
Interrupts in Zynq Systems
C r i s t i a n S i s t e r n a

U n i v e r s i d a d N a c i o n a l d e S a n J u a n

A r g e n t i n a

Special condition that requires a processor's immediate attention

SoC School - C. Sisterna ICTP - IAEA 2

Exception / Interrupt

Sources of an
exception

Important external event that has
priority over normal program

execution

Hardware
Interrupt

Abnormal internal event (division

by zero, illegal instruction)
Exception

User-generated SI

Software
Interrupt

SoC School - C. Sisterna ICTP - IAEA 3

Cortex A9 - Exceptions

◦ Each Cortex-A9 processor core accepts two
different levels of interrupts
◦ nFIQ interrupts from secure sources (serviced first)

◦ nIRQ interrupts from either secure sources or non-secure
sources

In Cortex-A9 processor interrupts are handled as exceptions

ARM

Cortex-A9nIRQ

nFIQ

SoC School - C. Sisterna ICTP - IAEA 4

Pooling or Hardware Interrupt ?

Hardware
Interrupt

Polling

SoC School - C. Sisterna ICTP - IAEA 5

Interrupt Terminology
o Interrupts Pins: set of pins used as input of hardware interrupts

o Interrupt Service Routine (ISR): ‘C’ code written to answer a specific interrupt. It can be hardware or
software interrupt

o Interrupt Priority: In systems with more tan one source of interrupt, some interrupt have higher
priority of attendance than other.

o Interrupt Vector: code loaded in the bus by the interrupting peripheral that contains the address of
the specific ISR

o Interrupt Mask: interrupt that can be enable or disable by software

o Non-Maskable Interrupt (NMI): source of interrupt that can not be ignored

o Interrupt Latency: The time interval from when the interrupt is first asserted to the time the CPU
recognizes it. This will depend much upon whether interrupts are disabled, prioritized and what the
processor is currently executing

o Interrupt Response Time: The time interval between the CPU recognizing the interrupt to the time
when the first instruction of the interrupt service routine is executed. This is determined by the
processor architecture and clock speed

A software routine is used to identify the peripheral requesting service. A simple polling
technique is used, each peripheral is checked to see if it was the one needing service.

SoC School - C. Sisterna ICTP - IAEA 6

Polling

↑ Efficient when events arrives very often

↑ It requires no special hardware

↑ Quick response time (lees overhead)

↓ For fast peripherals, polling may simply not be fast enough to satisfy the
minimum service requirements

↓ It takes CPU time even when there is peripheral looking for attention; as
it needlessly checks the status of all devices all the time

o priority of the peripherals is determined by the order in the polling loop

Polling is like picking up your phone every few seconds
to find out whether someone has called you

A special software routine is used to attend an specific peripheral when it rise the
need for attention

SoC School - C. Sisterna ICTP - IAEA 7

Hardware Interrupt

↑ It does not takes CPU time even when there is no peripheral looking for
attention

↑ Good for fast peripherals, polling may simply not be fast enough to
satisfy the minimum service requirements

↓ Inefficient when events arrives very often

↓ It does requires special hardware

↓ Slow response time (more overhead)

o priority of the peripherals is determined by the hardware

Hardware Interrupt is like picking up your phone
ONLY when it rings

EVENT

Asynchronous Synchronous (i.e. you know when to expect it within a small window)

Urgent Not urgent (i.e. a slow polling interval has not bad effects)

Infrequent Frequent (i.e. majority of your polling cycles create a ‘hit’)

SoC School - C. Sisterna ICTP - IAEA 8

Polling vs Interrupt

Hardware
Interrupt

Polling

Hardware Interrupt in
the Zynq

SoC School - C. Sisterna ICTP - IAEA 9

A hardware interrupt is an asynchronous signal from hardware, originating either from

outside the SoC, from any of the PS peripherals or from the logic implemented in the PL,

indicating that a peripheral needs attention

SoC School - C. Sisterna ICTP - IAEA 10

Hardware Interrupts

Source of Hardware Interrupts:

o Embedded processor peripheral (FIT, PIT, for example)

o External bus peripheral (UART, EMAC, for example)

o External interrupts enter via hardware pin(s)

o PL block

o Multiple hardware interrupts can utilize general interrupt controller of the PS

