBL phase 
(presumably not all of it)…

N −N0

T
≈ ν(N + α log Jzt)− ν(N),



Numerical experiment

2. How does the revival rate show the effects of interactions?

Quantum Revivals. Disorder-averaged revival rate N (T )/T as function of
total time, T . Upon adding interactions of strength Jz, revivals are suppressed
beyond T ∗ ∼ J−1

z . (Inset) The same data collapses onto a universal curve when
plotted against JzT .
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Result: a simple picture

The “real-space Fermi liquid” form

controls not just entanglement growth but more “physical” observables 
over a wide range of the MBL phase. 

The resulting logarithmic time evolution (assuming U falls off 
exponentially) is likely to be a generic property of dynamics of 
observables in the MBL phase.  This log scaling may be the most 
important observable difference between MBL and Anderson phases.

Point: two simple guesses (revival rate saturates as in Anderson case, or as 1/exp(xi)) are wrong.

It would be nice to understand (a) what is the long-time state of a block in the MBL phase starting from 
some physical preparation process (typically volume law but not ETH); (b) how H becomes more 
complicated (3-body, etc.) close to the transition.
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Many-body localization at infinite temperature

H = Jxx
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What does entanglement entropy growth mean?

The entanglement entropy comes from the reduced density matrix, 
which governs any local experiment.

So any measurement of entropy in a subsystem will show that the 
interacting system is “more thermalized” than the Anderson one. 

However, studies of the saturation 
of small blocks suggest that the full 
thermal entropy is not reached:
O(L) but small.
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Long-time behavior: some version of GGE?

A difference from normal GGE in Yang-Baxter integrability:

In something like XXZ or Lieb-Liniger, the conserved quantities are 
sums of local operators and hence extensive.  Microcanonical and Gibbs 
ensembles are equivalent because fluctuations in an extensive operator 
like energy are relatively small.

This does not hold for the local quantities in MBL; it would be nice to 
have a useful means to calculate the long-time evolution of a generic 
initial state (which is related to the question of operators beyond two-
spin).



Nature of phase transition

Believed to be “purely dynamical”, which we know already 
from the non-interacting case to be difficult.
(e.g., the Anderson and quantum Hall plateau transition)

Some theories in 1D based on real-space renormalization group
(Vosk-Altman-Huse, Vasseur-Parameswaran-Potter)

So far, not perfectly clear agreement between theory and numerics (or 
even between numerics from different groups!).



Next: no disorder

Remark: what are MBL-like features in translation-
invariant systems?  (M. Mueller et al., Yao et al., Papic et al.)

Point: can make artificial models that show MBL with translation invariance.  

For example, we could interpret a random potential model as resulting from 
infinitely heavy particles that create a potential for light particles.

Are these stable?  For example, if the heavy particles have large 
finite mass, does MBL still exist?

In our example, it does not, but very long time scales are 
needed to see it.  (Of course, this isn’t a general proof.)

Similarly unstable are “conventional” integrable systems.  
How is their long-time dynamics modified by the 
existence of infinitely many conservation laws?



Part II: Quantum hydrodynamics in 1D and 2D

1. Outline: start with a model problem: two-reservoir quench in 1D

Simple cases: free bosons; CFTs
Review of ballistic linear response (Drude weight)

In less simple integrable models: exact results for some quantities even 
arbitrarily far from equilibrium; can compare to DMRG simulations for XXZ
(Vasseur, Karrasch, JEM PRL 2015)
Background to hydrodynamical/kinetic theory approaches for soliton gases, Lieb-Liniger, XXZ.

2. Test of kinetic theory predictions in more general cases: expansions from 
smooth initial conditions.

When is hydrodynamics (i.e., Bethe-Boltzmann equation) valid?  Can compare to 
microscopic simulations at nonzero T, when hydrodynamics should be generic.  (At 
T=0, coarse-graining length diverges at least in CFTs)
What does hydrodynamics miss?

3. (if time permits) Hall viscosity in d=2 hydrodynamics



Standard hydrodynamics
(0th order)

The “zeroth-order” hydrodynamical equations in three dimensions, which
neglect dissipative behavior such as viscosity, are

∂n

∂t
+∇ · (nu) = 0 (1)
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3
(∇ · u)τ = 0. (3)

These come from the Boltzmann equation assuming local equilibrium.



Non-equilibrium energy transport in XXZ

1. Create two different temperatures in two 
disconnected, infinite 1D “leads”.
2. Connect them by a finite region (e.g., one bond).
3. Evolve in time for as long as possible.

Is a steady-state heat current reached?

Is non-equilibrium (finite bias) thermal transport determined by linear-response 
thermal conductance?

We observe two different outcomes, depending on integrability of the leads and 
whether the connected system is homogeneous.
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Stefan-Boltzmann picture

Idea: the right lead is prepared at one temperature and 
the left lead at a different temperature.

In a ballistic system like a CFT, there is no local 
temperature at x=0 at later times; rather the right-
movers are at a different temperature than the left-
movers.  The thermal current is the difference between 
total radiation from left and right.
(Sotiriadis-Cardy, Bernard-Doyon)



Warmup: free bosons
We compute the right-moving energy current from a lead at temperature

T +dt and subtracting the left-moving energy current from a lead at T . Assume

one-dimensional free bosons as in the Schwab et al. experiment mentioned

above. Using k for momentum, we have that the total energy current (units of

energy per time) is

JE = JR
E − JL

E =

� π/a

0

dk

2π
[fT+dt(�ωk)− fT (�ωk)] �ωkvk. (1)

Here vk = dωk/dk and fT (E) is the Bose factor (eE/kBT − 1)
−1

. So

JE = (dt)

� ωmax
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dω

2πkBT 2

e�ω/kBT

(e�ω/kBT − 1)2
�2ω2. (2)

Here ωmax is the highest phonon frequency. If we assume that the temperature

is small compared to this, so that x = �ω/kBT runs from 0 to infinity, then we

obtain (note that we need to multiply by (kBT/�)3)
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2π� (dt)
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x2ex

(ex − 1)2
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The dimensionless integral gives π2/3, so

G0 =
JE
dt

=
π2kB

2T

3h
. (4)

An interesting fact about the thermal conductance G0 is that it is the same for

bosons or fermions (or indeed anyons), unlike charge transport. The Schwab

et al. experiment observed one thermal conductance quantum G0 for each low-

temperature phonon mode.



Dissipationless transport

When is there a nonzero Drude weight D?

Two easy examples:

I. Superconductors (transport by condensate)

II. Part of the current is conserved: Mazur lower bound

σ(ω) = Dδ(ω) + . . .
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Dissipationless transport

When is there a nonzero Drude weight D?

Example of Mazur bound: suppose momentum is 
conserved, and current is proportional to momentum 
(e.g., if only one kind of particle).

Technical note: the Drude weight is not thermodynamic:

where Dm is “Meissner stiffness” (response to flux).  Always D ≥ Dm.  (Mukerjee and 
Shastry, PRB 2007).  Here

σ(ω) = Dδ(ω) + . . .
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What about “integrable” models with an infinite number of 
conserved local quantities, none of which gives a lower bound?

Actually this happens quite often in 1D--simplest case is spinless 
interacting fermions (XXZ model in zero magnetic field).

The Drude weight is easy to calculate and nonzero at T=0.
20+ years of efforts to calculate it (or even prove that it is 
nonzero) at T>0, h=0, by either analytical or numerical methods.

(cf. Sirker, Pereira, Affleck, PRB 2011)
(Thermal Drude weight is easier, for reason said later: found by Klumper and Sakai)
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data from Sirker, Pereira, Affleck, PRB 2011
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Drude weight progress, from 2011

Prosen: there is an iterative process to construct a nonlocal 
quantity that gives a lower bound that depends non-analytically on 
anisotropy, with cusps at ∆=cos(π/n).  (PRL 2011)
(subsequent work generalizing this result: Ilievski-Prosen, …)

Karrasch-Bardarson-JEM: The Drude weight can be calculated 
numerically for all but the lowest temperatures at positive ∆, and 
essentially all temperatures at negative ∆.

The lower bound appears to saturate the full value at the cusps.
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“Non-equilibrium expansions”
Almost everything that follows will be specific to 1D systems, 
where we have special analytical and numerical tools.

A. “Point current”: A natural question about electrons is to 
compute the (charge or energy) current through a point.
Many beautiful works, especially in quantum impurity models.  Older works on translation-
invariant case: Sotiriadis-Cardy, Bernard-Doyon, Karrasch-Ilan-JEM
Solved (not too easily) by new hydrodynamical methods mentioned earlier

B. “Expansion”: with atoms, it is more natural to image the full 
distribution of atoms (or conceivably energy).  Two nice features:
1. The most natural model of 1D interacting atoms, the Lieb-Liniger model, is integrable.

