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Xilinx Drivers: The Programmers View

● Provide maximum portability
– The device drivers are provided as ANSI C source code

● Support FPGA confgurability
– Supports multiple instances of the device without code duplication for each 

instance, while at the same time managing unique characteristics on a per-
instance basis

● Support simple and complex use cases
– A layered device driver architecture provides both 

● Simple device drivers with minimal memory footprints
● Full-featured device drivers with larger memory footprints

● Ease of use and maintenance
– Xilinx uses coding standards and provides well-documented source code for 

developers
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Xilinx Drivers: Layered Architecture

Hardware  

Layer 0 : Low-level drivers   

Layer 1 : High-level drivers   

Layer 2 : OS Drivers  

Baremetal Apps

● for simple use cases

● full-featured

● portable across operating 
systems and processors 

OS-based Apps

● portable across applications



Linux Drivers Smr3143 – ICTP & IAEA (Aug. & Sept. 2017) 5

Xilinx Device Drivers: Levels 0 & 1

Layer 0
● Low-level device drivers

● Macros & functions to create a small 
system

● Characteristics:
– Small memory footprint

– Little to no error checking 

– Primary device features only

– No support of device confguration 
parameters

– Supports multiple instances of a device 
with base address input to the API

– Polled I/O only

– Blocking function calls

Layer 1
● high-level device drivers

● Macros & functions  to utilize all of the 
features of a device

● Characteristics:
– Abstract API 

– All device features & confgs.

– Multiple instances of a device

– Polled and interrupt driven I/O

– Non-blocking function calls to aid 
complex applications

– May have a large memory footprint

– Buffer interfaces as opposed to byte 
interfaces
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Xilinx Device Drivers: Layers 0 & 1 Example

UARTPs Level 0
● XuartPs_SendByte()

– Sends one byte using the 
device.

● XuartPs_RecvByte()

– Receives a byte from the 
device.

UARTPs Level 1
● XuartPs_CfgInitialize()

– Initializes a specifc XUartPs instance 
such that it is ready to be used

● XuartPs_Send()

– Sends the specifed buffer using the 
device in either polled or interrupt 
driven mode.

● XuartPs_Recv()

– Receive a specifed number of bytes 
of data from the device and store it 
into the specifed buffer.

● XuartPs_SetBaudRate()

– Sets the baud rate for the device.
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Kernel Space vs User Space

● Kernel Space
– Virtual and Physical memory
– CPU ‘Kernel/Supervisor Mode’ 

(ARM Privileged)
– Context switching & interrupts
– System crash in case of error

● User Space
– Virtual memory only (kernel 

handles the mapping and page 
faults)

– CPU ‘User Mode’ (ARM 
Unprivileged)

– All hardware access via kernel 
syscall interface
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Linux Device Driver Model

● Linux supports thousands of very 
different devices & bus 
architectures 

● Requires a sophisticated a 
sophisticated model

● Organized around 3 types:
– Character

● Keyboard, mouse, console, 
bluetooth, ...

● Most IP drivers

– Block:
● Mainly for storage

– Network

Linux device drivers taxonomy
A. Kadav & M. Swift.  University of Wisconsin-Madison
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Device nodes & numbers

● Everything in linux are fles, also devices

● Located at the /dev directory

● Device numbers:
– Identifed by a minor and major number

● Same type equals same major

● Device nodes:
– Device fle created when detected:

● /dev/ttyACM0 
● /dev/fb0 – frame buffer 0

crw-------    1 root     tty       247,   0 Aug 22 10:41 /dev/ttyPS0

minor
major
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Platform confguration

● How do you know what devices are present in the system (and their address/IRQ)?
– Some buses are enumerated; e.g., PCITM/PCIe®/USB technologies

● OS queries PCI compliant confguration space to fnd devices
● Assigns device addresses and IRQs
● Drivers query this data to access their device

– Based on auto-discovery

● Traditional system on chip (SoC) buses are typically static
– Address space defned at synthesis time
– Cannot be queried at runtime
– They need a way to provide such information

● For a Zynq® All-programmable SoC, the device tree (DTS) is used
– Enables confguration depending on what is loaded into the system
– Standard and custom IP drivers can be loaded
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Device Tree: Types of fles

{
    memory {

device_type = "memory";
reg = <0x0 0x20000000>;

