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FIG. 1. Graphical depiction of the two-step protocol for the work distribution. At t < 0 a system is in contact with a bath
until thermal equilibrium is reached [panel (a)]. At t = 0+, system and bath are detached, while the energy of the system is
measured. Let the outcome of such measurement be E0

n, which projects the state of the system onto the energy eigenstates��E0
n

↵
[panel (b)]. The system’s Hamiltonian is then changed following to a given protocol and the system evolves according to

the unitary evolution operator U(⌧, 0) for a time ⌧ [panel (c)], at which time it is measured (over the eigenbasis of the new
Hamiltonian). Outcome E⌧

m is achieved, which gives the new state |E⌧
mi [panel (d)]. By repeating this protocol many times a

distribution of values E⌧
m �E0

n is achieved, which embodies the probability distribution of the work done by/on the system as
a result of the protocol that has been implemented.

linearization of the interaction, where the Hamiltonian
is cast into a quadratic form that is more amenable to
analysis. Here, we eschew this simplification, which is
formally valid when the cavity field is strongly driven [9],
and address the full nonlinear optomechanical Hamilto-
nian. We note at this point that the thermodynami-
cal properties of the equivalent linearized model were re-
cently explored by some us in Ref. [10]. By retaining the
full optomechanical coupling, our work therefore aims to
address the out-of-equilibrium thermodynamical behav-
ior of nonlinearly coupled bosonic modes in the quantum
regime, and thus go beyond the results reported in liter-
ature so far.

The remainder of this work is organized as follows: In
Sec. II we introduce the two-measurement protocol nec-
essary to extract the work distribution, and review the
quantum fluctuation relations. Sec. III contains a de-
tailed analysis of the dynamical features of an optome-
chanical system subject to a sudden quench of the cou-
pling parameter and assesses its thermodynamical behav-
ior, first in the case of linear optomechanical coupling and
then in the quadratically-coupled case. Finally, in Sec. IV
we summarize our findings and discuss new perspectives
opened up by this work.

II. WORK DISTRIBUTION AND QUANTUM
FLUCTUATION THEOREMS

Let us consider a system described by a time-
dependent Hamiltonian Ĥ(Gt), whose dependence on
time is realized via the externally tunable parameter Gt.
This parameter, which we refer to as the driving param-

eter, determines the configuration of the system at any
time. Moreover, let us assume that at t = 0 the system
is in thermal equilibrium with a bath at inverse temper-

ature �, and is hence described by the Gibbs state

%̂�(G0

) =
e�� ˆH(G0)

Z(G
0

)
, (1)

where Z(G
0

) = Tr
n

e�� ˆH(G0)

o

is the canonical parti-

tion function of the system. This system is taken out
of equilibrium by applying a chosen transformation that
modifies Gt in time. Here we are concerned with the
statistics of the work done on or by the system when
applying such a protocol. We thus proceed as follows
(cf. Fig. 1 for a graphical depiction of the the pro-
cess): At time t = 0+ the system is detached from the
reservoir and a projective energy measurement is per-
formed on the system in the energy eigenbasis of Ĥ(G

0

),
yielding an eigenstate which we label

�

�E0

n

↵

. The driv-
ing parameter is changed according to the aforemen-
tioned transformation until a final time ⌧ . During this
period, the state of the system evolves as dictated by
the action of the unitary evolution operator Û⌧,0 on
the post-measurement state. Finally, a second projec-
tive energy measurement is made on the system, this
time in the eigenbasis of Ĥ(G⌧ ) and yielding eigenstate
|E⌧

mi. Given the spectral decompositions of the initial
and final Hamiltonians, Ĥ(G

0

) =
P

n E
0

n

�

�E0

n

↵ ⌦

E0

n

�

� and

Ĥ(G⌧ ) =
P

m E⌧
m |E⌧

mi hE⌧
m|, respectively, the energy

di↵erence between the two outcomes E⌧
m � E0

n may be
interpreted as the work performed by the external driv-
ing in a single realization of the protocol. This particular
value of the work occurs with probability p0np