2. For charge current in Lieb-Liniger, or energy current in the XXZ model, there is 
conservation of the spatially integrated current, which turns out to have remarkable 
consequences: expansion is controlled by a form of non-equilibrium thermodynamics.
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“Non-equilibrium expansions”

Lieb-Liniger model = Bose gas with delta-function interactions

Thermodynamics (Yang and Yang) interpolates from free bosons to 
free fermions as interaction strength increases.

Originally, it was only possible to measure momentum-space 
distributions; now several groups have achieved imaging of 
individual sites of an optical lattice (Greiner, Chin, Bloch, …).

One experimental example: 
Nature, 2004



How to quantify an expansion?

There is a great deal of theoretical work, especially on the Lieb-
Liniger case (~100 papers; Stringari,Caux-Konik,Gangardt,…).  Three time scales:

Short time: initial transient, which we ignore

Intermediate time: (becomes infinite if reservoirs are infinite)

Long time: long-time expansion into vacuum can be analyzed 
relatively simply in BA because asymptotic density is zero.

ρ(x) or ρE(x) t = 0t > 0

In a ballistic (nonzero Drude weight system), the first moment increases
quadratically in time.
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How to quantify an expansion?

ρ(x) or ρE(x) t = 0t > 0

In a ballistic (nonzero Drude weight system), the first moment increases
quadratically in time.



How to quantify an expansion?
At t = 0, prepare two leads at (µ1, T1) and (µ2, T2). The initial state on the

boundary between the two leads does not matter after some initial transient.
We can quantify the expansion by the time dependence of the first moment of
particle density (or similarly for energy)

M1 =

� ∞

−∞
n(x)x dx. (1)

The continuity equation relates density and current:

∂tn+ ∂xj = 0. (2)

Now

∂tM1 =

� ∞

−∞
x∂tndx = −

� ∞

−∞
x∂xj dx =

� ∞

−∞
j dx, (3)

where in the integration by parts we have assumed j(x) vanishes rapidly at
x = ±∞. We will make considerable use of the fact that in many problems of
interest �� ∞

−∞
j dx,H

�
= 0. (4)

Now go back to basic ideas of equilibration…



Linear and non-linear response: point current

For the final H a homogeneous integrable model, there is 
numerically a “generalized Stefan-Boltzmann law” to high accuracy 
(to be defined in a moment), which led us to the idea that this 
picture can be made exact for expansions.

For final H homogeneous and non-integrable, we do not observe a 
steady state.  We believe that the temperature gradient is 
decreasing and Fourier’s law is setting in, but cannot access very 
long times.

For final H inhomogeneous, there can be a steady state if the leads 
are integrable and J is a function of both temperatures jointly.

We can see the onset of the nontrivial power-laws in tunneling 
between Luttinger liquids as temperature is lowered.



One methodology slide (C. Karrasch)
Time-dependent DMRG at nonzero T





Alternative hydrodynamics:
from more conservation laws

∂tρE + ∂xjE = 0, ∂tjE + ∂xQ4 = 0

Energy transport in XXZ is special: because integrated energy current 
commutes with the Hamiltonian, we expect an additional continuity equation

This is familiar from Lorentz-invariant models (cf. Bernard-Doyon): the energy 
current is itself a conserved density, by symmetry of the stress-energy tensor.

In other words, energy transport in XXZ is like that in a Lorentz-invariant 
model, and expansion occurs according to a expansion potential or 
generalized pressure Q4.  (“cyclic law”)

The “q-boson” model is a lattice example of similar physics for charge current 
rather than energy current.



When the cyclic law is exact

Cyclic form of existence of f-function:

T1 T2

T1 T2

T3

j∞E (T1 → T2) + j∞E (T2 → T3) + j∞E (T3 → T1) = 0

Global energy current conservation 
connects what happens at 3 

interfaces



When the cyclic law is exact
T1 T2

T1 T2

T3

Global energy current conservation 
links spatial integrals of current across 

each interface, not steady-state 
current

In a CFT, probably same thing since 
there is a unique velocity, but they 

are not obviously connected in 
general.

Let j12 be the spatially integrated current in the region between reservoirs
1 and 2. Then global current conservation means

[H, j12 + j23 + j31] = 0. (1)

But this cyclic law implies that at every time j12 is of the form f(t, µ1, T1) −
f(t, µ2, T2).



Linear response: Drude weight
The cyclic law means that linear-response is enough to predict non-equilibrium.

The increase of the moment at linear-response can be related to the Drude
weight: focusing for the moment on energy current and a purely thermal gradi-
ent, we find

∂2
tM

th
1 = ∂t

� ∞

−∞
j dx = Gth × (∆T ). (1)

This can be checked numerically by comparing the rate of expansion to the
thermal Drude weight of the XXZ model computed by Klümper and Sakai.

Actually this connection exists in LR even without current conservation:
example is charge current in XXZ model
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Combine cyclicity with Drude weight:
Exact far-from-equilibrium energy expansion in XXZ
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Recent progress

The above is a very specialized trick to get some 
exact results for one model.  Can one develop a 
more general approach for hydrodynamics in 
integrable models?

Yes: recent work on (almost certainly) asymptotically 
exact solutions for this initial condition by

1. Key steps of approach (in one language)
Physical picture of kinetic theory (Boltzmann equation):
same spirit as El and Kamchatnov, PRL 2005

2. Does it pass XXZ numerical comparisons that 
previous similar ansatzes failed?

Castro-Alvaredo/Doyon/Yoshimura, PRX 2016 (Lieb-Liniger)
Bertini/Collura/De Nardis/Fagotti, PRL 2016 (XXZ)



Our starting point: think of particles in an integrable model 
as streaming (with self-consistent velocity) but not colliding

“Bethe-Boltzmann equation”

No collision term since quasiparticles retain their identity;
however, they modify each other’s velocities via phase shifts

This type of equation was written down in various older contexts:
I think the most relevant for the models here is

∂tρ(k, x, t) + ∂x [v({ρ(k�, x, t)})ρ(k, x, t)] = 0



Why Boltzmann equation gets modified in (classical or 
quantum) integrable systems

Solitons/particles pass through each other even in dense system;
no randomization of momentum and no collision term.

However, there is an interaction:

Classical Quantum

Phase shift from Bethe equations

but semiclassically an energy-dependent phase
shift is also just a time delay (Wigner)

Solitons delay each other

so velocity depends on other
solitons at spacetime point

τ = 2� dδ

dE



How do kinetic theory (Boltzmann equation) and 
hydrodynamics (Euler equations) give the same description?

Different integrable models just differ in the velocity form: three examples are

arXiv:1605.09790 [pdf, other]
Transport in out-of-equilibrium XXZ chains: exact profiles of charges and currents
Bruno Bertini, Mario Collura, Jacopo De Nardis, Maurizio Fagotti

This derives the equation directly for NLS and KdV solitons as a kinetic theory;
An alternate route is via hydrodynamical equations (cf. Doyon talk)

El and Kamchatnov for NLS solitons (dense generalization of Zakharov 1971):

Castro-Alvaredo/Doyon/Yoshimura for Lieb-Liniger

Bertini et al. for XXZ

http://arxiv.org/abs/1605.09790
http://arxiv.org/pdf/1605.09790
http://arxiv.org/format/1605.09790
http://arxiv.org/find/cond-mat/1/au:+Bertini_B/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Collura_M/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Nardis_J/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Fagotti_M/0/1/0/all/0/1


Equivalence is a little surprising, esp. in XXZ.
From 1984, by Orwell:

For integrable models:
(to at least as good an approximation as above)

TBA is GGE 
Kinetic theory is hydrodynamics 

One (functional) equation is an infinite hierarchy



Integrable hydrodynamics
Simplest case is Bose gas (Lieb-Liniger; Yang and Yang)
GGE = Generalized Gibbs Ensemble = include an
infinite number of conservation laws:

GGE (conserved quantities) is equivalent to distribution 
function, rather than containing less information.

Somewhat surprising for XXZ, where the charges are quite complicated; 
somehow Takahashi’s old TBA and Bertini et al. backflow leads to Drude 
weight, i.e., it “knows about” the deep quasilocal charges.

ρ(k, x, t)

�
ρ(k, x, t) dk = n(x, t)

�
kρ(k, x, t) = mv(x, t)

�
k2ρ(k, x, t) = 2m�(x, t)

...
�

knρ(k, x, t)

Kinetic theory: might as well work
with

instead of its moments.



