Joint ICTP-IAEA School
on Zyng-7/000 SoC
and its Applications for

Nuclear and Related
Instrumentation

Embedded ‘C’ for Zynqg

Cristian Sisterna

Universidad Nacional de San Juan

Argentina

Embedded C

ICTP -IAEA



Embedded C

Embedded C

Embedded C

From Wikipedia, the free encyclopedia

Embedded C is a set of language extensions for the C Programming language by
the C Standards committee to address commonality issues that exist between C
extensions for different embedded systems. Historically, embedded C programming
requires nonstandard exiensions o the C language in order to support exofic
features such as fixed-point arithmetic, multiple distinct memory banks, and basic 1/0
operations.

In 2008, the C Standards Committee extended the C language to address these
issues by providing a common standard for all implementations to adhere to. It
includes a number of features not available in normal C, such as, fixed-point
arithmetic, named address spaces, and basic /O hardware addressing.

ICTP -IAEA




Difference Between C and Embedded C

Embedded systems programming is different from developing applications on a
desktop computers. Key characteristics of an embedded system, when compared

to PCs, are as follows:
0 Embedded devices have resource constraints(limited ROM, limited RAM, limited
stack space, less processing power)

0 Components used in embedded system and PCs are different; embedded systems
typically uses smaller, less power consuming components

0 Embedded systems are more tied to the hardware

0 Two salient features of Embedded Programming are code speed and code size. Code
speed is governed by the processing power, timing constraints, whereas code size is
governed by available program memory and use of programming language.

Embedded C ICTP -IAEA




Difference Between C and Embedded C

Though € and Embedded C appear different and are used in different contexts, they
have more similarities than the differences. Most of the constructs are same; the
difference lies in their applications.

C is used for desktop computers, while Embedded C is for microcontroller based
applications.

Compilers for € (ANSI C) typically generate OS dependent executables. Embedded C requires
compilers to create files to be downloaded to the microcontrollers/microprocessors where it
needs to run. Embedded compilers give access to all resources which is not provided in
compilers for desktop computer applications.

Embedded systems often have the real-time constraints, which is usually not there with
desktop computer applications.

Embedded systems often do not have a console, which is available in case of desktop
applications.

Embedded C ICTP -IAEA




Advantages of Using Embedded C

" |t is small and reasonably simpler to learn, understand, program and debug

= C Compilers are available for almost all embedded devices in use today, and there is a
large pool of experienced C programmers

= Unlike assembly, C has advantage of processor-independence and is not specific to
any particular microprocessor/ microcontroller or any system. This makes it
convenient for a user to develop programs that can run on most of the systems

= As C combines functionality of assembly language and features of high level
languages, C is treated as a ‘middle-level computer language’ or ‘high level assembly
language’

= |tis fairly efficient

= |t supports access to I/O and provides ease of management of large embedded
projects

" Objected oriented language, C++ is not apt for developing efficient programs in
resource constrained environments like embedded devices.

Embedded C ICTP -IAEA




Reviewing Embedded
'C” Basic Concepts




Basic Data Types

E Unsigned Range Signed Range

char 8 bits 0 to 255 -128 to 127

short int 8 bits 0 to 255 -128 to 127

int 16 bits 0 to 65535 —32768 to 32767

long Int 32 bits 0 to 4294967295 —2147483648 to 2147483647

typedef unsigned char UINTS;
typedef signed char SINTS;
typedef unsigned int UINT16;
typedef int SINT16;

typedef unsigned long int UINT32;
typedef long int SINT32;

Embedded C ICTP -IAEA




‘SDK’ Basic Data Types

Embedded C

typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef

unsigned char
char

unsigned short
short

unsigned long
long

float

double

unsigned long

xbasic types.

Xuint8g; f¥*g
Xint8: f¥*yg
Xuintlé: f¥*g
Xintle; JfEFL
Xuint32: f¥*g
Xint32; JfEFL

¥Xfloat32; f¥*g
Xfloated; f¥*yg
Xboolean; f¥*g

x11l types.h

tyﬁedef uint8_t wu3;

h

unsigned 8-bit */

signed 8-bit */

unsigned l6-bit */

signed 16-bit */

unsigned 32-bit */

signed 32-bit */

32-bit floating point */
64-bit double precision FP */
boolean (XTRUE or XFALSE) */

typedef uintlée t uls;
typedef uint32 t u32;

ICTP -IAEA




Local vs Global Variables

Variables in C can be classified by their scope

Local Variables Global Variables
Accesible only by the Accesible by any part of the
function within which they program and are allocated
are declared and are permanent storage in RAM
allocated storage on the
stack l
The ‘static’ access modifier causes that Returning a pointer to a

the local variable to be permanently ____{ 51 0BAL or STATIC variable is
allocated storage in memory, like a global

variable

quite safe

Embedded C ICTP -IAEA




Local Variables

“*The ‘static’ access modifier causes that the local variable to be permanently
allocated storage in memory, like a global variable, so the value is preserved
between funciton calls (but still is local)

**Local variables only occupy RAM while the function to which they belong is
running

“*Usually the stack pointer addressing mode is used (This addressing mode
requires one extra byte and one extra cycle to access a variable compared to
the same instruction in indexed addressing mode)

**If the code requires several consecutive accesses to local variables, the compiler will usually
transfer the stack pointer to the 16-bit index register and use indexed addressing instead

Embedded C ICTP -IAEA




Global Variables

**Global variables are allocated permanent storage in memory at an absolute
address determined when the code is linked

** The memory occupied by a global variable cannot be reused by any other
variable

**Global variables are not protected in any way, so any part of the program can
access a global variable at any time

**This means that the variable data could be corrupted if part of the variable is derived
from one value and the rest of the variable is derived from another value

*** The 'static' access modifier may also be used with global variables

% This gives some degree of protection to the variable as it restricts access to the
variable to those functions in the file in which the variable is declared

**The compiler will generally use the extended addressing mode to access global
variables or indexed addressing mode if they are accessed though a pointer

Embedded C ICTP -IAEA




Other Application for the ‘static’ modifier

By default, all functions and variables declared in global space have external
linkage and are visible to the entire program. Sometimes you require global
variables or functions that have internal linkage: they should be visible
within a single compilation unit, but not outside. Use the static keyword to
restrict the scope of variables.