    };

    cpus {
cpu@0 { compatible = "arm,cortex-a9";

...};

cpu@1 { compatible = "arm,cortex-a9";
...};

};

    amba {
compatible = "simple-bus";
interrupt-parent = <0x3>;
ranges;

ethernet@e000b000 {
compatible = "cdns,zynq-gem", "cdns,gem";
...};

};

    amba_pl {
#address-cells = <0x1>;
#size-cells = <0x1>;
compatible = "simple-bus";
ranges;

gpio@41200000 {
#gpio-cells = <0x2>;
compatible = "xlnx,xps-gpio-1.00.a";
...};
};

};

{
    memory {

device_type = "memory";
reg = <0x0 0x20000000>;

    };

    cpus {
cpu@0 { compatible = "arm,cortex-a9";

...};

cpu@1 { compatible = "arm,cortex-a9";
...};

};

    amba {
compatible = "simple-bus";
interrupt-parent = <0x3>;
ranges;

ethernet@e000b000 {
compatible = "cdns,zynq-gem", "cdns,gem";
...};

};

    amba_pl {
#address-cells = <0x1>;
#size-cells = <0x1>;
compatible = "simple-bus";
ranges;

gpio@41200000 {
#gpio-cells = <0x2>;
compatible = "xlnx,xps-gpio-1.00.a";
...};
};

};

DTS file ● Device Tree Source
– Textual description of the 

system, buses and peripherals

● Device Tree Blob
– Binary representation of the 

DTS

● Device Tree Compiler
– Converts the DTS into DTB

DTB file

  
  0010…011
      …
  0100…100

  
  0010…011
      …
  0100…100

DTC compiler
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Device Tree: Properties

● compatible identifes bus controller (in case of I2C, SPI, PCI, etc.). 
– special value compatible = "simple-bus" =>  simple memory-

mapped bus with no specifc handling or driver. 
● Child nodes registered as platform devices

● #address-cells =>number of cells (i.e 32 bits values) to form the 
base address part in the reg property

● #size-cells  => idem for the size part of the reg property

amba {
compatible = "simple-bus";
#address-cells = <0x1>;
#size-cells = <0x1>;
interrupt-parent = <0x3>;
ranges;

adc@f8007100 {
compatible = "xlnx,zynq-xadc-1.00.a";
reg = <0xf8007100 0x20>;
interrupts = <0x0 0x7 0x4>;

…

amba {
compatible = "simple-bus";
#address-cells = <0x1>;
#size-cells = <0x1>;
interrupt-parent = <0x3>;
ranges;

adc@f8007100 {
compatible = "xlnx,zynq-xadc-1.00.a";
reg = <0xf8007100 0x20>;
interrupts = <0x0 0x7 0x4>;

…

● ranges => address 
translation between child 
bus and parent bus. 
– If just ranges; => identity 

translation
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Device Tree: Generation

● How is the device tree created?
– PetaLinux tools includes an automated device tree generator

● Generates device tree based on hardware design 
● All IP cores and properties exported in DTS

– Kernel build process compiles DTS → DTB and links into kernel image
● Per-platform DTS fles in

– <project>/components/plnx_workspace/device-tree-generation 
● system.dtsi: peripherals in PL
● ps.dtsi - peripherals in PS

– <project>/project-spec/meta-user/recipes-dt/device-tree/files/ 
● /project-spec/meta-user/recipes-dt/device-tree/fles/system-top.dts 

- User overwrite of default parameters and addition of new 
parameter

– Changes to the system-top.dts will not be over written by subsequent 
petalinux-confg
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Device Tree: Example

amba_pl: amba_pl {
    #address-cells = <1>;
    #size-cells = <1>;
    compatible = "simple-bus";
    Ranges ;

    axi_gpio_0: gpio@41200000 {
#gpio-cells = <2>;
compatible = "xlnx,xps-gpio-1.00.a";
gpio-controller ;
reg = <0x41200000 0x10000>;
xlnx,all-inputs = <0x1>;
xlnx,all-inputs-2 = <0x0>;
xlnx,all-outputs = <0x0>;
xlnx,all-outputs-2 = <0x1>;
xlnx,dout-default = <0x00000000>;
xlnx,dout-default-2 = <0x00000000>;
xlnx,gpio-width = <0x8>;
xlnx,gpio2-width = <0x8>;
xlnx,interrupt-present = <0x0>;
xlnx,is-dual = <0x1>;
xlnx,tri-default = <0xFFFFFFFF>;
xlnx,tri-default-2 = <0xFFFFFFFF>;