Summary so far

Normal fluid:
Initial state → Local equilibrium → Hydrodynamics

Integrable fluid:
Initial state → Local GGE → Boltzmann/hydrodynamics

So, for non-local-GGE initial conditions, still need to solve 
difficult “quench” problem, at least locally.

Two-reservoir problem already solved in 2016 papers: solution is 
function of one variable (x/t).

Let’s look for full (x,t) solutions: are quantum dynamics really 
describable by these classical particle equations?

Mathematical properties of solutions (“semi-Hamiltonian structure”): Bulchandani, 
2017, arXiv, as for NLS
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These are comparisons for interacting spinless fermions (XXZ) between backwards 
Euler solution of Bethe-Boltzmann and microscopic DMRG simulations.
(figure from “Solvable quantum hydrodynamics”, V. Bulchandani, R. Vasseur, C. Karrasch, and JEM, arXiv April 2017)

Take XXZ in zero magnetic field.  Make a spatial variation of initial temperature.
Watch the energy spread out in time.

Note: nonzero temperature is required for coarse-graining time to be finite, 
according to basic principle that systems can’t relax faster than hbar/kT.
(Hence more physically generic than T=0 or Bethe-Bethe comparisons.)



Zoom in!
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Summary

1. The two-reservoir quench is now pretty well 
understood in various approaches.

2. For that and more general problems, it is useful to 
think about the Boltzmann equation for quasiparticles, 
whose only interaction is via delays (Bethe ansatz phase 
shifts), a.k.a. GHD.

3. This type of equation has a long history in classical 
integrable systems (El and Kamchatnov).  Even for fairly 
small quantum systems, it can be remarkably successful in 
comparison to microscopics.

What is left out: for other initial states, need to solve initial GGE 
problem;
possible singularities;
corrections from integrability-breaking terms;
non-ballistic behavior (e.g., in gapped XXZ regions)
subleading terms (e.g., Schwarzian in Sotiriadis-Cardy)



Brief intro to quantum hydrodynamics
above 1D: near-equilibrium

An example of recent progress on a long-standing question: 

Are there intrinisic limits on how fast a system can relax to equilibrium?

Related to conductivity via the Kubo formula: how rapidly does the current-current correlation decay in time? 

Also related to existence of “hydrodynamical” regimes of electron transport where quasiparticle scattering is 
not the right picture. 

Some past formulations: 

Mott-Ioffe-Regel: mean free path must be at least the lattice spacing

Sachdev:  

Kovtun-Son-Starinets: the viscosity is bounded below* 

Hartnoll: reinterpret viscosity bound as a lower limit on diffusion constant 

τ ≥ �
kBT

η

s
≥ �

4πkB

quantum e−iHt/� ↔ e−H/(kBT ) thermal



Near-equilibrium
Why these bounds matter: nature seems to contain such behavior

τ ≥ �
kBT

η

s
≥ �

4πkB

dynamically, therefore, Sr3Ru2O7 can be thought
of as two metallic fluids, one which participates
directly in the quantum criticality and another, con-
taining a higher density of quasiparticles, which
does not.

Given the extensive knowledge of the thermo-
dynamic and quasiparticle properties of Sr3Ru2O7,
it is natural to investigate its electrical transport
properties both below and above T* (11). In Fig. 1,
we show the temperature evolution of the data
at representative magnetic fields from across the
range studied, for T > Tc. In zero field, r varies
approximately quadratically with temperature for
1.2 K < T < 10 K, which is in qualitative agree-

ment with previous reports (2, 12). As the field is
increased toward Hc, the temperature range over
which the approximately quadratic temperature
dependence occurs shrinks, until at the critical
field of 7.9 T, the resistivity varies linearly with
temperature over the whole range shown, with
a gradient of 1.1 microhm·cm/K. For H > Hc

(Fig. 1B) there is a small negative magnetoresist-
ance, but the gradient of the resistivity once it has
become linear is almost independent of field.

That T-linear resistivity is seen in Sr3Ru2O7 is
surprising. As discussed above, the majority of
the quasiparticles do not participate in the mass
divergence at Hc. If they were simply an inde-
pendent Fermi liquid contributing to the conduc-
tivity in parallel with the quantum critical fluid,
they would be expected to short out the contribu-
tion of the small number of carriers that are be-
coming heavy on the approach to Hc, giving a
dominantT2 contribution to the resistivity. The data
of Fig. 1 strongly suggest that as well as inducing
a mass divergence in a subset of the carriers, the
quantum criticality in Sr3Ru2O7 is associated with
the onset of efficient scattering, with strength pro-
portional to T, which affects all the quasiparticles.

Qualitative support for this basic picture comes
from the data presented in Fig. 1C, in which we
show the resistivity of Sr3Ru2O7 for the same
set of fields as in Fig. 1A, but for temperatures
extending to 400 K. Above 100 K, r is again
T-linear, in this case at all applied fields, but with
a gradient ~30% lower than that seen at Hc for

T < 20 K. There is an interesting correlation be-
tween this observation and previous studies of the
specific heat. Measurements to elevated temper-
atures show that forT>T*, g is field-independent
and ~65%of the low temperature valuemeasured
in zero applied field (8). This implies a similar fall
in the average effective mass, or equivalently, a
35% rise in the average Fermi velocity. The data
in Fig. 1C therefore suggest that there is a similar
scattering rate per kelvin below T* atHc and well
above T* at all applied fields.

Although attention is typically focused on the
power law dependence of the resistivity, the ab-
solute magnitude of the scattering rate is also an
important quantity. A phenomenological argument
for a T-linear scattering rate has been discussed
by a number of authors in the context of the
cuprates and quantum critical metals and fluids
(13–15). Because quantum criticality is associ-
ated with the depression of energy scales toward
T = 0, temperature becomes the only relevant en-
ergy scale. Equipartition of energy then applies,
and the characteristic energy of any quantum crit-
ical degree of freedom is just kBT, where kB is
Boltzmann’s constant. This in turn implies the ex-
istence of a characteristic time, sometimes referred
to as the Planck time tP ~ ħ/kBT, where ħ is Planck’s
constant divided by 2p. Although the simplic-
ity of this expression is appealing, it is far from
obvious that (TtP)

−1 ~ kB/ħ defines a scattering
rate relevant to a measurement of electrical re-
sistivity. Resistive scattering processesmust relax

Fig. 1. (A) Resistivity (r) of high-purity single
crystal Sr3Ru2O7 at 0 T (red), 4 T (blue), 6 T (green),
7 T (orange), and its critical field moHc= 7.9 T (black).
The gray dashed lines are fits of the type r0 + AT2

to the low-temperature data, which illustrate the
suppression of the temperature at which the re-
sistivity crosses over to being quadratic in temper-
ature as H is tuned toward Hc. (B) r at Hc (black),
12 T (blue), and 14 T (red). (C) r at 0 T, 4 T, 6 T, 7 T,
and Hc over an extended temperature range up to
400 K. Above 20 K, there is a negative magneto-
resistance, but it is so small that data at all fields
overlap when plotted on this scale. The dotted line
shows the extrapolation of the low-temperature
linear resistivity at 7.9 T.

Fig. 2. In spite of two orders of magnitude variations in their Fermi velocities (vF), a wide range of metals
in which the resistivity varies linearly with temperature have similar scattering rates per kelvin. These
include heavy fermion, oxide, pnictide, and organic metals for which T-linear resistivity can be seen down
to low temperatures with appropriate tuning by magnetic field, chemical composition, or hydrostatic
pressure, and more conventional metals for which T-linear resistivity is seen at high temperatures (blue
symbols). At low temperatures, the scattering rate per kelvin of a conventional metal is orders of mag-
nitude lower, as illustrated for the case of Cu at 10 K, shown in the lower right hand corner (11). On the
graph, the line marked a = 1 corresponds to (tT )−1 = kB/ℏ. The near-universality of the scattering rates is
observed in spite of the fact that the scattering mechanisms vary across the range of materials. The point
for Bi2Sr2Ca0.92Y0.08Cu2O8+d is based on the value a = 1.3, which is determined from optical conductivity
(21), combined with the measured value of vF for this material (44). For all others, the analysis is based on
resistivity data combined with knowledge of the Fermi volume and average Fermi velocity. Full details of
the determination of the parameters in the axis labels are given in (11).

www.sciencemag.org SCIENCE VOL 339 15 FEBRUARY 2013 805

REPORTS

Bruin et al. (Mackenzie), 
Science 2013

is satisfied (I believe) in all experimental liquids, 
and within ~10 of saturation in helium and QGP, 
but there exist violations in exotic theories



Solid-state electrons where fluid properties measured
2DEGs (Molenkamp & others, 1990s)
Graphene (P. Kim; A. Geim)
Layered crystals (A. Mackenzie)
…

Hydrodynamics of electrons
In materials that are very clean, momentum relaxation may take a 
relatively long time.  It might be better to view electrons as a fluid rather 
than as independently scattering quasiparticles.