#include "xparameters.h”
#include "xgpic.h”
#include "xgpicps.h”

static XOpioPs psGpiolnstancePtr;
static int iPinNumber = 7; /*Led LD9 is connected to MIO pin 7%/

int main (void)

1
XGpioc sw, led;
int i, pshb _check, sw_check;
static XGpio GPIOInstance Ptr:

Embedded C ICTP -IAEA




Volatile Variable

The value of volatile variables may change from outside the program. For
example, you may wish to read an A/D converter or a port whose value is
changing. Often your compiler may eliminate code to read the port as part of the
compiler's code optimization process if it does not realize that some outside
process is changing the port's value. You can avoid this by declaring the variable

volatile.

#define MYPORT @xDEADB33F
| Without "volatile", the first write
volatile char *portptr = (char®)MYPORT;

*portptr At may be OptimiZEd out
*portptr = 'B';

Embedded C ICTP -IAEA




Volatile Variable

1 #include <stdio.h>

2

3~ /* Optimization code snippet 1 */
4 #include<stdio.h?

5

& 1int x = @;

7

8 int main() 1 #include<stdio.h>

9~ { 3

1e if (x == @) // This condition is alway 3 yglatile int x; /* volatile Keyword*/

11 -~ { 4

12 printf{" x = 8 \n"); 5 int main()

13 } e

14 glse Jf Else part will be optin
7 X = 8;

15 - { 2

16 intf(" % != @ \n"); :

17 } primtf(* x wn") 9 if (x == @)

18 return @; e~ 1

19} 11 printf(" x = @ \n");
12 }
13 else /f Now compiler never optimize else part because the
14 - { /f variable is declared as volatile
15 orintf(" x != @ \n");
16 }
17 return @;
18 }

Embedded C ICTP -IAEA




Functions Data Types

A function data type defines the value that a subroutine can return

**» A function of type int returns a signed integer value
*** Without a specific return type, any function returns an int
¢ To avoid confusion, you should always declare main () with return type

vold

void XGpioPs IntrEnable(XGpicPs *InstancePtr, uB8 Bank, u32 Mask);
void XGpioPs IntrDisable(XGpicPs *InstancePtr, ud Bank, u32 Mask);
u32 XGpioPs IntrGetEnabled{XGpicPs *InstancePtr, u8 Bank);

u32 XGpioPs IntrGetStatus(XGpicPs *InstancePtr, ug Bank);

Embedded C

ICTP -IAEA




Parameters Data Types

Indicate the values to be passed in to the function and the memory to be
reserved for storing them

int IEpin_InitiahizéEIﬁpiﬂ *InstancePtr, ulf Deviceld);

. |° Initialize the XGpic instance provided by the caller based on the
/ * given DevicelID.
* ) .
&
. ak Nothing is done except to initialize the InstancePtr.
P *
ﬂ [iparam InstancePtr is a pointer to an XGpio instance. The memory the
roble.f+ ointer references must be pre-allocated by the caller. Further
* calls to manipulate the instance/driver through the XGpic API
b must be made with this pointer.
%%%LE* iparam DeviceId is the unique id of the device controlled by this XGpio
P instance. Passing in a device id associates the generic XGpio

Embedded C ICTP -IAEA




Structures

#include "xparameters.h”
#include "xgpic.h”
#include "xgpicps.h”

static XGpioPs psGpioInstancePtr;
static int iPinNumber = 7; /*Led LD9

II.-'=|-==|-=
/ [===================== * The XGpic driver instance data. The user is required to allocate a
* wariable of this type for every GPIO dewice in the system. A pointer
int main (void) * to a variable of this type is then passed to the driver API functions.
{ >/
typedet struct {
u32 BaseAddress; /* Device base address */
u32 IsReady; /* Device is initialized and ready */
int InterruptPresent; /* Are interrupts supported in h/w */
int IsDual; /* Are 2 channels supported in h/w */
1 XGpioj;

Embedded C ICTP -IAEA




Review of ‘C’ Pointer

In ‘C’, the pointer data type corresponds to a MEMORY ADDRESS

a int x =1, vy =5, z = 8, *ptr;
@ ptr = &x; // ptr gets (point to) address of x
G Y = *ptr; // content of y gets content pointed by ptr
@ *ptr = z; // content pointed by ptr gets content of z
2, O d,
< [N --SEE- 0 - 0.
[ Ty
z | | |
== T

Embedded C



'C” Technigues for low-
level |/O Operations




Bit Manipulation in ‘C’

Bitwise operatorsin ‘C’: ~ (not), & (and), | (or), *~ (xor)
which operate on one or two operands at bit levels

u8 mask = 0x60; //0110 0000 mask bits 6 and 5
u8 data = 0xb3 //1011 0011 data
u8 do0, dl, d2, d3; //data to work with in the coming example

d0 = data & mask; // 0010 0000; isolate bits 6 and 5 from data
dl = data & ~mask; // 1001 0011; clear bits 6 and 5 of data

d2 = data | mask; // 1111 0011; set bits 6 and 5 of data
d3 = data "~ mask; // 1101 0011; toggle bits 6 and 5 of data

Embedded C ICTP -IAEA




Bit Shift Operators

Both operands of a bit shift operator must be integer values

The right shift operator shifts the data right by the specified number of positions.
Bits shifted out the right side disappear. With unsigned integer values, Os are shifted
in at the high end, as necessary. For signed types, the values shifted in is

implementation-dependant. The binary number is shifted right by number bits.
X >> number;

The left shift operator shifts the data right by the specified number of positions. Bits

shifted out the left side disappear and new bits coming in are Os. The binary number is
shifted left by number bits

X << number;

