
Joint ICTP-IAEA School on 
Zynq-7000 SoC and its 

Applications for Nuclear 
and Related Instrumentation

Smr3143 – ICTP & IAEA (Aug. & Sept. 2017)

Fernando Rincón
fernando.rincon@uclm.es

Embedded Linux Device Drivers



Linux Drivers Smr3143 – ICTP & IAEA (Aug. & Sept. 2017) 2

Contents

● Xilinx Device Drivers model
– Layered approach

● Linux Kernel Space vs User Space

● Linux Device Driver Model

● The Device Tree

● Writing Linux Drivers
– Full Drivers (out of our scope)
– /dev/mem approach
– User Space I/O

C pointer arithmetic under-
standing required!!



Linux Drivers Smr3143 – ICTP & IAEA (Aug. & Sept. 2017) 3

Xilinx Drivers: The Programmers View

● Provide maximum portability
– The device drivers are provided as ANSI C source code

● Support FPGA confgurability
– Supports multiple instances of the device without code duplication for each 

instance, while at the same time managing unique characteristics on a per-
instance basis

● Support simple and complex use cases
– A layered device driver architecture provides both 

● Simple device drivers with minimal memory footprints
● Full-featured device drivers with larger memory footprints

● Ease of use and maintenance
– Xilinx uses coding standards and provides well-documented source code for 

developers



Linux Drivers Smr3143 – ICTP & IAEA (Aug. & Sept. 2017) 4

Xilinx Drivers: Layered Architecture

Hardware  

Layer 0 : Low-level drivers   

Layer 1 : High-level drivers   

Layer 2 : OS Drivers  

Baremetal Apps

● for simple use cases

● full-featured

● portable across operating 
systems and processors 

OS-based Apps

● portable across applications



Linux Drivers Smr3143 – ICTP & IAEA (Aug. & Sept. 2017) 5

Xilinx Device Drivers: Levels 0 & 1

Layer 0
● Low-level device drivers

● Macros & functions to create a small 
system

● Characteristics:
– Small memory footprint

– Little to no error checking 

– Primary device features only

– No support of device confguration 
parameters

– Supports multiple instances of a device 
with base address input to the API

– Polled I/O only

– Blocking function calls

Layer 1
● high-level device drivers

● Macros & functions  to utilize all of the 
features of a device

● Characteristics:
– Abstract API 

– All device features & confgs.

– Multiple instances of a device

– Polled and interrupt driven I/O

– Non-blocking function calls to aid 
complex applications

– May have a large memory footprint

– Buffer interfaces as opposed to byte 
interfaces



Linux Drivers Smr3143 – ICTP & IAEA (Aug. & Sept. 2017) 6

Xilinx Device Drivers: Layers 0 & 1 Example

UARTPs Level 0
● XuartPs_SendByte()

– Sends one byte using the 
device.

● XuartPs_RecvByte()

– Receives a byte from the 
device.

UARTPs Level 1
● XuartPs_CfgInitialize()

– Initializes a specifc XUartPs instance 
such that it is ready to be used

● XuartPs_Send()

– Sends the specifed buffer using the 
device in either polled or interrupt 
driven mode.

● XuartPs_Recv()

– Receive a specifed number of bytes 
of data from the device and store it 
into the specifed buffer.

● XuartPs_SetBaudRate()

– Sets the baud rate for the device.



Linux Drivers Smr3143 – ICTP & IAEA (Aug. & Sept. 2017) 7

Kernel Space vs User Space

● Kernel Space
– Virtual and Physical memory
– CPU ‘Kernel/Supervisor Mode’ 

(ARM Privileged)
– Context switching & interrupts
– System crash in case of error

● User Space
– Virtual memory only (kernel 

handles the mapping and page 
faults)

– CPU ‘User Mode’ (ARM 
Unprivileged)

– All hardware access via kernel 
syscall interface

 U
se

r 
S

p
ac

e

Application

Kernel syscall API

libc

LibrariesApplication

K
er

n
e

l S
p

ac
e

Application

Linux Kernel

Hardware



Linux Drivers Smr3143 – ICTP & IAEA (Aug. & Sept. 2017) 8

Linux Device Driver Model

● Linux supports thousands of very 
different devices & bus 
architectures 

● Requires a sophisticated a 
sophisticated model

● Organized around 3 types:
– Character

● Keyboard, mouse, console, 
bluetooth, ...