⌧
m|n, where

p0n = e��E0
n/Z(G

0

) keeps track of the initial thermal
statistics, while p⌧m|n = | hE⌧

m| Û⌧,0

�

�E0

n

↵ |2 embodies the
transition probability arising from the change of basis.
The work performed due to the protocol described above
can be characterized by a stochastic variable W following
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FIG. 1. (Color online.) The quantum circuit which is used to measure
the heat of a quantum process. The ancilla qubit in the upper branch
is prepared in a |+i state, the system of interest is prepared in an
arbitrary initial state, whereas the reservoir state rR defined in the
text is a thermal state. First, a controlled operation v† = eiHRt is
applied on the reservoir, next, the protocol unitary U is applied, and
then another controlled operation v is performed on the reservoir and
the qubit is measured in the x� y plane.

the change of the energy in the reservoir is the average heat of
the process [5],

hQi= tr[HR r0
R]� tr[HR rR]. (3)

However, care must be taken in interpreting this quantity as
heat in the most general sense because in the strong-coupling
regime the division of the energy changes into heat and work
becomes unclear. However, one can still define an energy dis-
sipation to the reservoir in order to avoid any issues of inter-
pretation.

It is important to point out that if we are dealing with a
truly microscopic system both quantum and thermal fluctua-
tions will be prominent [18]. In fact the heat exchanged is
actually the first moment of a total probability distribution for
heat P(Q),

P(Q) = Â
mn

pm pn|md(Q� (En �Em)). (4)

This distribution is equivalent to the marginal distribution of
the joint distribution studied in [18] and it is important to
stress it is in fact that it is only the joint distribution which
satisfies a fluctuation relation of the standard form [8]. The
distribution is built by the following procedure: Before the
unitary protocol is applied the reservoir is projectively mea-
sured to have energy Em with probability given by the Boltz-
mann factor pm = e�bEm/ZR, then a generally non unitary dy-
namics occurs on the reservoir (and the system) and the en-
ergy is measured again with conditional probability pm|n =

tr[U |rmihrm|⌦ rS U†|rnihrn|] thus forming a distribution of
heat changes. It is important to stress that the dynamics of
the reservoir is not unitary and the problem may have been
set up from the beginning using the approach of describing
the reservoir (system) dynamics using completely positive and
trace preserving maps. This approach has recently been taken
in order to derive fluctuation like relations for general quan-
tum channels [24–29]. In [24–29] the relationship between
the non-unitality of a channel and the microreversibility of
the process was studied, which is indeed an interesting link

between the non-unitality of a channel and a bound on the
heat dissipated in a generic quantum process [30].

Measuring the heat distribution.— The heat distribution
Eq. (4) has a corresponding characteristic function or cumu-
lant generating function defined by a Fourier transform

Q(t) =
Z •

�•
P(Q)eitQ dQ, (5)

carrying out the Fourier transform we can recast Q(t) in the
following compact form

Q(t) =Â
mn

pm pn|me�i(En�Em)t

=Â
lmn

e�bEl

ZR
e�i(Em�En)t

⇥ tr[U |rlihrl |rmihrm|⌦rS U†|rnihrn|]
=tr[U rR v† ⌦rS U† v], (6)

with the new unitary operator vt = e�iHRt . We stress that the
first cumulant in an expansion of Eq. (6) corresponds to aver-
age heat defined by Eq. (3).

Consider the quantum circuit in displayed in Fig. 1. An
ancilla qubit (A) rA is brought in contact with our system (S)
and reservoir (R) (in fact, A, S, and R can all be qubits as we
made no restrictions on the dimension of either the system or
the reservoir). Let us label the total state in the kth step as
r(k)

ARS and go through the steps of the interferometer.
The ancilla is prepared initially in the |+Ai = (|0Ai +

|1Ai)/
p

2 state. The initial total state is

r(0)
ARS =

1
2
(|0Aih0A|⌦rR ⌦rS + |0Aih1A|⌦rR ⌦rS

+ |1Aih0A|⌦rR ⌦rS + |1Aih1A|⌦rR ⌦rS) . (7)

We can restate the last equation in a more compact form by
writing it as a matrix in the basis of A

r(0)
ARS =

1
2

✓
rR ⌦rS rR ⌦rS
rR ⌦rS rR ⌦rS

◆
. (8)

In the next step, the unitary operation vt = e�iHRt is applied
on the reservoir when A is in state |1Ai (controlled-operation)
yielding the total state

r(1)
ARS =

1
2

✓
rR ⌦rS rR v†

t ⌦rS

vt rR ⌦rS vt rR v†
t ⌦rS

◆
. (9)