Embedded C

ICTP -IAEA




Bit Shift Example

void led_knight_rider(XGpio *pLED_GPIO, int nNumberOfTimes)
{

int i=0; int j=0;
u8 uchlLedStatus=0;
// Blink the LEDs back and forth nNumberOfTimes
for (i=0; i<nNumberOfTimes; i++)
{
for (j=0;73<8;j++) // Scroll the LEDs up
{
uchLedStatus = 1 << 73;
XGpio DiscreteWrite (pLED GPIO, 1, uchLedStatus);
delay (ABOUT ONE SECOND / 15);
}
for (j=0;j<8;j++) // Scroll the LEDs up
{
uchLedStatus = 8 >> 73;
XGpio DiscreteWrite (pLED GPIO, 1, uchLedStatus);
delay (ABOUT ONE SECOND / 15);
}



Unpacking Data

There are cases that in the same memory address different fields are stored

Example: let’s assume that a 32-bit memory address contains a 16-bit field for an integer data

Unpacking —

and two 8-bit fields for two characters

31 le 15 . . . g 7 . . . 0

Embedded C

—

u32 10 rd data;

int num;
char chl, choO;

io rd data = my iord(...);

num = (int) ((io rd data & Oxffff0000) >> 16);

chl = (char) ((10 rd data & 0x0000££00) >> 8);
ch0 = (char) ((1io rd data & 0x000000ff ));

ICTP -IAEA



Packing Data

There are cases that in the same memory address different fields are written

Example: let’s assume that a 32-bit memory address will be written as a 16-bit field for an
integer data and two 8-bit fields for two characters

le 15 . . . g 7 . . . O

31 ...

u3Z2 wr data;

int num = 5;
char chl, chO;
wr data = (u32) (num); //num[15:0]
& | wr_data = (wr_data << 8) | (u32) chl; //num[23:8],chl1[7:0]
ig wr data = (wr data << 8) | (u32) chO; //num[3l 16],chl1[15:8]
S my iowr( . . . , wr data) ; //ch0[7:0]

ICTP -IAEA

Embedded C



|/0O Read Macro

Read from an Input

int switch sl;

switch sl = *(volatile int *) (0x00011000);
\ )

s a
#define SWITCH S1 BASE = 0x00011000;

switch sl = *(volatile int *)(SWITCH_SI_BASE);/

-
/#define SWITCH S1 BASE = 0x00011000; A
[ #define my iord(addr) (*(volatile int *) (addr)) ] Macro

switch sl = my iord(SWITCH S1 BASE); // P

ICTP -IAEA

Embedded C



/O Write Macro

Write to an Output

4 )
char pattern = 0x01;

(0x11000110) = pattern;

*
(&
4 _ )
#define LED L1 BASE = 0x11000110;

*(LED L1 BASE) = pattern;

- J
(#define LED L1 BASE = 0x11000110; A
[ #define my iowr (addr, data) (* (int *) (addr) = (data)) :pMacm)

\éy_iowr(LED_Ll_BASE, (int) pattern) ; //

Embedded C ICTP -IAEA




Basic ‘C’ Program
Template




Basic Embedded Program Architecture

An embedded application consists of a collection tasks, implemented by
hardware accelerators, software routines, or both.

#include “nnnnn.h”
#include <ppppp.h>
main ()
{
sys init ();//
while (1) {
task 1();
task 2();
task n();
}

Embedded C ICTP -IAEA




Basic Example

The flashing-LED system turns on and off two LEDs alternatively according to the interval
specified by the ten sliding switches

Tasks ?7?7?

!

1. reading the interval value from the switches

2. toggling the two LEDs after a specific amount of time

Embedded C ICTP -IAEA




Basic Example

#include “nnnnn.h”
#include “aaaaa.h”

main ()
{ main ()
while (1) { {
- . . int period;
task 1();
task 2(); while (1) {

. .. read sw(SWITCH S1 BASE, é&period);
} led flash(LED L1 BASE, period);

} }

Embedded C ICTP -IAEA




Basic Example - Reading

/**********************************************************************
* function: read sw ()

* purpose: get flashing period from switches
* argument:

* sw—-base: base address of switch PIO

* period: pointer to period

* return:

* updated period

* note

**********************************************************************/

void read sw(u32 switch base, int *period)
{
*period = my iord(switch base) & 0x000003ff; //read flashing period
// from switch

Embedded C ICTP -IAEA




Basic Example - Writing

/*******************~k*****~k******************************~k*k~k*******************************

* function: led.flash ()
* purpose: toggle 2 LEDs according to the given period
* argument:

* led-base: base address of discrete LED PIO

* period: flashing period in ms

* return

* note

* — The delay 1s done by estimating execution time of a dummy for loop

* — Assumption: 400 ns per loop iteration (2500 iterations per ms)

* - 2 instruct. per loop iteration /10 clock cycles per instruction /20ns per clock cycle (50-MHz clock)

*******************************************************************************************/
void led flash(u32 addr led base, int period)

static u8 led pattern = 0x01; // initial pattern
unsigned long i, 1itr;

led pattern "= 0x03; // toggle 2 LEDs (2 LSBs)
my iowr (addr led base, led pattern); // write LEDs

itr = period * 2500;

for (i=0; i<itr; i++) {} // dummy loop for delay

Embedded C ICTP -IAEA




Basic Example — Read / Write

void read sw(u32 switch base, int *period)

{
*period = my iord(switch base) & 0x000003ff;

}

main ()

{

int period;

whi ) {
iread_sw(SWITCH_Sl_BASE, speriod) ; |

led flash(LED L1 BASE, period);
j

}

Embedded C

void led flash(u32 addr led base, int period)
{
static u8 led pattern = 0x01;
unsigned long i, itr;
led pattern 7= 0x03;
my iowr (addr led base, led pattern);
itr = period * 2500;
for (i=0; i<itr; i++) {}

ICTP -IAEA




Read/Write From/To
GPIO Inputs and Outputs




Steps for Reading from a GPIO

Create a GPIO instance
Initialize the GPIO

Set data direction
Read the data

1.
2.
3.
4.