● Most IP drivers

– Block:
● Mainly for storage

– Network

Linux device drivers taxonomy
A. Kadav & M. Swift.  University of Wisconsin-Madison



Linux Drivers Smr3143 – ICTP & IAEA (Aug. & Sept. 2017) 9

Device nodes & numbers

● Everything in linux are fles, also devices

● Located at the /dev directory

● Device numbers:
– Identifed by a minor and major number

● Same type equals same major

● Device nodes:
– Device fle created when detected:

● /dev/ttyACM0 
● /dev/fb0 – frame buffer 0

crw-------    1 root     tty       247,   0 Aug 22 10:41 /dev/ttyPS0

minor
major



Linux Drivers Smr3143 – ICTP & IAEA (Aug. & Sept. 2017) 10

Platform confguration

● How do you know what devices are present in the system (and their address/IRQ)?
– Some buses are enumerated; e.g., PCITM/PCIe®/USB technologies

● OS queries PCI compliant confguration space to fnd devices
● Assigns device addresses and IRQs
● Drivers query this data to access their device

– Based on auto-discovery

● Traditional system on chip (SoC) buses are typically static
– Address space defned at synthesis time
– Cannot be queried at runtime
– They need a way to provide such information

● For a Zynq® All-programmable SoC, the device tree (DTS) is used
– Enables confguration depending on what is loaded into the system
– Standard and custom IP drivers can be loaded



Linux Drivers Smr3143 – ICTP & IAEA (Aug. & Sept. 2017) 11

Device Tree: Types of fles

{
    memory {

device_type = "memory";
reg = <0x0 0x20000000>;

    };

    cpus {
cpu@0 { compatible = "arm,cortex-a9";

...};

cpu@1 { compatible = "arm,cortex-a9";
...};

};

    amba {
compatible = "simple-bus";
interrupt-parent = <0x3>;
ranges;

ethernet@e000b000 {
compatible = "cdns,zynq-gem", "cdns,gem";
...};

};

    amba_pl {
#address-cells = <0x1>;
#size-cells = <0x1>;
compatible = "simple-bus";
ranges;

gpio@41200000 {
#gpio-cells = <0x2>;
compatible = "xlnx,xps-gpio-1.00.a";
...};
};

};

{
    memory {

device_type = "memory";
reg = <0x0 0x20000000>;

    };

    cpus {
cpu@0 { compatible = "arm,cortex-a9";

...};

cpu@1 { compatible = "arm,cortex-a9";
...};

};

    amba {
compatible = "simple-bus";
interrupt-parent = <0x3>;
ranges;

ethernet@e000b000 {
compatible = "cdns,zynq-gem", "cdns,gem";
...};

};

    amba_pl {
#address-cells = <0x1>;
#size-cells = <0x1>;
compatible = "simple-bus";
ranges;

gpio@41200000 {
#gpio-cells = <0x2>;
compatible = "xlnx,xps-gpio-1.00.a";
...};
};

};

DTS file ● Device Tree Source
– Textual description of the 

system, buses and peripherals

● Device Tree Blob
– Binary representation of the 

DTS

● Device Tree Compiler
– Converts the DTS into DTB

DTB file

  
  0010…011
      …
  0100…100

  
  0010…011
      …
  0100…100

DTC compiler



Linux Drivers Smr3143 – ICTP & IAEA (Aug. & Sept. 2017) 12

Device Tree: Properties

● compatible identifes bus controller (in case of I2C, SPI, PCI, etc.). 
– special value compatible = "simple-bus" =>  simple memory-

mapped bus with no specifc handling or driver. 
● Child nodes registered as platform devices

● #address-cells =>number of cells (i.e 32 bits values) to form the 
base address part in the reg property