Nowack et al., Nat. Mat. 2013



Near-equilibrium

New work, originally motivated by AdS but derivable without gravity dual: 
(Kitaev, Maldacena-Shenker-Stanford, 2015): 

The Lyapunov exponent for short-time onset of chaos is bounded 

Other ways quantum mechanics modifies hydrodynamics:

“Hall viscosity” in topological states: (Avron; Read; Gurarie…) stress tensor is 

and T-breaking allows an odd contribution 

What is Hall viscosity in T-breaking gapless systems?
Allowed by symmetry.

λL ≤ 2πkBT

�

Tij = pδij − λijklξkl − ηijklξ̇kl

η(A)
ijkl = −η(A)

klij



Hydrodynamics of electrons
What makes electron fluids different from classical fluids?

In 2D and 3D, can induce broken T by a magnetic field
and have a new kind of viscosity, “Hall viscosity”

Is significant, and could be observable, in simple metals:
T. Scaffidi, N. Nandi, B. Schmidt, AP Mackenzie, JEM, PRL 17

In the quantum Hall regime there are two contributions in the q^2
correction to Hall conductance

that are comparable (Hoyos-Son): one from Hall viscosity and one from
(inverse) internal compressibility.  In a metal, the internal compressibility part is 
small and the Hall viscosity follows from a Boltzmann calculation.

σxy(q) = σxy(0) +O(q2)



Hydrodynamics of electrons
What makes electron fluids different from classical fluids?

In 2D and 3D, can induce broken T by a magnetic field
and have a new kind of viscosity, “Hall viscosity”

Is significant, and could be observable, in simple metals:
T. Scaffidi, N. Nandi, B. Schmidt, AP Mackenzie, JEM, PRL 17

In the quantum Hall regime there are two contributions in the q^2
correction to Hall conductance

that are comparable (Hoyos-Son): one from Hall viscosity and one from
(inverse) internal compressibility. 

In a metal, the internal compressibility part is small and the Hall viscosity follows 
from a kinetic theory calculation.  (work mentioned above)

σxy(q) = σxy(0) +O(q2)



Topology (part III)

What are (insulating) topological phases of matter?
How do some of them support quantized transport?

What is a “Berry phase”?
How do Berry phases give a unified approach to insulators, metals, …

What are the unique transport properties of topological metals?
Does it help to go to nonzero frequency or nonlinear effects?

Topological insulators: theory 2005-present
New topological semimetals: 2012-present



Berry phase in solids
Every simple gauge-invariant object made from A and F seems to 
mean something physically.  We can identify several types of 
Berry-phase phenomena of nearly free electrons:

Insulators: 

Topological phases independent of symmetry:
Examples: 2D and 4D QHE (1982,1988) 

Topological phases dependent on symmetry
Examples: 2D and 3D Z2 topological insulators (2005,2007) 

The Berry-phase approach to understanding these leads to 
expressions that are physically meaningful without symmetries:

Examples: electrical polarization (1987-1990); 
magnetoelectric effect (~2010) non-Abelian Berry phase

Metals: Several long-observed phenomena in metals are now 
believed to be Berry-phase effects.  (AHE, CPGE, ) 
Are there other wave function properties that could matter?



Types of order
Much of condensed matter is about how different kinds of order emerge from 
interactions between many simple constituents.

Until 1980, all ordered phases could be understood as “symmetry breaking”:

an ordered state appears at low temperature when the system spontaneously 
loses one of the symmetries present at high temperature.

Examples:
Crystals break the translational and rotational symmetries of free space.
The “liquid crystal” in an LCD breaks rotational but not translational symmetry.
Magnets break time-reversal symmetry and the rotational symmetry of spin space.
Superfluids break an internal symmetry of quantum mechanics.



Types of order
At high temperature, entropy dominates and leads to a disordered state.
At low temperature, energy dominates and leads to an ordered state.

In case this sounds too philosophical, there are testable results that come out of 
the “Landau theory” of symmetry-breaking:

“Universality” at continuous phase transitions (Wilson, Fisher, Kadanoff, ...)
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Types of order
In 1980, the first ordered phase beyond symmetry breaking was discovered.

Electrons confined to a plane and in a strong magnetic field show, at low enough 
temperature, plateaus in the “Hall conductance”:

force I along x and measure V along y

on a plateau, get

at least within 1 in 109 or so.

What type of order causes
this precise quantization?

Note I: the AC Josephson effect between superconductors similarly allows 
determination of e/h.
Note II: there are also fractional plateaus, about which more later.

σxy = n
e2

h



Topological order

Definition I:

In a topologically ordered phase, some physical response function is given by a 
“topological invariant”.

What is a topological invariant?  How does this explain the observation?

Definition II:

A topological phase is insulating but always has metallic edges/surfaces when put 
next to vacuum or an ordinary phase.

What does this have to do with Definition I?

“Topological invariant” = quantity that does not 
change under continuous deformation

(A third definition: phase is described by a “topological field theory”)

What type of order causes the precise quantization
in the Integer Quantum Hall Effect (IQHE)?



Traditional picture: 
Landau levels

Normally the Hall ratio is (here n is a density)

Then the value (now n is an integer)

corresponds to an areal density

This is exactly the density of “Landau levels”, the discrete spectrum of eigenstates 
of a 2D particle in an orbital magnetic field, spaced by the cyclotron energy.  The 
only “surprise” is how precise the quantization is.

σxy = n
e2

h

RH =
Ix

VyB
=

1
nec
⇒ σxy =

nec

B

n

2π�2
= neB/hc.



Topological invariants
Most topological invariants in physics arise as integrals of some geometric quantity.

Consider a two-dimensional surface.

At any point on the surface, there are two radii of curvature.
We define the signed “Gaussian curvature”

Now consider closed surfaces.

The area integral of the curvature over the whole surface is “quantized”, and is a 
topological invariant (Gauss-Bonnet theorem).

where the “genus” g = 0 for sphere, 1 for torus, n for “n-holed torus”.

from left to right, equators
have negative, 0, positive

Gaussian curvature

κ = (r1r2)−1

�

M
κ dA = 2πχ = 2π(2− 2g)



Topological invariants

Bloch’s theorem:
One-electron wavefunctions in a crystal
(i.e., periodic potential) can be written

where k is “crystal momentum” and u is periodic (the same in every unit cell).

Crystal momentum k can be restricted to the Brillouin zone, a region of k-space 
with periodic boundaries.
As k changes, we map out an “energy band”.  Set of all bands = “band structure”.

The Brillouin zone will play the role of the “surface” as in the previous example,

which will give us the “curvature”.

Good news:
for the invariants in the IQHE and topological insulators,

we need one fact about solids

and one property of quantum mechanics, the Berry phase

ψ(r) = eik·ruk(r)



Berry phase
What kind of “curvature” can exist for electrons in a solid?

Consider a quantum-mechanical system in its (nondegenerate)
ground state.

The adiabatic theorem in quantum mechanics implies that,
if the Hamiltonian is now changed slowly, the system remains in 
its time-dependent ground state.

But this is actually very incomplete (Berry).

When the Hamiltonian goes around a closed loop k(t) in 
parameter space, there can be an irreducible phase

relative to the initial state.

Why do we write the phase in this form?
Does it depend on the choice of reference wavefunctions?

Michael Berry
φ =

�
A · dk, A = �ψk|− i∇k|ψk�



Berry phase
Why do we write the phase in this form?
Does it depend on the choice of reference wavefunctions?

If the ground state is non-degenerate, then the only freedom in 
the choice of reference functions is a local phase:

Under this change, the “Berry connection” A changes by a
gradient,

just like the vector potential in electrodynamics.

So loop integrals of A will be gauge-invariant,
as will the curl of A, which we call the “Berry curvature”.

Michael Berry

φ =
�

A · dk, A = �ψk|− i∇k|ψk�

ψk → eiχ(k)ψk

A→ A+∇kχ

F = ∇×A



Berry phase in solids
In a solid, the natural parameter space is electron momentum.

The change in the electron wavefunction within the unit cell leads 
to a Berry connection and Berry curvature:

We keep finding more physical properties that are determined 
by these quantum geometric quantities.

The first was that the integer quantum Hall effect in a 2D crystal 
follows from the integral of F (like Gauss-Bonnet!).  Explicitly,

S. S. Chern

F = ∇×A
ψ(r) = eik·ruk(r)

A = �uk|− i∇k|uk�
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TKNN, 1982          “first Chern number”

F = ∇×A



The importance of the edge
But wait a moment...