Steps for Reading from a GPIO —Step 1

1. Create a GPIO instance

#include “xparameters.h” |
. “« . ” P
#include xgplo.h = * The X@pio driver instance data. The user is required to allocate a
int mai VCﬂC” * variable of this type for every GPIO device in the system. A pointer
{ * to a variable of this type is then passed to the driver API functions.
XGpio switches; typedef struct {
XGpio leds: u32 BaseAddress; /* Device base address */
¢ u32 IsReady; /* Device is initialized and ready */
int InterruptPresent; /* Are interrupts supported in h/w */
int IsDual; /* Are 2 channels supported in h/w */
1 XGpioj;

The XGpio driver instance data. The user is required to allocate a variable of this type
for every GPIO device in the system. A pointer to a variable of this type is then passed
to the driver API functions.

Embedded C ICTP -IAEA




Steps for Reading from a GPIO — Step 2

2. Initialize the GPIO

(int) XGpio Initialize (XGpio *InstancePtr, ulé DevicelD);

InstancePtr: is a pointer to an XGpio instance. The memory the pointer references must be
pre-allocated by the caller. Further calls to manipulate the component through the XGpio API
must be made with this pointer.

DevicelD: is the unique id of the device controlled by this XGpio component. Passingin a
device ID associates the generic XGpio instance to a specific device, as chosen by the caller or
application developer.

@return
- XST_SUCCESS if the initialization was successfull.

- XST_DEVICE_NOT_FOUND if the device configuration data was not ]’ xstatus.h

Embedded C ICTP -IAEA




Steps for Reading from a GPIO — Step 2(cont’)

(int) XGpio Initialize (XGpio *InstancePtr, ulé DevicelD);

// AXI GPIO switches initialization

XGpio Initialize (&switches, XPAR_BOARD_SW_8B_DEVICE_ID) ;
// AXI GPIO leds initialization

XGpio Initialize (&led, XPAR_BOARD_LEDS_8B_DEVICE_ID) ;

‘ W_periph
L] xparameters.h 2 E lab_gpic_in_... L] :{lpiups_hw.h ' ) coans s 8
S
ani_axck ﬂmzll
ad_aresetn

swis_Bhits

/* Definitions for peripheral BOARLy LEDS 8B */ =
#define XPAR_BOARD LEDS 8B BASEADDH @x41210608@ m00_oa- - [ AXI GPIO
#define XPAR BOARD LEDS 8B HIGHADDH @x4121FFFF MaL_pd- - &
#define XPAR BOARD LEDS 8B DEVICE ID @ ¢ - e e
#define XPAR_BOARD LEDS 8B INTERRUPT PRESENT @ ‘&ﬂ Gm_}l D s gois
#define XPAR_BOARD LEDS 8B IS DUAL @ - j

AXT GFIO

Embedded C ICTP -IAEA




xparameters.h

The xparameters.h file contains the address map for peripherals in the
created system
This file is generated from the hardware platform description from Vivado

i#inc]ude “:{parameters.h"]4 Ctrl + Mouse Over

#include “xgplo.h
#include “"xgpicps.h"

' ﬁ exercise_05_bsp

» 1 BSP Documentation xparameters.h file can be found underneath the
4 (= ps]_cortexad 0 include folder in the ps7_cortexa9 O folder of
= code the BSP main folder

4 = include

Embedded C ICTP -IAEA




xparameters.h
B C/C++ - exercise_05_bsp/ps7_cortexad_0/include/xparameters.h - Xilink SDK

File Edit 5Source Refactor Mavigate 5Search Project Xilink Tocls Run Window Help

HrHEg ®-A-AetEEE WS F| 2| D=
Project Explorer *xparameters.h ¥gplo.C latform.h latform.c
{5 Project Explorer = 0 || [g =xp 2 | [€] xgp n p € p
{,};[‘:, | ? =~ ._.ll.l'=|'=1=1==|'==|'==|'==|'==|-==|-==|-==|-==|-==|-==|'==|'=1:****=|'==|'==|-==|-==|-==|-==|-==|-==|'==|'=1=************************

b [h) xil_types.h - /* Definitions for driver GPIO */
5 [8 d2cc_counterh #define XPAR_XGPIO_NUM_INSTANCES 1
> W] x2cch /* Definitions for peripheral AXI_GPIO 8 */
> b xparameters_ps.h #define XPAR_AXI GPIO © BASEADDR @x41288000
- |[n| xparameters.h #define XPAR_AXI GPIO @ HIGHADDR @x4128FFFF
5 [ xplatform_info.h | #define XPAR_AXI GPIO @ DEVICE_ID @
> [B xpm_counterh #define XPAR_AXI_GPTO_8_INTERRUPT_PRESENT @
#define XPAR _AXI GPIO @ IS DUAL @

> [h) xpseudo_asm_gcc.h - = - ==
[ E| :{pseudu_asm.h _._.II.-'=I'=1:1==I'==I-==I'==I'==I-==|-==|-==|-==|-==|-==|¢=|¢1=1==k=|¢=|-==|-==|-==|-==|-==I-==I-==I-==I-==k=|¢1=************************
b R xgspips_hw.h /* Canonical definitions for peripheral AXI_GPIO & */
[ @ xqspips.h #define XPAR GPIO @ BASEADDR @x4128008608
s @ xreg_cortexad.h #define XPAR GPIO @ HIGHADDR @x4128FFFF

I hl #define XPAR GPIO @ DEVICE ID XPAR AXI GPIO @ DEVICE ID
> ] xscugic_hw. #define XPAR_GPIO @ INTERRUPT PRESENT @
b [ xscugich #define XPAR_GPIO @ IS DUAL @

Embedded C ICTP -IAEA




xgpio.h — Outline Pane

Embedded C

* Conti

int XGpio CfgInitialize(XGpic *InstancePir, XGpic Confi
u32 Effectived o ere
void XGpio_SetDataDirectio TVPES DEflnltlonS
u32 Direct I

u32 Xapio GetDataDirection ki : 1.
u32 XGpio DiscreteRead(XGp .
void XGpio DiscreteWrite(x Functions

_II.-'*
* API Functions implemented in xgpio_extra.c
*f
wvold Xapio DiscreteSet(XGpic *InstancePtr, unsigned Channel, u32 Mask);
wvoid XGpio Discretellear(XGpic *InstancePtr, unsigned Channel, u32 Mask);