● #size-cells  => idem for the size part of the reg property

amba {
compatible = "simple-bus";
#address-cells = <0x1>;
#size-cells = <0x1>;
interrupt-parent = <0x3>;
ranges;

adc@f8007100 {
compatible = "xlnx,zynq-xadc-1.00.a";
reg = <0xf8007100 0x20>;
interrupts = <0x0 0x7 0x4>;

…

amba {
compatible = "simple-bus";
#address-cells = <0x1>;
#size-cells = <0x1>;
interrupt-parent = <0x3>;
ranges;

adc@f8007100 {
compatible = "xlnx,zynq-xadc-1.00.a";
reg = <0xf8007100 0x20>;
interrupts = <0x0 0x7 0x4>;

…

● ranges => address 
translation between child 
bus and parent bus. 
– If just ranges; => identity 

translation



Linux Drivers Smr3143 – ICTP & IAEA (Aug. & Sept. 2017) 13

Device Tree: Generation

● How is the device tree created?
– PetaLinux tools includes an automated device tree generator

● Generates device tree based on hardware design 
● All IP cores and properties exported in DTS

– Kernel build process compiles DTS → DTB and links into kernel image
● Per-platform DTS fles in

– <project>/components/plnx_workspace/device-tree-generation 
● system.dtsi: peripherals in PL
● ps.dtsi - peripherals in PS

– <project>/project-spec/meta-user/recipes-dt/device-tree/files/ 
● /project-spec/meta-user/recipes-dt/device-tree/fles/system-top.dts 

- User overwrite of default parameters and addition of new 
parameter

– Changes to the system-top.dts will not be over written by subsequent 
petalinux-confg



Linux Drivers Smr3143 – ICTP & IAEA (Aug. & Sept. 2017) 14

Device Tree: Example

amba_pl: amba_pl {
    #address-cells = <1>;
    #size-cells = <1>;
    compatible = "simple-bus";
    Ranges ;

    axi_gpio_0: gpio@41200000 {
#gpio-cells = <2>;
compatible = "xlnx,xps-gpio-1.00.a";
gpio-controller ;
reg = <0x41200000 0x10000>;
xlnx,all-inputs = <0x1>;
xlnx,all-inputs-2 = <0x0>;
xlnx,all-outputs = <0x0>;
xlnx,all-outputs-2 = <0x1>;
xlnx,dout-default = <0x00000000>;
xlnx,dout-default-2 = <0x00000000>;
xlnx,gpio-width = <0x8>;
xlnx,gpio2-width = <0x8>;
xlnx,interrupt-present = <0x0>;
xlnx,is-dual = <0x1>;
xlnx,tri-default = <0xFFFFFFFF>;
xlnx,tri-default-2 = <0xFFFFFFFF>;

    };
};

name of device

address space

compatible device
Id./ driver name 

/ version

custom parameters

AXI GPIO DTS example



Linux Drivers Smr3143 – ICTP & IAEA (Aug. & Sept. 2017) 15

Writing Drivers

● Developing a kernel driver is a 
challenging task
– Use of internal kernel functions and 

macros
– Complex to debug
– Kernel failures lock the device
– See: Linux Device Drivers, 3rd ed by Corbet, 

Rubini, Kroah-Hartmann, O’Reilly Press, 2005

● Simpler alternatives
– Direct acces to memory registers

● /dev/mem device

– UserSpace IO (IUO)
● Generic framework for user space 

drivers



Linux Drivers Smr3143 – ICTP & IAEA (Aug. & Sept. 2017) 16

/dev/mem Drivers

● Based on mapping physical device memory into the user space
– Access through a pointer returned from mmap() system call

● The simplest alternative

● But no IRQ handling

● Requires root or appropriate privileges

● Be careful
– Can bypass protections provided by the MMU
– Can corrupt kernel, memory or other processes

Simplest
Alternative!!