    };
};

name of device

address space

compatible device
Id./ driver name 

/ version

custom parameters

AXI GPIO DTS example
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Writing Drivers

● Developing a kernel driver is a 
challenging task
– Use of internal kernel functions and 

macros
– Complex to debug
– Kernel failures lock the device
– See: Linux Device Drivers, 3rd ed by Corbet, 

Rubini, Kroah-Hartmann, O’Reilly Press, 2005

● Simpler alternatives
– Direct acces to memory registers

● /dev/mem device

– UserSpace IO (IUO)
● Generic framework for user space 

drivers
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/dev/mem Drivers

● Based on mapping physical device memory into the user space
– Access through a pointer returned from mmap() system call

● The simplest alternative

● But no IRQ handling

● Requires root or appropriate privileges

● Be careful
– Can bypass protections provided by the MMU
– Can corrupt kernel, memory or other processes

Simplest
Alternative!!
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/dev/mem Driver example

/* poke utility - for those who remember the good old days!*/
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/mman.h>
#include <fcntl.h>

int main(int argc, char *argv[])
{
        int fd;
        void *ptr;
        unsigned val, addr, page_addr, page_offset;
        unsigned page_size=sysconf(_SC_PAGESIZE);

        fd=open("/dev/mem",O_RDWR);
        if(fd<1) { perror(argv[0]); exit(-1);}

        if(argc!=3) { printf(“Usage: poke <addr> <data>”\n”); exit(-1);}

        addr=strtoul(argv[1],NULL,0);
        val=strtoul(argv[2],NULL,0);

        page_addr=(addr & ~(page_size-1));
        page_offset=addr-page_addr;

        ptr=mmap(NULL,page_size,PROT_READ|PROT_WRITE,MAP_SHARED,fd,page_addr);
        if((int)ptr==-1) { perror(argv[0]); exit(-1);}

        *((unsigned *)(ptr+page_offset))=val;
        return 0;
}

/* poke utility - for those who remember the good old days!*/
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/mman.h>
#include <fcntl.h>

int main(int argc, char *argv[])
{
        int fd;
        void *ptr;
        unsigned val, addr, page_addr, page_offset;
        unsigned page_size=sysconf(_SC_PAGESIZE);

        fd=open("/dev/mem",O_RDWR);
        if(fd<1) { perror(argv[0]); exit(-1);}

        if(argc!=3) { printf(“Usage: poke <addr> <data>”\n”); exit(-1);}

        addr=strtoul(argv[1],NULL,0);
        val=strtoul(argv[2],NULL,0);

        page_addr=(addr & ~(page_size-1));
        page_offset=addr-page_addr;

        ptr=mmap(NULL,page_size,PROT_READ|PROT_WRITE,MAP_SHARED,fd,page_addr);
        if((int)ptr==-1) { perror(argv[0]); exit(-1);}

        *((unsigned *)(ptr+page_offset))=val;
        return 0;
}

Open
 /dev/mem

Memory map

Access via
pointer



Linux Drivers Smr3143 – ICTP & IAEA (Aug. & Sept. 2017) 18

/dev/mem Pros & Cons

● Pros
– Very simple – no kernel module or code
– Good for quick prototyping / IP verifcation
– peek/poke utilities
– Portable (in a very basic sense)

● Cons
– No interrupt handling possible
– No protection against simultaneous access
– Need to know physical address of IP

● Hard-code?

● OK for prototyping – not recommended for production
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UIO Drivers

● Introduced in Linux 2.6.22
– Portable implementation of user 

device drivers
– Basic interrupt handling 

capabilities

● Very thin kernel-level driver
– Register UIO device
– Trivial interrupt handler

● All of the real work happens in 
user space

● generates a set of directories and 
attribute fles in sysfs Linux kernel 
memory management

Simple but effective
Alternative!!
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UIO Drivers: SysFS

● Dynamic “virtual” fle sytem: sysfs

● Mounted on /sys

● Representation of the device model in the user space
– Device attributes represented as fles
– Can read/write over the fles to set parameters from the user space