I_

m

- .I'II*
* API Functions implemented in xgpioc selftest.c
*/
'in'll' W¥onin SalfTect i ¥Enin *TnetancePtrh - |
4 m b

e

v

frrrtrrrrreaf

[h| xgpioh 52 = O || 5E Qutline & | Make Target = B
= Initialization function| Definitions (#define statemens) —--P@KGPIG_H -
*/ xil_types.h
int XGpio_Initialize(XGpic . 1 : .
Xapio_Config *Xepio_Lookup| INCludes (#include statemens) i:t::;::h
S f* S xgpic_lh
* API Basic functions imp‘ Sfrucfures ”ec|arat|ons (Eﬂﬂﬂhfmﬂuﬂ
*f W AGpio_Config : struct

(anonymous)

XGpio: struct
XGpio_Initialize(XGpio®, ulb) : int
AGpio_LookupConfig(ul®) : XGpio
AGpio_Cfglnitialize(XGpio®, XGpio_
AGpio_SetDataDirection(XGpic™, w
AGpio_GetDataDirection(XGpic™, u
AGpio_DiscreteRead(XGpic™, unsig
AGpio_DiscreteWrite(XGpio®, unsig
XGpio_DiscreteSet(XGpic®, unsigne
XGpio_DiscreteClear({Gpio®, unsig
XGpio_SelfTest(XGpic®) : int
AGpio_InterruptGlobalEnable(XGpi
AGpio_InterruptGlobalDisable({Gp
AGpio_InterruptEnable(XGpio®, ud: _

m

S -

] | 3

ICTP -IAEA




Steps for Reading from a GPIO - Step 3

3. Set data direction

void XGpio_SetDataDirection (XGpio *InstancePtr, unsigned Channel, u32 DirectionMask);

InstancePtr: is a pointer to an XGpio instance to be worked on.
Channel: contains the channel of the XGpio (1 o 2) to operate with.

DirectionMask: is a bitmask specifying which bits are inputs and which are outputs.
Bits set to ‘O’ are output, bits set to ‘1’ are inputs.

Return: none

Embedded C

ICTP -IAEA




Steps for Reading from a GPIO - Step 3 (cont’)

void XGpio_SetDataDirection (XGpio *InstancePtr, unsigned Channel, u32 DirectionMask);

// AXI GPIO switches: bits direction configuration
XGpio_ SetDataDirection(&switches, 1, Oxffffffff);

d perict

W_periph board_sw_8b
ZE[:w
ad_ack aoros ||| [ sws_8hits
ot
M00_AHI- 1+ [ AXL GFLO
M1_AXL. - [
_| board_leds_8b
s
ad_ack GRros ||| [ leds_8hits
I aé_aresetn

AT GRLO

Embedded C

ICTP -IAEA




Steps for Reading from a GPIO — Step 4

4. Read the data

u32 XGpio_DiscreteRead (XGpio *InstancePtr, unsigned Channel);

InstancePtr: is a pointer to an XGpio instance to be worked on.
Channel: contains the channel of the XGpio (1 o 2) to operate with.

Return: read data

Embedded C ICTP -IAEA




/O Constraint Warning

# Pin Location —
set_property PACKAGE_PIN|R18 [get_ports[btnr_tri_io]]
# 10 Standard —

set_property IOSTANDARD LVCMOS?25 [get _ports btnr_tri_io]

Embedded C




Steps for Reading from a GPIO — Step 4 (cont’)

u32 XGpio_DiscreteRead (XGpio *InstancePtr, unsigned Channel);

// AXI GPIO: read data from the switches
sw_check = XGpio_DiscreteRead(&switches, 1);




Steps for Writing to GPIO

1. Create a GPIO instance
2. Initialize the GPIO
3. Read the data




Steps for Writing to a GPIO—Step 1

1. Create a GPIO instance

#include “xgpio.h” |
. . g.z \..-':-::-:
Int mainf(vol ) * The XGpio driver instance data. The user is required to allocate a
{ * wariable of this type for ewvery GPIO dewvice in the system. A pointer
. . . * to a variable of this type is then passed to the driver API functions.
XGpiolswitches;
XGpio leds; typedef struct {
u32 BaseAddress; /* Device base address */
u32 IsReady; /* Device is initialized and ready */
int InterruptPresent; /* Are interrupts supported in h/w */
int IsDual; /* Are 2 channels supported in h/w */
1 XGpio;

The XGpio driver instance data. The user is required to allocate a variable of this type
for every GPIO device in the system. A pointer to a variable of this type is then passed
to the driver API functions.

Embedded C ICTP -IAEA




Steps for Writing to a GPIO — Step 2

2. Initialize the GPIO

(int) XGpio Initialize (XGpio *InstancePtr, ulé DevicelD);

InstancePtr: is a pointer to an XGpio instance. The memory the pointer references must be
pre-allocated by the caller. Further calls to manipulate the component through the XGpio API
must be made with this pointer.

DevicelD: is the unique id of the device controlled by this XGpio component. Passingin a
device ID associates the generic XGpio instance to a specific device, as chosen by the caller or
application developer.

@return
- XST_SUCCESS if the initialization was successfull.

- XST_DEVICE_NOT_FOUND if the device configuration data was not ]’ xstatus.h

Embedded C ICTP -IAEA




Steps for Writing to a GPIO — Step 2(cont’)

(int) XGpio Initialize (XGpio *InstancePtr, ulé DevicelD);

// AXI GPIO switches initialization

XGpio Initialize (&switches, XPAR_BOARD_SW_8B_DEVICE_ID) ;
// AXI GPIO leds initialization

XGpio Initialize (&led, XPAR_BOARD_LEDS_8B_DEVICE_ID) ;

L]
L] xparameters.h 2 |E lab_gpic_in_... L] :{lpiups_hw.h e ) coans s 8
- ﬂ uuu:ll [ sws_8bits
/* Definitions for peripheral BOARLy LEDS 8B */ R
#define XPAR BOARD LEDS BB BASEADDH @x41218008 m00_oa- - [ AXI GPLO
#define XPAR_BOARD LEDS 8B HIGHADDRy 8x4121FFFF MLl
#define XPAR BOARD LEDS 8B DEVICE ID @ ¢ - e e
#define XPAR BOARD LEDS 8B INTERRUPT PRESENT @ ‘Ew }
. an_ack (el [ [ leds_8bits
#define XPAR_BOARD LEDS 8B IS DUAL @ B
AXT GEIO

Embedded C ICTP -IAEA




Steps for Writing to a GPIO — Step 3

3. Write the data

void XGpio_DiscreteRead (XGpio *InstancePtr, unsigned Channel, u32 Data);

InstancePtr: is a pointer to an XGpio instance to be worked on.