Linux Drivers Smr3143 – ICTP & IAEA (Aug. & Sept. 2017) 17

/dev/mem Driver example

/* poke utility - for those who remember the good old days!*/
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/mman.h>
#include <fcntl.h>

int main(int argc, char *argv[])
{
        int fd;
        void *ptr;
        unsigned val, addr, page_addr, page_offset;
        unsigned page_size=sysconf(_SC_PAGESIZE);

        fd=open("/dev/mem",O_RDWR);
        if(fd<1) { perror(argv[0]); exit(-1);}

        if(argc!=3) { printf(“Usage: poke <addr> <data>”\n”); exit(-1);}

        addr=strtoul(argv[1],NULL,0);
        val=strtoul(argv[2],NULL,0);

        page_addr=(addr & ~(page_size-1));
        page_offset=addr-page_addr;

        ptr=mmap(NULL,page_size,PROT_READ|PROT_WRITE,MAP_SHARED,fd,page_addr);
        if((int)ptr==-1) { perror(argv[0]); exit(-1);}

        *((unsigned *)(ptr+page_offset))=val;
        return 0;
}

/* poke utility - for those who remember the good old days!*/
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/mman.h>
#include <fcntl.h>

int main(int argc, char *argv[])
{
        int fd;
        void *ptr;
        unsigned val, addr, page_addr, page_offset;
        unsigned page_size=sysconf(_SC_PAGESIZE);

        fd=open("/dev/mem",O_RDWR);
        if(fd<1) { perror(argv[0]); exit(-1);}

        if(argc!=3) { printf(“Usage: poke <addr> <data>”\n”); exit(-1);}

        addr=strtoul(argv[1],NULL,0);
        val=strtoul(argv[2],NULL,0);

        page_addr=(addr & ~(page_size-1));
        page_offset=addr-page_addr;

        ptr=mmap(NULL,page_size,PROT_READ|PROT_WRITE,MAP_SHARED,fd,page_addr);
        if((int)ptr==-1) { perror(argv[0]); exit(-1);}

        *((unsigned *)(ptr+page_offset))=val;
        return 0;
}

Open
 /dev/mem

Memory map

Access via
pointer



Linux Drivers Smr3143 – ICTP & IAEA (Aug. & Sept. 2017) 18

/dev/mem Pros & Cons

● Pros
– Very simple – no kernel module or code
– Good for quick prototyping / IP verifcation
– peek/poke utilities
– Portable (in a very basic sense)

● Cons
– No interrupt handling possible
– No protection against simultaneous access
– Need to know physical address of IP

● Hard-code?

● OK for prototyping – not recommended for production



Linux Drivers Smr3143 – ICTP & IAEA (Aug. & Sept. 2017) 19

UIO Drivers

● Introduced in Linux 2.6.22
– Portable implementation of user 

device drivers
– Basic interrupt handling 

capabilities

● Very thin kernel-level driver
– Register UIO device
– Trivial interrupt handler

● All of the real work happens in 
user space

● generates a set of directories and 
attribute fles in sysfs Linux kernel 
memory management

Simple but effective
Alternative!!



Linux Drivers Smr3143 – ICTP & IAEA (Aug. & Sept. 2017) 20

UIO Drivers: SysFS

● Dynamic “virtual” fle sytem: sysfs

● Mounted on /sys

● Representation of the device model in the user space
– Device attributes represented as fles
– Can read/write over the fles to set parameters from the user space

/sys/class/gpio/gpio7 # echo 1 > value
/sys/class/gpio/gpio7 # cat value

/sys/class/gpio/gpio7 # echo 1 > value
/sys/class/gpio/gpio7 # cat value

Useful for controlling 
Devices from shell scripts

fprintf(file_led7, “%d”, 1);
fscanf(file_led7, “%d”, &n_ch);

fprintf(file_led7, “%d”, 1);
fscanf(file_led7, “%d”, &n_ch);

The programmatic way



Linux Drivers Smr3143 – ICTP & IAEA (Aug. & Sept. 2017) 21

UIO Drivers: Application level

● Opening the device
– Walk through sysfs mounted /sys/class/uio/uioX 
– Check virtual fle 'name'
– If it matches

● Memory mapping the resources

– n is the mapping number (device specifc)