Level triggered
◦ Parameter: SENSITIVITY

◦ High, attribute: LEVEL_HIGH
◦ Low, attribute: LEVEL_LOW

SoC School - C. Sisterna ICTP - IAEA 11

Interrupt Types

Edge triggered
◦ Parameter: SENSITIVITY

◦ Rising edge, attribute: EDGE_RISING

◦ Falling edge, attribute: EDGE_FALLING

When an interrupt occurs, the current
executing instruction completes

Save processor status
◦ Copies CPSR into SPSR_irq
◦ Stores the return address in LR_irq

Change processor status for exception
◦ Mode field bits
◦ ARM or thumb (T2) state
◦ Interrupt disable bits (if appropriate)
◦ Sets PC to vector address (either FIQ or IRQ)

(This steps are performed automatically by the core)

SoC School - C. Sisterna ICTP - IAEA 12

How is the Interrupt Flow ? Part 1
Interrupt
Handler

Interrupt
Routine
Service

Executes top-level exception handler
◦ The top-level handler branches to the

appropriate device handler

Return to main application
◦ Restore CPSR from SPSR_irq

◦ Restore PC from LR_irq

◦ When re-enabling interrupts change to system
mode (CPS)

(Above steps are the responsibility of the software)

SoC School - C. Sisterna ICTP - IAEA 13

How is the Interrupt Flow ? Part 2
Interrupt
Handler

Interrupt
Routine
Service

Generic Interrupt
Controller (GIC)

SoC School - C. Sisterna ICTP - IAEA 14

SoC School - C. Sisterna ICTP - IAEA 15

Generic Interrupt Controller (GIC)

Generic Interrupt Controller (PL390)

SoC School - C. Sisterna ICTP - IAEA 16

GIC Block Diagram

SoC School - C. Sisterna ICTP - IAEA 17

System Level Block Diagram

o Each processor has its own configuration space for interrupts
o Ability to route interrupts to either or both processors

o Separate mask registers for processors

o Supports interrupt prioritization

o Handles up to 16 software-generated interrupts (SGI)

o Supports 64 shared peripheral interrupts (SPI) starting at ID 32

o Processes both level-sensitive interrupts and edge-sensitive interrupts

o Five private peripheral interrupts (PPI) dedicated for each core (no user-
selectable PPI)

SoC School - C. Sisterna ICTP - IAEA 18

Generic Interrupt Controller (GIC)

SoC School - C. Sisterna ICTP - IAEA 19

Interrupt Flow in the GIC

SoC School - C. Sisterna ICTP - IAEA 20

System Interrupt in the Zynq

CORTEX A9

Programmable Logic

Interrupt
Enabled Devices

in the PS

SCU Timer

PL0 – PL 15 Handler

USB Handler

CAN Handler

DMA Handler

I2C Handler

nnnn Handler

SCU Timer Handler

.

.

.

.

.

.

IRQ

PL0

PL15

Master
Interrupt
Handler

General Interrupt
Controller (GIC)

Exception
Handler
Logic

PSPL

Each CPU can interrupt itself, the other CPU, or both CPUs using a software
generated interrupt (SGI)

SoC School - C. Sisterna ICTP - IAEA 21

Software Generated Interrupts (SGI)

 There are 16 software generated interrupts
 An SGI is generated by writing the SGI interrupt number to the ICDSGIR register and

specifying the target CPU(s).

 All SGIs are edge triggered.

Each CPU connects to a private set of five peripheral interrupts

SoC School - C. Sisterna ICTP - IAEA 22

CPU Private Peripheral Interrupts (PPI)

PPI Includes
o The global timer, private watchdog timer, private timer, and FIQ/IRQ from the PL
o IRQ IDs 16-26 reserved, global timer 27, nFIQ 28, private timer 29, watchdog timer 30, nIRQ 31

A group of approximately 60 interrupts from various peripherals can be routed to
one or both of the CPUs or the PL. The interrupt controller manages the

prioritization and reception of these interrupts for the CPUs.