Channel: contains the channel of the XGpio (1 o 2) to operate with.

Data: Data is the value to be written to the discrete register

Return: none

Embedded C ICTP -IAEA




Steps for Writing to a GPIO — Step 3 (cont’)

void XGpio_DiscreteRead (XGpio *InstancePtr, unsigned Channel, u32 Data);

// AXI GPIO: read data from the switches
sw_check = XGpio_DiscreteRead(&switches, 1);

// AXI GPIO: write data (sw_check) to the LEDs
XGpio_DiscreteWrite(&led, 1, sw_check);

Embedded C ICTP -IAEA




IP Drivers for Custom [P




My VHDL Code for the Future IP

i —

2 —— lab npame: lab custom 1p

4 —— component name: my led 1p 30 architecture beh of lab_led ip is

4 —— anthor: cas 31

5 -- version: 1.0 32begin -- architectures beh

6 —- description: simple logic to 33
5 34 process(5_AXI_ACLE, 5 _AXI ARESETN)

8 library ieee; 35 begin

Suse ieee.std logic 1164.211; 35 if(5_AXI ARESETN="0')then

10 37 LED <= [othera=>'0"):

11l entity lab led ip is 38 eladfiising sdas (S BT RCTEN ) then

1z 39 if {5LV BEG WREN="1"' and AXI AWRLDLCR="0000"}) then
13 generic ( 50 LIS AN OATR(ISd WioI Some Ol
14 led width : integer := &) -- § LEDs a1 end if:

15 port { 42 end if;

16 -- clock and reset \ 43  end process:

17 S_RXI ACLK : in std logic; 44 end architecture beh;

2 | 5AXIARESETN : ia std logics Address Decode & Write Enable
15 -— write data channel

20 5_BRXT WDATR : in std logic wector (3l downto 0);

21 SLV_BEG_WEREN : in std logic;

22 -- gddress channel .

23 kmq AWADDE : in std logic vector{3 downtoc 0): j ‘\I AXI4-LI'|'€ IP I

24 -- my inpukts / outputs --

25 -- output

26 1ED : out std logic wector(led width-1 downto 0

27 ;
28 end entity lab led ip;

Embedded C ICTP -IAEA




Custom IP

Embedded C

rst_processing_system?7_0_50M

processing_system?7_0_axi_periph

slowest chk mb_reset
t_reset_in bus_struct_reset[0:0]
reset_in peripheral_reset[0:0]
mb_debug_sys_rst  interconnect_aresetn[0:0)
Jocked peripheral_aresetn[0:0)

Processor System Reset

processing_system?_0

OO0

_ARESETN(0:0] MI>M moo_axt 2 fi
m§m MO1_AXI 4k

buttons
“|4ES_AXI
axack  GPIO 3 ||} btns_Sbits
_axi_aresetn
AXI GPIO
switches
:[-n-s_m
¢ _axi_ack GPIO 4 [|p=—f, sws_8bits
 axi_aresetn
:

00_ARESETN[0:0] &y MO2 AXIdk

AXI Interconnect

led[7:0]

led_ip_v1.0 (Beta)

DDR 3k DDR
- FIXED_IO 4¢ FIXED_IO
1_AXI_GPO_ACLK ZYNQ M_::ca&czoi i3
FCLK_RESETO_N

ZYNQ?7 Processing System

ICTP -IAEA




System Level Address Map

CPUs and Other Bus
Address Range ACP AXI_HP | o ctersil) Notes
OCM oM oCM Address not filtered by SCU and OCM is
mapped low
DDR oM oCM Address filtered by SCU and OCM is
. mapped low
0000 0000 to 0003 FFFF(Z
- - Address filtered by SCU and OCM is not
DDR
mapped low
Address not filtered by 5CU and OCM is
not mapped low
DDR Address filtered by SCU
0004 0000 to 0007 FFFF
- - Address not filtered by 5CLU
DDR DDR DDR Address filtered by SCU
0008 0000 to O0OF FFFF
- - DDR DDR Address not filtered by 5CU(3)
ool0 o000 f0 ACED EDED Doe Doe ININI LArcrpecible to ol intercopnpnerct mooctere
General Purpose Port #0 to the PL,
4000 _0000 to 7FFF_FFFF PL PL M_AXL GPO
General Purpose Port #1 to the PL,
8000_0000 to BFFF_FFFF PL PL M_AXI_GP1
EQ0C_0000 to EO2F_FFFF IOF I0OF 1/0 Peripheral registers, see lable 4-6
E100 0000 to ESFF_FFFF SMC SMC S5MC Memories, see Table 4-5
F800_0000 to FB0O0_OBFF SLCR SLCR SLCR registers, see Table 4-3
F800_1000 to F8B0_FFFF PS PS PS System registers, see Table 4-7
F850 0000 to FBF0_2FFF CPU CPU Private registers, see Table 4-4
FCOOD_0000 to FDFF_FFFFA | Quad-SPI Quad-SPI | Quad-5PI linear address for linear mode
. OCcMm OCM OCM OCM is mapped high
FFFC 0000 to FFFF FFFF(2)
Embedded C - - OCM is not mapped high 56




My IP — Memory Address Range

[:-ﬂniagram x]ﬂ.ldllrﬁsEﬁtnr x]

C\ Cell Slave Interface  Base M... Offset Address Range High Address
2 |=-4F processing_system7_0
E- B Data (32 address bits : 0x40000000 [ 1G )

I=I switches S_AXI Reqg 0x4l20 0000 oM. - 0xd4l20 FFFF
: S5_AXI Reqg 0x4121 0000 oH# = 0xd4l21 FFFF
S_AXI Memo Q0x4000_0000 8k = Ox4000_1FFF

1 = |s_ax1_reg |ox43co_oooo 0x43C0_FFFF

i |

Embedded C ICTP -IAEA




Custom IP Drivers

" The driver code are generated automatically when the IP template is

created.