This invariant exists if we have energy bands that are
either full or empty, i.e., a “band insulator”.

How does an insulator conduct charge?

Answer: (Laughlin; Halperin)

There are metallic edges at the boundaries of our 2D
electronic system, where the conduction occurs.

These metallic edges are “chiral” quantum wires (one-way 

streets).  Each wire gives one conductance quantum (e2/h).

The topological invariant of the bulk 2D material just tells how 
many wires there have to be at the boundaries of the system.

How does the bulk topological invariant “force” an edge mode?

σxy = n
e2

h

n=1
IQHE

Ordinary insulator

e



Theme for today: different kinds of 
“transport” in topological systems

Normal metallic transport: states are fixed but occupancy changes

Topological edge/surface transport: same idea, but set of available states 
is unusual (e.g., IQHE edge is “one-way street”)

Pumping transport: adiabatic evolution of ground state
(Laughlin picture of IQHE; Thouless picture of polarization)
No dissipation so possibility of precise quantization

Are there transport effects of wave function geometry in bulk metals?

What about nonzero frequency (AC transport, optics, …)?

Will not cover superconductors, Majorana fermions, FQHE, …



The importance of the edge
The topological invariant of the bulk 2D material 
just tells how many wires there have to be at the 
boundaries of the system.

How does the bulk topological invariant “force” an 
edge mode?

Answer:

Imagine a “smooth” edge where the system 
gradually evolves from IQHE to ordinary insulator.  
The topological invariant must change.

But the definition of our “topological invariant” 
means that, if the system remains insulating so that 
every band is either full or empty, the invariant 
cannot change.

∴ the system must not remain insulating.

n=1
IQHE

Ordinary insulator

e

(What is “knotted” are the electron wavefunctions)

IQHE Ordinary insulator
(or vacuum)



2005-present and 
“topological insulators” 

The same idea will apply in the new topological 
phases discovered recently:

a “topological invariant”, based on the Berry phase, 
leads to a nontrivial edge or surface state at any 
boundary to an ordinary insulator or vacuum.

However, the physical origin, dimensionality, and 
experiments are all different.

n=1
IQHE

Ordinary insulator

e

We discussed the IQHE so far in an unusual way.  The magnetic field entered 
only through its effect on the Bloch wavefunctions (no Landau levels!).

This is not very natural for a magnetic field.
It is ideal for spin-orbit coupling in a crystal.



The “quantum spin Hall effect”
Spin-orbit coupling appears in nearly every atom and 
solid.  Consider the standard atomic expression

For a given spin, this term leads to a momentum-
dependent force on the electron, somewhat like a 
magnetic field.

The spin-dependence means that the time-reversal 
symmetry of SO coupling (even) is different from a real 
magnetic field (odd).

It is possible to design lattice models where spin-orbit 
coupling has a remarkable effect: (Murakami, Nagaosa, 
Zhang 04; Kane, Mele 05)

spin-up and spin-down electrons are in IQHE states, 
with opposite “effective magnetic fields”.

n=1
IQHE

Ordinary insulator

e

HSO = λL · S

2D topological
insulator

Ordinary insulator



The “quantum spin Hall effect”
In this type of model, electron spin is conserved, and 
there can be a “spin current”.

An applied electrical field causes oppositely directed 
Hall currents of up and down spins.

The charge current is zero, but the “spin current”
is nonzero, and even quantized!

2D topological
insulator

Ordinary insulator

J i
j = σ

s
HεijkEk

However...
1. In real solids there is no conserved direction of spin.

2. So in real solids, it was expected that “up” and “down” would always 
mix and the edge to disappear.

3. The theory of the above model state is just two copies of the IQHE.



The 2D topological insulator
It was shown in 2005 (Kane and Mele) that, in real 
solids with all spins mixed and no “spin current”, 
something of this physics does survive.

In a material with only spin-orbit, the “Chern number” 
mentioned before always vanishes.

Kane and Mele found a new topological invariant in 
time-reversal-invariant systems of fermions.

But it isn’t an integer! It is a Chern parity (“odd” or 
“even”), or a “Z2 invariant”.

2D topological
insulator

Ordinary insulator

Systems in the “odd” class are “2D topological insulators”

1. Where does this “odd-even” effect come from?
2. What is the Berry phase expression of the invariant?
3. How can this edge be seen?



The spin-independent part consists of a tight-binding term
on the honeycomb lattice, plus possibly a sublattice staggering

The first term gives a semimetal with Dirac nodes (as in 
graphene).

The second term, which appears if the sublattices are 
inequivalent (e.g., BN), opens up a (spin-independent) gap. 

When the Fermi level is in this gap, we have an ordinary band 
insulator.

Example: Kane-Mele-Haldane model for graphene
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y

L
x

d
1

d
2

!ei"x

!ei"x+i"y!ei"y

!

H0 = −t
∑

〈ij〉

c†iσcjσ + λv

∑

i

ξic
†
iσciσ

ξi =

{

1 if i in A sublattice

−1 if i in B sublattice



The spin-independent part consists of a tight-binding term
on the honeycomb lattice, plus possibly a sublattice staggering

The spin-dependent part contains two SO couplings

The first spin-orbit term is the key: it involves second-neighbor hopping (vij is ±1 
depending on the sites) and Sz.  It opens a gap in the bulk and acts as the desired 
“pseudofield” if large enough.

Claim: the system with an SO-induced gap is fundamentally different from
the system with a sublattice gap: it is in a different phase.
It has gapless edge states for any edge (not just zigzag).

Example: Kane-Mele-Haldane model for graphene

H
′ = iλSO

∑
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vijc
†
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vij ∝ (d1 × d2)z



Example: Kane-Mele-Haldane model for graphene

Without Rashba term (second SO coupling), have two copies of Haldane’s 
IQHE model.  All physics is the same as IQHE physics.

The Rashba term violates conservation of Sz--how does 
this change the phase?  Why should it be stable once up 
and down spins mix?

H
′ = iλSO

∑

〈〈ij〉〉

vijc
†
is

z
cj + iλR

∑

〈ij〉

c
†
i (s × d̂ij)zcj

H0 = −t
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∑
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†
iσciσ



The 2D topological insulator
1. Where does this “odd-even” effect come from?

In a time-reversal-invariant system of electrons, all 
energy eigenstates come in degenerate pairs.

The two states in a pair cannot be mixed by any T-
invariant perturbation. (disorder)

So an edge with a single Kramers pair of modes is 
perturbatively stable (C. Xu-JEM, C. Wu et al., 2006).

 



The 2D topological insulator
1. Where does this “odd-even” effect come from?

In a time-reversal-invariant system of electrons, all 
energy eigenstates come in degenerate pairs.

The two states in a pair cannot be mixed by any T-
invariant perturbation. (disorder)

So an edge with a single Kramers pair of modes is 
perturbatively stable (C. Xu-JEM, C. Wu et al., 2006).

But this rule does not protect
an ordinary quantum wire
with 2 Kramers pairs:
 

E

k

E

k

✓

The topological vs. ordinary distinction depends on time-reversal symmetry.



Experimental signatures
Key physics of the edges: robust to disorder and hence good 
charge conductors .

The topological insulator is therefore detectable by 
measuring the two-terminal conductance of a finite sample: 
should see maximal 1D conductance. 

In other words, spin transport does not have to be measured 
to observe the phase.

Materials recently proposed: Bi, InSb, strained Sn (3d), 
HgTe (2d) (Bernevig, Hughes, and Zhang, Science (2006); experiments 
by Molenkamp et al. (2007) see an edge, but G ~ 0.3 G0)

G =
2e2

h



The 2D topological insulator
Key: the topological invariant predicts the “number of quantum wires”.

While the wires are not one-way, so the Hall conductance is zero, they still contribute to 
the ordinary (two-terminal) conductance.

There should be a low-temperature edge conductance from one spin channel at each edge:

G =
2e2

h

This appears in (Hg,Cd)Te quantum wells as a quantum Hall-like plateau in zero magnetic field.

König et al., 
Science (2007)

Laurens 
Molenkamp



“Negative” bandgap of 
HgTe = inverted band



Review of 3D facts

The 2D conclusion is that band insulators come in two classes:
ordinary insulators (with an even number of edge modes, generally 0)
“topological insulators” (with an odd number of Kramers pairs of edge modes, generally 1).

What about 3D?  The only 3D IQHE states are essentially layered versions of 2D states:
Mathematically, there are three Chern integers:

Cxy (for xy planes in the 3D Brillouin torus), Cyz, Cxz

There are similar layered versions of the topological insulator, but these are not very stable; 
intuitively, adding parities from different layers is not as stable as adding integers.