/sys/class/gpio/gpio7 # echo 1 > value
/sys/class/gpio/gpio7 # cat value

/sys/class/gpio/gpio7 # echo 1 > value
/sys/class/gpio/gpio7 # cat value

Useful for controlling 
Devices from shell scripts

fprintf(file_led7, “%d”, 1);
fscanf(file_led7, “%d”, &n_ch);

fprintf(file_led7, “%d”, 1);
fscanf(file_led7, “%d”, &n_ch);

The programmatic way
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UIO Drivers: Application level

● Opening the device
– Walk through sysfs mounted /sys/class/uio/uioX 
– Check virtual fle 'name'
– If it matches

● Memory mapping the resources

– n is the mapping number (device specifc)

● ptr may now be safely used for direct access to the hardware

  void *ptr=mmap(NULL, size, PROT_READ|PROT_WRITE,
 MAP_SHARED, fd, n * PAGE_SIZE);

  void *ptr=mmap(NULL, size, PROT_READ|PROT_WRITE,
 MAP_SHARED, fd, n * PAGE_SIZE);

  fd=open("/dev/uioX",O_RDWR);  fd=open("/dev/uioX",O_RDWR);
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UIO Drivers: Interrupt Handling

● Several options 
– Issuing a read() on the device returns number of interrupts since last 

read call     

– Can be blocking or non blocking
● O_NONBLOCK fag in open() call

– select() system call on the fle descriptor
● optionally block until an IRQ occurs

– Actual handling of the interrupt is device dependent

  read(fd, &num_irqs, sizeof(num_irqs));  read(fd, &num_irqs, sizeof(num_irqs));
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UIO Drivers – Kernel Interface

● By default, even UIO requires a thin kernel-space driver
– Register and remap device address map
– Specify IRQ handler function
– Register driver with UIO subsystem
– The rest is implemented in the user space

● The PetaLinux tools includes an extension to UIO
– Tag device entry in DTS fle with compatible=”generic-uio”
– Enable "Userspace I/O OF driver with generic IRQ handling" kernel option

● Kconfg > Drivers > UserspaceIO

● No custom kernel code required at all!

● Userspace interface is the same
– Write 0/1 to the UIO device to disable/enable IRQ
– Read from the device to wait for IRQ
– mmap() for device register access
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UIO Drivers: Example

/* open the device */
int fd=open(“/dev/uioX”,O_RDWR);

/* memory map it */
volatile unsigned int *ptr = \

mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);

/* setup the device registers */
*(ptr+REG_OFFSET) = ...

/* main IRQ/processing loop */
while(1) {

unsigned tmp = 0x1;
/* Enable the interrupt */
write(fd, &tmp,sizeof(tmp));

/* Wait for an IRQ
read(fd, &tmp, sizeof(tmp);

/* Handle the IRQ */
tmp = *(ptr+REG_OFFSET);

...
*(ptr+REG_OFFSET) = ...

}

/* open the device */
int fd=open(“/dev/uioX”,O_RDWR);

/* memory map it */
volatile unsigned int *ptr = \

mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);

/* setup the device registers */
*(ptr+REG_OFFSET) = ...

/* main IRQ/processing loop */
while(1) {

unsigned tmp = 0x1;
/* Enable the interrupt */
write(fd, &tmp,sizeof(tmp));

/* Wait for an IRQ
read(fd, &tmp, sizeof(tmp);

/* Handle the IRQ */
tmp = *(ptr+REG_OFFSET);

...
*(ptr+REG_OFFSET) = ...

}

device name
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UIO Drivers: Kernel Interface

● Things to watch for
– UIO IRQ enable/disable is at kernel IRQ line level

● Userspace code must 
– Setup device for IRQ generation
– ACK the IRQ

● Cannot use shared IRQs in this scheme

– Only usable for address-mapped devices
● Cannot support FSL, APU etc
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UIO Pros & Cons

● Pros
– Benefts of /dev/mem and mmap()
– Plus IRQ handling
– No kernel code at all

– If using OF_GENIRQ extensions
– No need to recompile and reboot kernel
– Kernel drivers can easily break the kernel and force a reboot
– UIO driver errors not usually fatal
– Open driver development to non-kernel developers

● Cons 
– Interrupt model is simple (but adequate in many cases)
– Subject to variable or high latency 
– No support for DMA to/from user space
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