" The driver includes higher level functions which can be called from the

user application.

" The driver will implement the low level functionality used to control your

peripheral.

led ip\ip_repo\led ip_1.0\drivers\led ip _v1 0O\src —<

p—

Embedded C ICTP -IAEA

“—

led ip.c

led ip.h —

LED IP_mWriteReqg(...)

LED IP_mReadReq(...)



Custom IP Drivers: *.c

led _ip\ip_repo\led ip _1.0\drivers\led ip_v1 O\src\led ip.c

Organize « MNew folder 2| ) led p.c 2
1 lab_custom_ip *  Name Date modified Type

1. lab_custom_ip.cache ) ) o
lab - o h |_|#|Ed_lp-h# 8/19,/2015 6:57 PM H# File JrEFEEEERRRRRRRRRRRRRRRRKKKKKEE Tne]pde Files *F***+
) lab_custom_ip.hw

. | b‘ '_p | led_ip 8/18/20158:28 PM  C File ‘ #include "led ip.h"

. lab_custem_ip.runs

- - = =l led_ip 8/18/2015 8:28 PM H File

1. lab_custom_ip.sdk JRFEFFFEFIFIFIFFFXFXFXEIX3%3F Fynction Definitions *
| b_ T | led_ip_selftest 8/18,/2015 8:28 PM C File

J lab_custom_ip.sim

: | b_ _.p || Makefile 8/18/2015 8:28 PM File

.. lab_custom_ip.srcs

L led ip

L ip_repo [

o edit_led_ip_v1_0.hw

m

o edit_led_ip_v1_0.sim
L led ip 1.0
. bd

. drivers

L led ip vl 0
). data

L. SFC

Embedded C ICTP -IAEA




Custom IP Drivers: *.h

led _ip\ip_repo\led ip _1.0\drivers\led ip_v1 O\src\led ip.h

Organize « MNew folder 3
1 lab_custom_ip “  Mame Date modified Type
1 lab_customn_ip.cache ) o
) || #Fled_ip.h¥ 8/19/2015 6:57 PM H# File
1. lab_custom_ip.hw ) )
| led_ip B/18/2015 8:28 PM C File

1. lab_custom_ip.runs

lab, ip.sdk | led_ip 8/18/20158:28 PM  H File
V <t .
b b e ] led_ip_selftest 8/18/20158:28 PM  C File —

1. lab_custom_ip.sim ] ]
|| Makefile 8/18/2015 8:28 PM File

1. lab_custom_ip.srcs
1 led_ip
L ip_repo
L edit_led_ip_v1_0.hw

m

L edit_led_ip_v1_0.sim
L led_ip 10
L bd

1 drivers

L led_ip_vl_ 0
1 data

W src

Embedded C ICTP -IAEA




Custom IP Drivers: *.h (cont’ 1)

led _ip\ip_repo\led ip _1.0\drivers\led ip_v1 O\src\led ip.h

T led_ip.h 22

f****************** IHC].UCIE FilES ********************Jﬁ

#include "xil types.h"
#include “"xstatus.h”

#define LED IP S AXI SLV REG@ OFFSET @
#define LED IP S AXI SLV REG1 _OFFSET 4
#define LED _IP 5 AXI SLV REG2 _OFFSET &
#define LED _IP S _AXI SLV _REG3_OFFSET 12

Embedded C ICTP -IAEA




Custom IP Drivers: *.h (cont’ 2)

led ip\ip_repo\led ip _1.0\drivers\led ip_v1 O\src\led ip.h

lI.l'=|-~==|'=

*

* Write a value to a LED IP register. A 32 bit write is performed.

* ITf the component is implemented in a smaller width, only the least
* significant data is written.

E 3

E 2

fiparam  BaseAddress is the base address of the LED IPdevice.

* [@param RegOffset is the register offset from the base to write to.
* [@param Data is the data written to the register.

E 2

* [@return None.
E S
* [@note
* C-style signature:
* woid LED IP mWriteReg({u32 BaseAddress, unsigned RegOffset, u32 Data)
E 2
*/
#define LED IP mkriteReg(BaseAddress, RegOffset, Data) \
Xil Out32((BaseAddress) + (RegOffset), (u32)(Data))

Embedded C ICTP -IAEA




Custom IP Drivers: *.h (cont’ 3)

led ip\ip_repo\led ip _1.0\drivers\led ip_v1 O\src\led ip.h

ll,-'*:l-t

Read a value from a LED IP register. A 32 bit read is performed.

If the component is implemented in a smaller width, only the least
significant data is read from the register. The most significant data
will be read as @.

O R OB O W W

lparam BaseAddress is the base address of the LED _IP device.
* [param RegOffset is the register offset from the base to write to.

*

* fireturn Data is the data from the register.
&
* [@note
* C-style signature:
* u32 LED_IP mReadReg(u32 BaseAddress, unsigned RegOffset)
&
*/
#define LED IP mReadReg(BaseAddress, RegOffset) %
Xil In32((BaseAddress) + (RegOffset))

Embedded C ICTP -IAEA




Custom IP Drivers: *.h (cont’ 4)

led ip\ip_repo\led ip _1.0\drivers\led ip_v1 O\src\led ip.h

II,-'**

*

* Run a self-test on the driver/device. Note this may be a destructive test if
* resets of the device are performed.

*

* If the hardware system is not built correctly, this function may never

* return to the caller.

*

* [param baseaddr_p is the base address of the LED _IP instance to be worked on
*

* f@return

*

* - X5T SUCCESS  if all self-test code passed

* - X5T _FAILURE if any self-test code failed

*

* [inote Caching must be turned off for this function to work.