However, there is an unexpected 3D topological insulator state that does not have any 
simple quantum Hall analogue.  For example, it cannot be realized in any model where up 
and down spins do not mix!

General description of invariant from JEM and L. Balents, PRB RC 2007.
The connection to physical consequences in inversion-symmetric case (proposal of BiSb, 
Dirac surface state):  Fu, Kane, Mele, PRL 2007.  See also R. Roy, arXiv.



Topological insulators in 3D
1. This fourth invariant gives a robust 3D “strong topological insulator” whose metallic 
surface state in the simplest case is a single “Dirac fermion” (Fu-Kane-Mele, 2007)

2. Some fairly common 3D materials might be topological insulators! (Fu-Kane, 2007)

Claim:
Certain insulators will always have metallic surfaces with strongly spin-dependent structure

How can we look at the metallic surface state of a 3D material to test this prediction?

kx

ky

E

EF

kx

ky

(a) (b)



What is quantized in a 3D TI?
Electrodynamics in insulators…

We know that the constants " and # in Maxwell’s equations can be modified 
inside an ordinary insulator.

Particle physicists in the 1980s considered what happens if a 3D insulator 
creates a new term (“axion electrodynamics”, Wilczek 1987)

This term is a total derivative, unlike other magnetoelectric couplings.
It is also “topological” by power-counting.

The angle $ is periodic and odd under T.

A T-invariant insulator can have two possible values: 0 or %.

∆LEM =
θe2

2πh
E · B =

θe2

16πh
�αβγδFαβFγδ.



Axion E&M

This explains a number of properties of the 3D topological insulator when its 
surfaces become gapped by breaking T-invariance:

Magnetoelectric effect:
applying B generates polarization P, applying E generates magnetization M)

∆LEM =
θe2

2πh
E · B =

θe2

16πh
�αβγδFαβFγδ.

Topological insulator slab

E j

E j

B

σxy = (n +
θ

2π
)
e2

h

σxy = (m− θ

2π
)
e2

h



Graphene QHE
The connection is that a single Dirac fermion contributes a half-integer QHE: this 

is seen directly in graphene if we recall the extra fourfold degeneracy. 
Data shown below from Y. Zhang et al. (Kim group, Columbia)

©!!""#!Nature Publishing Group!

!

Interference-induced colour shifts, cross-correlated with an atomic
force microscopy profile, allow us to identify the number of depos-
ited graphene layers from optical images of the samples (Supplemen-
tary Information). After a suitable graphene sample has been
selected, electron beam lithography followed by thermally evapor-
ated Au/Cr (30 nm and 5 nm, respectively) defines multiple electro-
des for transport measurement (Fig. 1a, right inset).With the use of a
Hall-bar-type electrode configuration, the magnetoresistance Rxx

and Hall resistance Rxy are measured. Applying a gate voltage, Vg,
to the Si substrate controls the charge density in the graphene
samples.
Figure 1a shows the gate modulation of Rxx at zero magnetic field

in a typical graphene device whose lateral size is,3 mm.Whereas Rxx

remains in the,100-Q range at high carrier density, a sharp peak at
,4 kQ is observed at V g < 0. Although different samples show
slightly different peak values and peak positions, similar behaviours
were observed in three other graphene samples that we measured.
The existence of this sharp peak is consistent with the reduced carrier
density as EF approaches the Dirac point of grapheme, at which the
density of states vanishes. Thus, the gate voltage corresponding to the
charge-neutral Dirac point, VDirac, can be determined from this peak
position. A separate Hall measurement provides a measure for the
sheet carrier density, n s, and for the mobility, m, of the sample, as
shown in Fig. 1b, assuming a simple Drude model. The sign of n s

changes at Vg ¼ VDirac, indicating that EF does indeed cross the
charge-neutral point. Mobilities are higher than 104 cm2V21 s21 for
the entire gate voltage range, considerably exceeding the quality of
graphene samples studied previously8,9.
The exceptionally high-mobility graphene samples allow us to

investigate transport phenomena in the extreme magnetic quantum
limit, such as the QHE. Figure 2a showsRxy and Rxx for the sample of
Fig. 1 as a function of magnetic field B at a fixed gate voltage Vg .
VDirac. The overall positive Rxy indicates that the contribution is
mainly from electrons. At high magnetic field, Rxy(B) exhibits
plateaux and Rxx is vanishing, which are the hallmark of the
QHE. At least two well-defined plateaux with values (2e2/h)21 and
(6e2/h)21, followed by a developing (10e2/h)21 plateau, are observed
before the QHE features transform into Shubnikov de Haas (SdH)
oscillations at lower magnetic field. The quantization of Rxy for these
first two plateaux is better than 1 part in 104, precise within the
instrumental uncertainty. We observed the equivalent QHE features
for holes with negative Rxy values (Fig. 2a, inset). Alternatively, we
can probe the QHE in both electrons and holes by fixing themagnetic
field and changing Vg across the Dirac point. In this case, as Vg

increases, first holes (Vg , VDirac) and later electrons (Vg . VDirac)
fill successive Landau levels and exhibit the QHE. This yields an
antisymmetric (symmetric) pattern of Rxy (Rxx) in Fig. 2b, with Rxy

quantization in accordance with

R21
xy ¼^gsðnþ 1=2Þe2=h ð2Þ

where n is a non-negative integer and ^ stands for electrons and
holes, respectively. This quantization condition can be translated to
the quantized filling factor v ¼ ^g s(n þ 1/2) in the usual QHE
language. In addition, there is an oscillatory structure developed
near the Dirac point. Although this structure is reproducible for any
given sample, its shape varies from device to device, suggesting
potentially mesoscopic effects depending on the details of the sample
geometry13. Although the QHE has been observed in many 2D

Figure 2 | Quantized magnetoresistance and Hall resistance of a graphene
device. a, Hall resistance (black) and magnetoresistance (red) measured in
the device in Fig. 1 at T ¼ 30mK and Vg ¼ 15V. The vertical arrows and the
numbers on them indicate the values of B and the corresponding filling
factor n of the quantumHall states. The horizontal lines correspond to h/e2n
values. The QHE in the electron gas is shown by at least two quantized
plateaux in Rxy, with vanishing Rxx in the corresponding magnetic field
regime. The inset shows the QHE for a hole gas at Vg ¼ 24V, measured at
1.6 K. The quantized plateau for filling factor n ¼ 2 is well defined, and the
second and third plateaux with n ¼ 6 and n ¼ 10 are also resolved. b, Hall

resistance (black) and magnetoresistance (orange) as a function of gate
voltage at fixed magnetic field B ¼ 9T, measured at 1.6K. The same
convention as in a is used here. The upper inset shows a detailed view of
high-filling-factor plateaux measured at 30mK. c, A schematic diagram of
the Landau level density of states (DOS) and corresponding quantum Hall
conductance (jxy) as a function of energy. Note that, in the quantum Hall
states, jxy ¼ 2Rxy

21. The LL index n is shown next to the DOS peak. In our
experiment the Fermi energy EF can be adjusted by the gate voltage, andRxy

21

changes by an amount g se
2/h as EF crosses a LL.

LETTERS NATURE|Vol 438|10 November 2005
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Berry phase
Why do we write the phase in this form?
Does it depend on the choice of reference wavefunctions?

If the ground state is non-degenerate, then the only freedom in 
the choice of reference functions is a local phase:

Under this change, the “Berry connection” A changes by a
gradient,

just like the vector potential in electrodynamics.

So loop integrals of A will be gauge-invariant,
as will the curl of A, which we call the “Berry curvature”.

Note:  If more than 1 degenerate state,
the connection is non-Abelian:

φ =
�

A · dk, A = �ψk|− i∇k|ψk�

ψk → eiχ(k)ψk

A→ A+∇kχ

F = ∇×A

Aαβ = �ψα
k |− i∇k|ψβ

k �



Topological response
Idea of “axion electrodynamics in insulators”

there is a “topological” part of the magnetoelectric term

that is measured by the orbital magnetoelectric polarizability

and computed by integrating the “Chern-Simons form” of the Berry phase

(Qi, Hughes, Zhang, 2008; Essin, JEM, Vanderbilt 2009)
This integral is quantized only in T-invariant insulators, but contributes in all insulators.
Has just the right gauge ambiguity under “large gauge transformations”.

∆LEM =
θe2

2πh
E · B =

θe2

16πh
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Warmup for metals:
polarization in insulators

Electrical polarization: “simple” Berry phase effect in solids (took about 50 years to 
understand how to calculate polarization of a solid from its unit cell)

Sum the integral of A over bands: in one spatial dimension,

Intuitive idea: think about the momentum-position commutation relation

More seriously: relate changes in P to currents moving through the unit cell.