● ptr may now be safely used for direct access to the hardware

  void *ptr=mmap(NULL, size, PROT_READ|PROT_WRITE,
 MAP_SHARED, fd, n * PAGE_SIZE);

  void *ptr=mmap(NULL, size, PROT_READ|PROT_WRITE,
 MAP_SHARED, fd, n * PAGE_SIZE);

  fd=open("/dev/uioX",O_RDWR);  fd=open("/dev/uioX",O_RDWR);



Linux Drivers Smr3143 – ICTP & IAEA (Aug. & Sept. 2017) 22

UIO Drivers: Interrupt Handling

● Several options 
– Issuing a read() on the device returns number of interrupts since last 

read call     

– Can be blocking or non blocking
● O_NONBLOCK fag in open() call

– select() system call on the fle descriptor
● optionally block until an IRQ occurs

– Actual handling of the interrupt is device dependent

  read(fd, &num_irqs, sizeof(num_irqs));  read(fd, &num_irqs, sizeof(num_irqs));



Linux Drivers Smr3143 – ICTP & IAEA (Aug. & Sept. 2017) 23

UIO Drivers – Kernel Interface

● By default, even UIO requires a thin kernel-space driver
– Register and remap device address map
– Specify IRQ handler function
– Register driver with UIO subsystem
– The rest is implemented in the user space

● The PetaLinux tools includes an extension to UIO
– Tag device entry in DTS fle with compatible=”generic-uio”
– Enable "Userspace I/O OF driver with generic IRQ handling" kernel option

● Kconfg > Drivers > UserspaceIO

● No custom kernel code required at all!

● Userspace interface is the same
– Write 0/1 to the UIO device to disable/enable IRQ
– Read from the device to wait for IRQ
– mmap() for device register access



Linux Drivers Smr3143 – ICTP & IAEA (Aug. & Sept. 2017) 24

UIO Drivers: Example

/* open the device */
int fd=open(“/dev/uioX”,O_RDWR);

/* memory map it */
volatile unsigned int *ptr = \

mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);

/* setup the device registers */
*(ptr+REG_OFFSET) = ...

/* main IRQ/processing loop */
while(1) {

unsigned tmp = 0x1;
/* Enable the interrupt */
write(fd, &tmp,sizeof(tmp));

/* Wait for an IRQ
read(fd, &tmp, sizeof(tmp);

/* Handle the IRQ */
tmp = *(ptr+REG_OFFSET);

...
*(ptr+REG_OFFSET) = ...

}

/* open the device */
int fd=open(“/dev/uioX”,O_RDWR);

/* memory map it */
volatile unsigned int *ptr = \

mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);

/* setup the device registers */
*(ptr+REG_OFFSET) = ...

/* main IRQ/processing loop */
while(1) {

unsigned tmp = 0x1;
/* Enable the interrupt */
write(fd, &tmp,sizeof(tmp));

/* Wait for an IRQ
read(fd, &tmp, sizeof(tmp);

/* Handle the IRQ */
tmp = *(ptr+REG_OFFSET);

...
*(ptr+REG_OFFSET) = ...

}

device name



Linux Drivers Smr3143 – ICTP & IAEA (Aug. & Sept. 2017) 25

UIO Drivers: Kernel Interface

● Things to watch for
– UIO IRQ enable/disable is at kernel IRQ line level

● Userspace code must 
– Setup device for IRQ generation
– ACK the IRQ

● Cannot use shared IRQs in this scheme

– Only usable for address-mapped devices
● Cannot support FSL, APU etc



Linux Drivers Smr3143 – ICTP & IAEA (Aug. & Sept. 2017) 26

UIO Pros & Cons

● Pros
– Benefts of /dev/mem and mmap()
– Plus IRQ handling
– No kernel code at all

– If using OF_GENIRQ extensions
– No need to recompile and reboot kernel
– Kernel drivers can easily break the kernel and force a reboot
– UIO driver errors not usually fatal
– Open driver development to non-kernel developers

● Cons 
– Interrupt model is simple (but adequate in many cases)
– Subject to variable or high latency 
– No support for DMA to/from user space


	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