Next, the unitary protocol U , whose energetics we wish to
investigate, is applied on RS, yielding the total state

r(2)
ARS =

1
2

✓
U rR ⌦rS U† U rR v†

t ⌦rS U†

U vt rR ⌦rS U† U vt rR v†
t ⌦rS U†

◆
. (10)

Finally the second controlled unitary transformation v†
t is ap-

plied on R to give

r(3)
ARS =

1
2

✓
U rR ⌦rS U† U rR v†

t ⌦rS U† vt

v†
t U vt rR ⌦rS U† v†

t U vt rR v†
t ⌦rS U† vt

◆
.
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until thermal equilibrium is reached [panel (a)]. At t = 0+, system and bath are detached, while the energy of the system is
measured. Let the outcome of such measurement be E0

n, which projects the state of the system onto the energy eigenstates��E0
n
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[panel (b)]. The system’s Hamiltonian is then changed following to a given protocol and the system evolves according to

the unitary evolution operator U(⌧, 0) for a time ⌧ [panel (c)], at which time it is measured (over the eigenbasis of the new
Hamiltonian). Outcome E⌧

m is achieved, which gives the new state |E⌧
mi [panel (d)]. By repeating this protocol many times a

distribution of values E⌧
m �E0

n is achieved, which embodies the probability distribution of the work done by/on the system as
a result of the protocol that has been implemented.

linearization of the interaction, where the Hamiltonian
is cast into a quadratic form that is more amenable to
analysis. Here, we eschew this simplification, which is
formally valid when the cavity field is strongly driven [9],
and address the full nonlinear optomechanical Hamilto-
nian. We note at this point that the thermodynami-
cal properties of the equivalent linearized model were re-
cently explored by some us in Ref. [10]. By retaining the
full optomechanical coupling, our work therefore aims to
address the out-of-equilibrium thermodynamical behav-
ior of nonlinearly coupled bosonic modes in the quantum
regime, and thus go beyond the results reported in liter-
ature so far.

The remainder of this work is organized as follows: In
Sec. II we introduce the two-measurement protocol nec-
essary to extract the work distribution, and review the
quantum fluctuation relations. Sec. III contains a de-
tailed analysis of the dynamical features of an optome-
chanical system subject to a sudden quench of the cou-
pling parameter and assesses its thermodynamical behav-
ior, first in the case of linear optomechanical coupling and
then in the quadratically-coupled case. Finally, in Sec. IV
we summarize our findings and discuss new perspectives
opened up by this work.
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dependent Hamiltonian Ĥ(Gt), whose dependence on
time is realized via the externally tunable parameter Gt.
This parameter, which we refer to as the driving param-
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linearization of the interaction, where the Hamiltonian
is cast into a quadratic form that is more amenable to
analysis. Here, we eschew this simplification, which is
formally valid when the cavity field is strongly driven [9],
and address the full nonlinear optomechanical Hamilto-
nian. We note at this point that the thermodynami-
cal properties of the equivalent linearized model were re-
cently explored by some us in Ref. [10]. By retaining the
full optomechanical coupling, our work therefore aims to
address the out-of-equilibrium thermodynamical behav-
ior of nonlinearly coupled bosonic modes in the quantum
regime, and thus go beyond the results reported in liter-
ature so far.

The remainder of this work is organized as follows: In
Sec. II we introduce the two-measurement protocol nec-
essary to extract the work distribution, and review the
quantum fluctuation relations. Sec. III contains a de-
tailed analysis of the dynamical features of an optome-
chanical system subject to a sudden quench of the cou-
pling parameter and assesses its thermodynamical behav-
ior, first in the case of linear optomechanical coupling and
then in the quadratically-coupled case. Finally, in Sec. IV
we summarize our findings and discuss new perspectives
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dependent Hamiltonian Ĥ(Gt), whose dependence on
time is realized via the externally tunable parameter Gt.
This parameter, which we refer to as the driving param-

eter, determines the configuration of the system at any
time. Moreover, let us assume that at t = 0 the system
is in thermal equilibrium with a bath at inverse temper-

ature �, and is hence described by the Gibbs state

%̂�(G0

) =
e�� ˆH(G0)