SoC School - C. Sisterna ICTP - IAEA 23

Shared Peripheral Interrupts (SPI)

SoC School - C. Sisterna ICTP - IAEA 24

Shared Peripheral Interrupts (SPI)

The GIC also provides access to the private peripheral interrupts from the
programmable logic
◦ Basically a direct connection to the CPU's interrupt input

◦ Bypasses the GIC

◦ Corex_nFIQ (ID 28)

◦ Corex_nIRQ (ID31)

SoC School - C. Sisterna ICTP - IAEA 25

Connecting Interrupt Source to GIC

Processing a
Harwdware Interrupt

SoC School - C. Sisterna ICTP - IAEA 26

1. The processor completes the current instruction

2. The processor disables further interrupts, saves the content of the status
register, and saves the content of the program counter, which is the next
address of normal program execution

3. The processor transfers execution to the top-level exception handler by
loading the program counter with the predetermined exception handler
address

4. The exception handler saves the contents of the processor's registers

5. The exception handler determines the cause of the interrupt

6. The exception handler calls the proper ISR according to the cause

SoC School - C. Sisterna ICTP - IAEA 27

Detailed Procedure

7. The ISR clears the associated interrupt condition
8. The ISR performs the designated device-specific function and then

returns the control to the exception handler
9. The exception handler restores the contents of the processor's registers

and enables future interrupts
10. The exception handler exits by issuing the eret (exception return)

instruction
11. The processor executes the eret instruction, which restores the status

register and loads the previous saved return address to the program
counter

12. The processor resumes the normal program execution from the
interrupted point

SoC School - C. Sisterna ICTP - IAEA 28

Detailed Procedure (cont’)

In order to support interrupts,
◦ They must be connected

◦ Interrupt signals from on-core peripherals are already connected

◦ Interrupt signals from PL must explicitly be connected

◦ They must be enable in the Zynq PS

◦ They must be enabled in software
◦ Use peripheral’s API

◦ Interrupt service routine must be developed
◦ ‘C’ defined functions and user code

SoC School - C. Sisterna ICTP - IAEA 29

Interrupt Handling in Cortex-A9 Processor

‘C’ Code for
Hardware Interrupt

SoC School - C. Sisterna ICTP - IAEA 30

int main (void)

{

assign_interrupt_handler(&my_doorbell, front_door_interrupt_handler);

while(1)

{

print("I’m watching TV\n\r");

}

return(0);

}

void front_door_interrupt_handler (void)

{

print("My pizza has arrived!\n\r");

}

SoC School - C. Sisterna ICTP - IAEA 31

Pseudo Code for Hardware Interrupt

Interrupts are supported and can be implemented on a bare-metal system
using the standalone board support package (BSP) within the Xilinx
Software Development Kit (SDK).

The BSP contains a number of functions that greatly ease this task of
creating an interrupt-driven system. They are provided within the following
header files:
◦ Xparameters.h – This file contains the processor’s address space and the

device IDs.

◦ Xscugic.h – This file holds the drivers for the configuration and use of the GIC.

◦ Xil_exception.h – This file contains exception functions for the Cortex-A9.

SoC School - C. Sisterna ICTP - IAEA 32

USING INTERRUPTS IN Xilinx SDK

Requirements for including an interrupt into the application

◦ Write a void software function that services the interrupt

◦ Use the provided device IP routines to facilitate writing the ISR

◦ Clear interrupt

◦ Perform the interrupt function

◦ Re-enable interrupt upon exit

◦ Register the interrupt handler by using an appropriate function

◦ Single external interrupt registers with the processor function

◦ Multiple external interrupts register with the interrupt controller

◦ The call back registration argument is optional

SoC School - C. Sisterna ICTP - IAEA 33

Requirements for an Interrupt Routine Service

Hardware Interrupt -
Example Code

SoC School - C. Sisterna ICTP - IAEA 34

The Zynq documentation states that an interrupt is generated by the timer
whenever it reaches zero, so we can use this feature to generate a

hardware.

SoC School - C. Sisterna ICTP - IAEA 35

SCU Timer Interrupt: Detailed Study

1. Enable interrupt functionality on the SCU Timer

2. Enable interrupts on the ARM Processor

3. Set up the Interrupt Controller

To configure the ARM processor to be able to answer to an interrupt
request from the SCU Timer the following steps have to be implemented:

SoC School - C. Sisterna ICTP - IAEA 36

Main Code for the SCU Timer Interrupt – Step 1

Next we need to initialize the exception handling features on the ARM
processor. This is done using a function call from the “xil_exception.h”

header file.