Polarization isn’t quantized in general; it is just a simple physical observable 
determined by the Berry phase.  Note that there is an ambiguity ne.

Broader reason, in hindsight: E(k), the band structure, is k-symmetric with time-
reversal, even with broken inversion.  Anything related to inversion-breaking has to 
come from the wavefunction, and at low energy, usually from the Berry phase.

A = �uk|− i∇k|uk� ≈ �r�

P =
�

v

e

�
dq

2π
�uv(q)| − i∂q|uv(q)�



Claim: the biggest omission in Ashcroft and Mermin (standard solids text) is a 
term in the semiclassical equations of motion, the (Karplus-Luttinger) 
anomalous velocity.

a “magnetic field” in momentum space.

The anomalous velocity results from changes in the electron distribution within 
the unit cell: the Berry phase is connected to the electron spatial location.

Example I: the intrinsic anomalous Hall effect in itinerant magnets (Fe, e.g.)

Example II: helicity-dependent photocurrents in optically active materials

Example III: optical rotation in gyrotropic/chiral materials with T symmetry

Can we get anything quantized/interesting in a metal?

dxa

dt
=

1
�

∂�n(k)
∂ka

+ Fab
n (k)

dkb

dt
.

What about metals?



Anomalous Hall effect (100+ years)
From Nagaosa et al., RMP 2011

σxy =
e2

h
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2π
+ extrinsicSundaram and Niu, 1999



Remark on metallic piezoelectric and 
piezoelectromagnetic effects

D. Varjas, A. G. Grushin, R. Ilan, JEM, PRL 2016

The polarization integral is not well-defined in a metal, and we know that
static polarization is not observable.

Changes in polarization introduce currents, and it turns out that these 
currents still exist in a metal: this dynamical piezoelectricity involves 
Berry curvature in a mixed parameter and momentum space.

Also works for magnetoelectric effect: like P, the Chern-Simons integral

is related to (second) Chern form F ^ F in 4D (3 momenta + 1 
parameter).  What if we don’t change the material in time?

θ = − 1
4π
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Two other “mystery” effects in metals:
I. Nonlinear optics: CPGE (circular photogalvanic effect)
(JEM and J. Orenstein, PRL 2010; Deyo et al., arXiv)

Currents are switched by the sense of circular polarization, as previously 
observed in a series of experiments by S.D. Ganichev et al.  We believe 
this is entirely or almost entirely a Berry-phase effect.

Can we understand this effect beyond semiclassics? 

ky

dk/dt

eE
v1

v0



2. Linear optics: Chiral materials (and sugar water!) can 
show optical rotation in transmission, the Faraday effect, 
even without time-reversal breaking.  (J. Orenstein and 
JEM, PRB 2012, motivated by cuprates)

1. Why they do not show Kerr effect (rotation in 
reflection, rather than transmission).  (Zhong, 
Orenstein, Moore, PRL 2015)

2. Surprise: this problem is intimately connected to 
the “chiral magnetic effect” proposed in Weyl 
semimetals, although as sometimes described that 
effect is actually zero for topological reasons. (Zhong, 
Moore, Souza, PRL 2016)



Natural optical activity 
or optical gyrotropy: 

like a Faraday effect in a non-
magnetic material

Occurs in materials with low spatial 
symmetry (intrinsic handedness), 

such as quartz or selenium



3D Dirac and Weyl metals
Can we find 3D materials that are massless semimetals like graphene?

Yes!  There are two ways to generalize graphene’s massless “Dirac electrons” to 3D.

In the early days of quantum mechanics, two alternatives were put forward that are 
“half” of Dirac’s celebrated equation for the electron.   Majorana found one….

Dirac: 4 by 4 matrix equation describes the electron and the positron
4-band semimetals found in Na3Bi, Cd2As3, 2013

Weyl: 2 by 2 matrix equation describes a particle with only one “handedness”
Does not seem to exist in the standard model; neutrinos were a possibility
2-band semimetals found in “inversion-breaking” TaAs, 2014-2015

And now for something seemingly different…
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Scientific Achievement 
!   Prediction of Weyl semimetal, a 3D 

version of graphene, and possible 
realization in pyrochlore iridates.  

!   Arises in materials with strong-spin 
orbit coupling that break either time-
reversal or inversion symmetry. The 
Dirac node is topologically protected. 

Significance 
Leads to exotic ‘Fermi arc’ surface states. 
A Topological phase beyond topological 
insulators. 

Publications  
!"#$%&'#(")*"#+,-&.-'#(/012&#32/04%&%50'#%&6#7")
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Quantum Materials Research Highlight 
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Weyl semimetal
old theory idea (Herring,  …); 
trick is finding at Fermi surface

A Weyl point has topological charge: 
the Chern number from Berry flux 
through a small sphere around it is an 
integer.  (Volovik; Murakami, 2008)

There are surface Fermi arcs 
connecting Weyl points (Wan, 
Turner, Vishwanath, Savrasov, 2010).

What are consequences of this 
topological property?

Materials and Experiments: 
Princeton/IOP, Princeton/
Northeastern, Osaka, many 
others.



!"#$%&'()&*#$+,*-'./0#'$*'0'),$()&'1&*2+,*&'+3'4&56'*&7$7&#068

4/0#'$*'9"/$106'0,+7065:'$,';<8'

=+.'$*'$#'1&60#&>'#+'"/$106'70?,&#$"'&33&"#8

;/$106'0,+7065-'")11&,#'"+,*&1%0#$+,'$*'0,+706+)*'3+1'0'*$,?6&'4&56'3&17$+,'

"+)26&>'#+'0'@ABC'?0)?&'3$&6>-''

;<D'$>&0-'E/&'#+#06'"/01?&'+3'4&56'2+$,#*'$,'0'"15*#06'$*'FG'

H)#'#/&5'"0,'+"")1'0#'>$33&1&,#'&,&1?$&*G''I+'!"#$%'#/&'A*#0#$"C'&,&1?5'>$33&1&,"&'
"0,'1&260"&'#/&'&6&"#1$"'3$&6>J'?$%$,?'0'!"#$#%'"+,#1$K)#$+,'#+

Ji = −αgme
ij Bj

∂µJW
µ =

g2C

16π2
E ·B&'(%#$)#*+,#$-.

!"!#$!%&'()
*"+,#$*&-%.

&'(%#$),#/*01(")0220"1. #$!%&'/



L)#6$,&'+3';<D'0,>'M<D

<0,5'202&1*'/0%&'K&&,'.1$##&,'+,'#/&'2+**$K$6$#5'+3'0'9"/$106'70?,&#$"'&33&"#:'

$,'4&56'*&7$7&#06*'0,>'+#/&1'70#&1$06*J'06*+'+3'#/&'3+17'

Ji = −αgme
ij Bj

E/$*'.+)6>'K&'1&60#&>'#+'#/&'"/$106'0,+7065'$,'201#$"6&'2/5*$"*J'0,>'#+'#/&'H&115'

")1%0#)1&'01+),>'4&56'2+$,#*G'

;+,*&,*)*',+.'#/0#'$#'$*'N&1+'0#'&()$6$K1$)7'A0*'9H6+"/O*'+#/&1'#/&+1&7:'*05*CG



L)#6$,&'+3';<D'0,>'M<D

<0,5'202&1*'/0%&'K&&,'.1$##&,'+,'#/&'2+**$K$6$#5'+3'0'3"'(%#$),#/*01(")0220"14)

$,'4&56'*&7$7&#06*'0,>'+#/&1'70#&1$06*J'06*+'+3'#/&'3+17'

Ji = −αgme
ij Bj

E/$*'.+)6>'K&'1&60#&>'#+'#/&'"/$106'0,+7065'$,'201#$"6&'2/5*$"*J'0,>'#+'#/&'H&115'

")1%0#)1&'01+),>'4&56'2+$,#*G'

;+,*&,*)*',+.'#/0#'$#'$*'N&1+'0#'&()$6$K1$)7'A0*'9H6+"/O*'+#/&1'#/&+1&7:'*05*CG'

P#'"0,'K&',+,N&1+'$,'#10,*2+1#'A,+,Q"+77)#0#$+,'+3'(QRF'0,>'+7&?0QRF'6$7$#*C'+1'

0#',+,N&1+'31&()&,"5'A?51+#1+25SCJ'K)#'$,'$#*'*$726&*#'3+17'>+&*',+#'$,%+6%&'#/&'

H&115'2/0*&'K)#'*+7&#/$,?'&6*&-'AT/+,?J'UD<J'I+)N0J'VWX'YFBZ['*&&'06*+'<0QV&*$,'VWH'YFBZC

αgme
ij = − 1

(2π)2
e

h

�

na

�

Sna

dS v̂F,imn,j(kf ) .