Z(G
0

)
, (1)

where Z(G
0

) = Tr
n

e�� ˆH(G0)

o

is the canonical parti-

tion function of the system. This system is taken out
of equilibrium by applying a chosen transformation that
modifies Gt in time. Here we are concerned with the
statistics of the work done on or by the system when
applying such a protocol. We thus proceed as follows
(cf. Fig. 1 for a graphical depiction of the the pro-
cess): At time t = 0+ the system is detached from the
reservoir and a projective energy measurement is per-
formed on the system in the energy eigenbasis of Ĥ(G

0

),
yielding an eigenstate which we label

�

�E0

n

↵

. The driv-
ing parameter is changed according to the aforemen-
tioned transformation until a final time ⌧ . During this
period, the state of the system evolves as dictated by
the action of the unitary evolution operator Û⌧,0 on
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FIG. 1. Graphical depiction of the two-step protocol for the work distribution. At t < 0 a system is in contact with a bath
until thermal equilibrium is reached [panel (a)]. At t = 0+, system and bath are detached, while the energy of the system is
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linearization of the interaction, where the Hamiltonian
is cast into a quadratic form that is more amenable to
analysis. Here, we eschew this simplification, which is
formally valid when the cavity field is strongly driven [9],
and address the full nonlinear optomechanical Hamilto-
nian. We note at this point that the thermodynami-
cal properties of the equivalent linearized model were re-
cently explored by some us in Ref. [10]. By retaining the
full optomechanical coupling, our work therefore aims to
address the out-of-equilibrium thermodynamical behav-
ior of nonlinearly coupled bosonic modes in the quantum
regime, and thus go beyond the results reported in liter-
ature so far.

The remainder of this work is organized as follows: In
Sec. II we introduce the two-measurement protocol nec-
essary to extract the work distribution, and review the
quantum fluctuation relations. Sec. III contains a de-
tailed analysis of the dynamical features of an optome-
chanical system subject to a sudden quench of the cou-
pling parameter and assesses its thermodynamical behav-
ior, first in the case of linear optomechanical coupling and
then in the quadratically-coupled case. Finally, in Sec. IV
we summarize our findings and discuss new perspectives
opened up by this work.

II. WORK DISTRIBUTION AND QUANTUM
FLUCTUATION THEOREMS

Let us consider a system described by a time-
dependent Hamiltonian Ĥ(Gt), whose dependence on
time is realized via the externally tunable parameter Gt.
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Using the operational framework of completely positive, trace preserving operations and thermodynamic
fluctuation relations, we derive a lower bound for the heat exchange in a Landauer erasure process on a quantum
system. Our bound comes from a non-phenomenological derivation of the Landauer principle which holds for
generic non-equilibrium dynamics. Furthermore the bound depends on the non-unitality of dynamics, giving it
a physical significance that differs from other derivations. We apply our framework to the model of a spin-1/2
system coupled to an interacting spin chain at finite temperature.

Introduction.— The most convincing evidence that infor-
mation is indeed physical is provided by Landauer’s prin-
ciple [1]. It states that the logically-irreversible erasure of
information carried by a physical system comes at the ex-
pense of heat dissipation to the environment. Stated equiv-
alently, the principle provides a direct link between the do-
mains of information theory and thermodynamics. The deep
consequences of Landauer’s principle were instrumental for
Bennett to attach a minimum entropy production to the log-
ically irreversible procedure of erasure [2, 3], thus operating
an information-theoretical exorcism of Maxwell demon and
recognising that computation can be done reversibly, in prin-
ciple, requiring no heat production.

Turning to quantum systems, it is surprising that very few
papers have a clear operational framework which is suitable
to understand the emergence of Landauer’s principle from the
underlying microscopic equations. In a recent work [4], Reeb
and Wolf use techniques from quantum statistical mechanics
to prove that a finite-size environment can provide a tighter
bound to the quantity of heat generated in an erasure process.
The usual Landauer bound

bhQi � DS (1)

is retrieved when the thermodynamic limit is taken in the envi-
ronment. In Eq. (1), hQi is the average heat exchange with the
bath and DS is the information theoretic entropy change. The
finite size corrections to Eq. (1) proposed in Ref. [4] are, in
some sense, suggestive of intrinsic non-equilibrium dynamics
that we would expect away from the thermodynamic limit and
have been explored previously in the context of irreversible
entropy production [5].