SoC School - C. Sisterna ICTP - IAEA 37

Step 2

When an interrupt occurs, the processor first has to interrogate the
interrupt controller to find out which peripheral generated the interrupt.
Xilinx provide an interrupt handler to do this automatically, and it is called

“XScuGic_InterruptHandler”.

SoC School - C. Sisterna ICTP - IAEA 38

Step 3

We now need to assign our interrupt handler, which will handle interrupts
for the timer peripheral. In our case, the handler is called

“my_timer_interrupt_handler”.

SoC School - C. Sisterna ICTP - IAEA 39

Step 4

It’s connected to a unique interrupt ID number which is represented
by the “XPAR_SCUTIMER_INTR” (“xparameters.h”).

The next task is to enable the interrupt input for the timer on the interrupt
controller. Interrupt controllers are flexible, so you can enable and disable

each interrupt to decide what gets through and what doesn’t.

SoC School - C. Sisterna ICTP - IAEA 40

Step 5

Next, we need to enable the interrupt output on the timer.

SoC School - C. Sisterna ICTP - IAEA 41

Step 6

Finally, we need to enable interrupt handling on the ARM processor. Again,
this function call can be found in the “xil_exception.h” header file.

SoC School - C. Sisterna ICTP - IAEA 42

Step 7

SoC School - C. Sisterna ICTP - IAEA 43

Interrupt Steps in the Zynq

CORTEX A9

Programmable Logic

Interrupt
Enabled Devices

in the PS

SCU Timer

PL0 – PL 15 Handler

USB Handler

CAN Handler

DMA Handler

I2C Handler

nnnn Handler

SCU Timer Handler
my_timer_int_hanlder

.

.

.

.

.

.

IRQ

PL0

PL15

Master
Interrupt
Handler

General Interrupt
Controller (GIC)

Exception
Handler
Logic

PSPL

1

62

345

SoC School - C. Sisterna ICTP - IAEA 44

IRS - Interrupt Handler - 1

We can declare a local copy of the “my_Timer” instance, and assign it the
information provided by the “CallBackRef”

SoC School - C. Sisterna ICTP - IAEA 45

IRS - Interrupt Handler - 2

we now want to check to make sure that the timer really did generate this
interrupt.

SoC School - C. Sisterna ICTP - IAEA 46

IRS - Interrupt Handler - 3

The last task is to clear the interrupt condition in the timer peripheral. If we
don’t do this, then the interrupt condition will still be active.

SoC School - C. Sisterna ICTP - IAEA 47

IRS Interrupt Handler - 4

Interrupt Considerations

SoC School - C. Sisterna ICTP - IAEA 48

Interrupts are considered asynchronous events
◦ Know the nature of your interrupt

◦ Edge or level?

◦ How the interrupt is cleared?

◦ What happens if another event occurs while the interrupt is asserted?

◦ How frequently can the interrupt event occur?

Can the system tolerate missing an interrupt?

SoC School - C. Sisterna ICTP - IAEA 49

Interrupt Considerations

Timing
◦ What is the latency from the hardware to the ISR?

◦ Operating system can aggravate this

◦ Are the interrupts prioritized?

◦ How long can the ISR be active before affecting other things in the system?

Can the ISR be interrupted?
◦ If so, code must be written to be reentrant

◦ A practice to be avoided

Code portability
◦ Are operating system hooks needed?

SoC School - C. Sisterna ICTP - IAEA 50

ISR Considerations

o Keep the code short and simple; ISRs can be difficult to debug

o Do not allow other interrupts while in the ISR
o This is a system design consideration and not a recommended practice
o The interrupt priority, when using an interrupt controller, is determined by the

hardware hookup bit position on the interrupt input bus

o Time is of the essence!
o Spend as little time as possible in the ISR
o Do not perform tasks that can be done in the background
o Use flags to signal background functions

o Make use of provided interrupt support functions when using IP drivers

o Do not forget to enable interrupts when leaving the handler/ISR

SoC School - C. Sisterna ICTP - IAEA 51

ISR Tips and Tricks

o Keep the interrupt handler code brief (in time)
o Avoid loops (especially open-ended while statements)

o Keep the interrupt handler simple
o Interrupt handlers can be very difficult to debug

o Disable interrupts as they occur
o Re-enable the interrupt as you exit the handler

o Budget your time
o Interrupts are never implemented for fun—they are required to meet a specified response

time
◦ Predict how often an interrupt is going to occur and how much time your interrupt handler

takes
◦ Spending your time in an interrupt handler increases the risk that you may miss another

interrupt

SoC School - C. Sisterna ICTP - IAEA 52

How to write a Good ISR

Despite its simplistic appearance, scheduling with interrupt can be very involved
and may complicate the software development.