E/&'&'(#)6$,&01'1&*2+,*&';<D'$*'0"#)0665'+2#$"06'1+#0#$+,S''A9?51+#1+2$"'70?,&#$"'

&33&"#:C'51)"+,0!)2%+,)+%6(1#$),+,0*1)+2)7$+"')0$0"1%+*!8



\&5'$>&,#$#5'$,'0'*$726&J'9#+2+6+?$"06:'&]0726&-)

1'0)9*(2+%,)"'(%#$),#/*01(")0220"1

!2265'0'"+,*#0,#'70?,&#$"'3$&6>'7'^'H':'#+'0'*+6$>G''I+6%&'#/&'H&115QH+6#N70,,'&()0#$+,G'

E/&'")11&,#*'$,'#/&';'0,>'-'>$1&"#$+,*'%0,$*/'#1$%$0665G'

E/&'")11&,#'06+,?':'/0*'9+1>$,015:'0,>'90,+706+)*:'201#*''

j(o)z = −(e2B/�)
�

f0d3k

(2π)3
Ωzvz

j(a)z = −e2B

�

�
f0d3k

(2π)3
(Ωxvx + Ωyvy).

_+#&'3+1'&]2&1#*-'#/&'+1>$,015'201#'"+7&*'31+7'#/&'2/0*&Q*20"&'%+6)7&'"+11&"#$+,'A`$0+'&#'06GCG'

E/&*&'"0,"&6'*$,"&

5*)#)<0-$)!0,(,01#$=)1'0)1%#"0)#%+9*>)+*0)<0-$)?+(*1)(!)@9#*1(:0>)1+)A&'0%*)*9,60%B)1(,0!)

A"'0,("#$)?+10*1(#$B=)C'("')/(D0!)#)%+69!1)>0%(D#1(+*)+2)1'0)3"'(%#$),#/*01(")0220"148

�Ωx(k)vx(k) + Ωy(k)vy(k) + Ωz(k)vz(k)� = 0



E#*(!'(*/)+2)!1#1(")&FG)D(#)31%#"0$0!!*0!!4

H&115'7&"/0,$*7'6&0>*'#+'"+,*#10$,#'+,'?51+#1+2$"'#&,*+1

V1++3'$*'K0*&>'+,'#/&'30"#'#/0#'! $*'0'")16'+3'9H&115'"+,,&"#$+,G:'
A=&,"&'>$%'! ^'FCG

But it was thought that different Weyl points at different 
energies could make this nonzero.  Actually not: for a 
set of “monopoles” at different energies, the integral is 
a constant since

by Nielsen-Ninomiya,

and the constant is actually zero by boundary 
conditions at the bottom of the band.
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Supplemental Material for “Gyrotropic magnetic effect and the orbital moment on the Fermi surface”

DERIVATION OF THE EXPRESSION FOR CME AND GME USING KUBO FORMULA

The Kubo formula of the linear current response to a vector potential Ae
iq·r−iωt is[S36]

Ji(ω) = −e
2

�
[d3k]

�

n,m

f(�n,k−q/2)− f(�m,k+q/2)

�n,k−q/2 − �m,k+q/2 + ω
�nk−q/2|∂iH|mk+q/2��mk+q/2|∂jH|nk−q/2�Aj(ω,q) (24)

where we have set � = 1 and in the following we would use the expression of the group velocity vn = ∇k�n. We are
going to expand Eq. (24) and get the term which is zeroth order in ω and first order in q. As been discussed[S12]
the result is different whether we set ω → 0 first or not. The two different results are related to CME and GME
respectively.
For CME we set ω → 0 first and the contribution from interband (n �= m) is

−e
2

�

n,m �=n

�
[d3k]

�
(
∂f

∂�n
vnl +

∂f

∂�m
vml)�n|∂im��m|∂jn�(�n − �m)− (f(�n)− f(�m)) (vnl + vml)�n|∂im��m|∂jn�

+
(f(�n)− f(�m))

�n − �m
[−�∂ln|∂iH|m��m|∂jH|n�+ �n|∂iH|∂lm��m|∂jH|n�

+�n|∂iH|m��∂lm|∂jH|n� − �n|∂iH|m��m|∂jH|∂ln�] }
ql

2
.

(25)
The contribution from intraband (n = m) is

−e
2
�

n

�
[d3k]

∂f

∂�n
[−�∂ln|∂iH|n�vnj + �n|∂iH|∂ln�vnj + �∂ln|∂jH|n�vni − �n|∂jH|∂ln�vni]

ql

2
. (26)

Combining them together and with some simplification we get

−e
2
�

n,m

iql

�
[d3k] Im

�
∂f

∂�n
vnl�n|∂im��m|∂jn� −

∂f

∂�n
vnj�∂ln|m��m|∂in�+

∂f

∂�n
vni�∂ln|m��m|∂jn�

�
(�n − �m) (27)

+− e
2
�

n,m

iql

�
[d3k] f(�n) { Im[−�∂ln|∂iH|m��m|∂jn�+ �n|∂iH|∂lm��m|∂jn�]− (i ↔ j)} (28)

+− e
2
�

n,m

iql

�
[d3k] f(�n) (vnl + vml) Im�∂in|m��m|∂jn� . (29)

Integrate by parts for Eq. (27) we have
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2
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�
[d3k] f(�n) Im { [(�n − �m)(�∂in|∂lm��m|∂jn�+ �∂ln|∂jm��m|∂in�+ �∂ln|m��∂jm|∂in�)− (i ↔ j)]

+�∂in|m��m|∂jn�(vnl − vml) + �∂ln|m��m|∂in�(vni − vmi)− �∂ln|m��m|∂jn�(vnj − vmj)}

(30)

and adding Eq. (28) Eq. (29) together
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2
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iql

�
[d3k] f(�n) Im {�∂in|m��m|∂jn�(vnl + vml) + �∂ln|m��m|∂in�(vni + vmi)− �∂ln|m��m|∂jn�(vnj + vmj)

+[(�n − �m)(�n|∂im��∂lm|∂jn�+ �∂ln|∂im��m|∂jn�+ �∂ln|m��∂im|∂jn�)− (i ↔ j)]} .

(31)
Adding Eq. (30) and Eq. (31) together we get
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2
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[d3k] f(�n) Im[�∂in|m��m|∂jn�vnl + �∂ln|m��m|∂in�vni − �∂ln|m��m|∂jn�vnj ] (32)
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Optical quantization in 
semimetals

Properties of the “semi-metallic” electrons in graphene:
effective mass is zero

one layer of graphene attenuates 2.3% of light

(π times the fine structure constant)
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Tr[β] = iπ
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Two band model
Current is related to excitation rate:
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Fermi’s golden rule

The circular photogalvanic effect in mirror-free 3D-Weyl semimetals is quantized

dji
dt

= βij(ω)(E×E∗)j

from A. Grushin



Kramers Weyls

 (strained) Tellurium

Chiral Weyls

Hirayama, PRL 114, 206401 (2015)Huang, et al. PNAS 113 1180 (2015)

SrSi2

Chang et. al arXiv: 1611.07925

Mirror free Weyls have nodes at different energies

from A. Grushin



Large Fermi Arcs in Unconventional Weyl Semimetal RhSi
Guoqing Chang,1, 2,  Su-Yang Xu,3,  Benjamin J. Wieder,4,  Daniel
S. Sanchez,3,  Shin-Ming Huang,5 Ilya Belopolski,3 Tay-Rong Chang,6
Songtian Zhang,3 Arun Bansil,7 Hsin Lin,1, 2, y and M. Zahid Hasan3, y

Predicted CPGE in RhSi, from arXiv:1706.04600.
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FIG. 4: Quantized circular photogalvanic effect of the fourfold-degenerate unconven-

tional fermion in RhSi (a,b) For two bands connected by a single Weyl node that isn’t tilted,

comparing the injection of left- and right-handed circularly polarized light results in a current

density rate quantized by the Chern number of the Weyl point for incident phonon energy Ep on

the scale of the finite-q bandgaps of the k · p theory of the Weyl point [44]. For a conventional

linear Weyl fermion with, C = |1| and dj/dt is just the product of the incident light intensity I and

fundamental constants. For transitions between the J = 1/2 bands of a half-occupied fourfold-

degenerate unconventional fermion such as the one at Γ in RhSi, dj/dt saturates in incident photon

energy Ep at four times the value it did for a C = |1| Weyl point.
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