* [note Self test may fail if data memory and device are not on the same bus.
*

*/

XStatus LED _IP Reg SelfTest(wvoid * baseaddr p);

Embedded C ICTP -IAEA




‘C’ Code for Writing to My P

ttinclude “xparameters.h"
#tinclude “"xgpic.h™
#include "led _ip.h"

int main (void)
1
Xa@pic dip, push;
int i, psb_check, dip_check;

xil printf{"-- Start of the Program --\rin"};

XGpic Initialize(&dip, XPAR SWITCHES DEVICE_ID);
XGpic SetDataDirection(&dip, 1, @xffffffff);

XGpic Initialize(&push, XPAR_BUTTONS DEVICE_ID);
XGpic SetDataDirection(&push, 1, exffffffff);

while (1)
1
psb_check = XGpio DiscreteRead(&push, 1);
x¥il _printf("Push Butteons Status H¥x\r\n", psb_check);
dip check = XGpio DiscreteRead(&dip, 1);
¥il printf("DIP Switch Status ¥x\rin", dip_check);

/f output dip switches value on LED ip device
LED IP mWriteReg(XPAR LED IP S AXI BASEADDR, @, dip check);

for (i=8; i<9999999; i++);

Embedded C ICTP -IAEA




IP Drivers — Xil Out32/Xil In32

#define LED_IP_mWriteReg(BaseAddress, RegOffset, Data){ Xil Out32((BaseAddress) + (RegOffset), (Xuint32)(Data))

#define LED_IP_mReadReg(BaseAddress, RegOffset)l Xil In32A((BaseAddress) + (RegOffset))

o For this driver, you can see the macros are aliases to the lower level functions
Xil_Out32( ) and Xil_In32()

o The macros in this file make up the higher level API of the led_ip driver.

o If you are writing your own driver for your own IP, you will need to use low level
functions like these to read and write from your IP as required. The low level hardware
access functions are wrapped in your driver making it easier to use your IP in an
Application project.

Embedded C ICTP -IAEA




IP Drivers — Xil _In32 (xil _io.h/xil io.c)

/*****************************************************************************/

/**
* Performs an input operation for a 32-bit memory location by reading from the

* specified address and returning the Value read from that address.
*

* @param  Addr contains the address to perform the input operation at.
*

* @return  The Value read from the specified input address.
*

* @note None.
k

******************************************************************************/

u32 Xil_In32(INTPTR Addr)
{

return *(volatile u32 *) Addr;

Embedded C ICTP -IAEA




IP Drivers — Xil Out32 (xil io.h/xil io.c)

/*****************************************************************************/

/**
* Performs an output operation for a 32-bit memory location by writing the

* specified Value to the the specified address.
*

* @param  Addr contains the address to perform the output operation at.

* @param  Value contains the Value to be output at the specified address.
*

* @return  None.
ES

* @note None.
******************************************************************************/

void Xil_Out32(INTPTR Addr, u32 Value)

{
u32 *LocalAddr = (u32 *)Addr;

*LocalAddr = Value;

Embedded C ICTP -IAEA




IP Drivers — SDK ‘Activation’

o Select <project_name>_bsp in the project view pane. Right-click

o Select Board Support Package Settings

o Select Drivers on the Overview pane

o If the led_ip driver has not already been selected, select Generic under
the Driver Column for led_ip to access the dropdown menu. From the
dropdown menu, select led_ip, and click OK>




IP Drivers — SDK ‘Activation’ (cont’)

m Board Support Package Settings

Board Support Package Settings
Control various settings of your Board Support Package.

4 Cherview

ctandalone .
[ 4 drivers Drivers
psf_cortexad_0 The table below lists all the components found in your hardware system. You can modify the driver (

component. If you do not want to assign a driver to a component or peripheral, please choose 'none’

Component Component Type Diriver

ps/_cortexa® 0 psi_cortexad cpu_cortexad

awi_brarm_ctrl 0 axi_bram_ctrl bram

buttons axi_gpio gpic

led_ip led_ip led_ip &
ps/_afi_0 psi_afi none.

ps7_afi_1 ps7_afi S

ps/_afi_2 psi_afi

Embedded C ICTP -IAEA




Read and Write
From/To Memory




Note On Reading from / Writing to Memory

Processors work on byte (8bit) address boundaries.
If we wish to write byte-wide data values into the first four consecutive

locations in a region of memory starting at "DDR_BASEADDR", we must write
the first to DDR_BASEADDR + 0, the second to DDR_BASEADDR + 1, the third

to DDR_BASEADDR + 2, and the last to DDR_BASEADDR + 3.

However, if we wish to write four half-word wide (16 bit) data values to four
memory addresses starting at the same location, we must write the first to
DDR_BASEADDR + 0O, the second to DDR_BASEADDR + 2, the third to

DDR_BASEADDR + 4, and the last to DDR_BASEADDR + 6.

When writing word wide (32 bit) data values, we must do so on 4 byte
boundaries; 0x0, 0x4, 0x8, and OxC.

ICTP -IAEA

Embedded C



Reading from / Writing to Memory: xil_io.h

Writing Functions

Xil_Out8(memory_address, 8 bit value);
Xil_Out16(memory_address, 16_bit value);
Xil_Out32(memory_address, 32_bit value);

Reading Functions

8 bit value = Xil In8(memory address);

16 bit value = Xil In16(memory_address);

32 bit value = Xil _In32(memory_address);




Reading from / Writing to Memory: xil_io.h

int main(void)

{

int resultl; // integers are 32 bits wide!
int result2; // integers are 32 bits wide!

Xil_Out8(XPAR_PS7 RAM 0 S _AXI BASEADDR + 0, 0x12);
Xil_Out8(XPAR_PS7 RAM_0_S_AXI BASEADDR + 1, 0x34);
Xil_Out8(XPAR_PS7 RAM 0 S _AXI BASEADDR + 2, 0x56);
Xil_Out8(XPAR_PS7_RAM_0_S_AXI BASEADDR + 3, 0x78);
result1 = Xil_In32(XPAR_PS7 RAM 0 _S_AXI BASEADDR);
Xil_Out16(XPAR_PS7 RAM_0_S_AX| BASEADDR + 4, 0x9876);
Xil_Out16(XPAR_PS7 RAM_0_S_AX| BASEADDR + 6, 0x5432);
result2 = Xil_In32(XPAR_PS7 RAM_0_S_AX|_BASEADDR + 4);

return(0);

Embedded C ICTP -IAEA