 ISRs are the most error-prone portion in embedded software. Since an ISR can
be invoked any time during program execution, it is difficult to develop, debug,
test, and maintain.

 ISRs complicate the timing analysis of the main polling loop. We must consider
the frequency of occurrence and duration of the ISRs to ensure that normal tasks
within the polling loop can be executed in a timely manner. When multiple
interrupts are used, an ISR may effect and interfere with other ISRs and the
complexity multiplies.

To ease the problem, it is good practice to keep ISRs simple and fast. We should
use an ISR to perform the most essential functionalities, such as setting event
flags, updating counters, sending a message to a queue, etc., and leave the non-
critical computation to a task within the main polling loop. This simplifies the ISR
development and timing analysis.

SoC School - C. Sisterna ICTP - IAEA 53

ISR: Precautions

The top-level exception handler timing includes three parts

Hardware interrupt latency: from the time when an interrupt is asserted
to the time when the processor executes the instruction at the exception
address.

 Response time: from the time when an interrupt is asserted to the time
when the processor executes the first instruction in the ISR. It includes the
time for the exception handler to determine the cause of the interrupt and
save the content of register file.

Recovery time: the time taken from the last instruction in the ISR to return
to normal processing

SoC School - C. Sisterna ICTP - IAEA 54

Performance

Some techniques are:

o Adjust the buffer size or implement advanced features, such as double
buffering.

o Utilize DMA (direct memory access) controllers to transfer data between
memory modules.

o Implement custom hardware accelerator to perform computation
intensive processing.

The SoC platform introduces a new dimension of flexibility. We can examine
the performance criteria and design complexity and find the best trade-off

between software and hardware resources.

SoC School - C. Sisterna ICTP - IAEA 55

ISR performance enhancement

Apendix

SoC School - C. Sisterna ICTP - IAEA 56

SoC School - C. Sisterna ICTP - IAEA 57

Cortex A9 – Modes and Registers
Cortex-A9 has seven execution modes
◦ Five are exception modes

◦ Each mode has its own stack space and different subset of registers

◦ System mode will use the user mode registers

SoC School - C. Sisterna ICTP - IAEA 58

Cortex A9 – Modes and Registers

Cortex-A9 has 37 registers
◦ Up to 18 visible at any one time

◦ Execution modes have some
private registers that are banked
in when the mode is changed

◦ Non-banked registers are shared
between modes

1. Set a direction control for the AXI GPIO pin as an input pin, which is connected with
BTNU push button on the board. The location is fixed via LOC constraint in the user
constraint file (UCF) during system creation.

2. Initialize the AXI TIMER module with device ID 0.

3. Associate a timer callback function with AXI timer ISR.

4. This function is called every time the timer interrupt happens. This callback switches
on the LED ‘LD9’ on the board and sets the interrupt flag.

5. The main() function uses the interrupt flag to halt execution, wait for timer interrupt
to happen, and then restarts the execution.

6. Set the reset value of the timer, which is loaded to the timer during reset and timer
starts.

7. Set timer options such as Interrupt mode and Auto Reload mode.

SoC School - C. Sisterna ICTP - IAEA 59

Application Software for HI

Zedboard_refdoc_Vivado_2014-2_cs.pdf

8. Initialize the PS section GPIO.

9. Set the PS section GPIO, channel 0, pin number 10 to the output pin, which is
mapped to the MIO pin and physically connected to the LED ‘LD9’ on the board.

10. Set PS Section GPIO channel number 2 pin number 0 to input pin, which is mapped
to PL side pin via the EMIO interface and physically connected to the BTNR push
button switch.

11. Initialize Snoop control unit Global Interrupt controller. Also, register Timer interrupt
routine to interrupt ID '91', register the exceptional handler, and enable the
interrupt.

12. Execute a sequence in the loop to select between AXI GPIO or PS GPIO use case via
serial terminal.

SoC School - C. Sisterna ICTP - IAEA 60

Application Software for HI