One way to describe the thermodynamics of systems where
thermal and quantum fluctuations cannot be ignored is to con-
sider the so called quantum fluctuation relations [6–9]. The
fluctuation relations, extended to the quantum mechanical do-
main [10, 11] are a promising route to understand the ther-
modynamics of small quantum systems that are operating un-
der non-equilibrium conditions. Crucially, recent work has
demonstrated that this formalism is a tangible route for the ex-
perimental exploration of quantum thermodynamics [12–14].

In this Letter we bring together the tools of open quantum
systems, non-equilibrium statistical mechanics and quantum
information theory to derive a non-phenomenological lower
bound for heat generated in an erasure process. We begin
by recasting the erasure protocol given in Ref. [4] from the
point of view of fluctuation relations. Extension of the fluctu-
ation relation formalism to the open quantum-system frame-
work leads to difficulties unless fairly restrictive assumptions
are made [15, 16]. A series of papers have attempted to derive
fluctuation relations from the operational viewpoint, employ-
ing the full machinery of completely positive, trace preserving
operations [17–22], which are ubiquitous in quantum informa-
tion and it was found that fluctuation-like relations can hold if
the open system evolution is unital [23].

We construct a distribution of heat dissipated by an era-
sure protocol involving a finite size environment interacting
with a quantum system. We show that the non-unitality of
a given open-system dynamics can lead to a tighter bound
on the average heat exchanged during the process than pre-
viously known bounds. In addition, and more importantly, the
methodology developed here paves the way to the tantalising
possibility of analysing the thermodynamics of computation
under non-equilibrium conditions. Our work brings together
concepts from several disciplines of physics and constitutes a
promising route for the construction of a formal platform for
exploring the efficiency and limitations of small-scale thermo-
devices operating at and well within the quantum mechanical
domain [24].

Erasure protocol.— Starting from the analysis put forward
in Ref. [4], the starting point of our investigation is embodied
by a general erasure protocol that satisfies the following set of
pre-requisites:

1. A system S , whose information content we want to
erase, is subjected to an environment-aided erasure pro-
tocol. We call ĤS the free Hamiltonian of the system.

2. We label such environment as E and assume that the
initial total SE state is fully uncorrelated, i.e., r̂SE =
r̂S ⌦ r̂E .

3. The environment is initially in the Gibbs state r̂E =
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Figure 1: Our formalization of the “process”: An initially uncorrelated state ⇢S ⌦ ⇢R of a
system S and a thermal reservoir R (⇢R = e��H/tr

⇥
e��H

⇤
) is subjected to a unitary evolution,

⇢0SR := U(⇢S ⌦ ⇢R)U †. This replaces ⇢S by the marginal state ⇢0S = trR[⇢0SR]. Landauer’s
Principle (or Landauer’s bound) [Lan61] now relates the entropy decrease �S in the system to
the heat �Q dissipated to the reservoir: ��Q � �S. We rigorously prove and improve this
inequality in the paper.

be possible to violate Landauer’s bound (see Section 2.2); this is related to the fact that thermal
states are the only completely passive states, meaning that from an arbitrary number of state
copies one cannot extract work by unitary operations alone [PW78]. Lastly, the appearance of
the initial thermal reservoir state (4) is motivated already by the mathematical need to have a
definite value for � appearing in Landauer’s bound as stated in Eq. (1).

We do not put any assumption on the initial system state ⇢S ; in particular, it need not be
a thermal state. The following developments and results are in fact completely independent of
the system Hamiltonian, and it does not even need to be specified.

As the third assumption, we require system and reservoir to be initially uncorrelated, i.e.

⇢SR = ⇢S ⌦ ⇢R . (5)

This assumption will be important for Landauer’s Principle to hold: If the initial state ⇢SR
would for instance be such that the reservoir R had perfect classical correlations with S, then
a unitary process could reduce the system entropy without any heat dissipation, in violation of
Landauer’s bound. This can be seen from the example in Section 5.1, in which the system S is
brought into a final pure state without any change of the reduced state of the reservoir.

The product state assumption (5) is standard in the theory of thermodynamics and in many
common tasks in information processing, e.g. in the paradigmatic examples of resetting a register
in a computer or when performing error correction. In these cases, the assisting reservoir R is
often assumed not to have previously interacted with the register S, such that their states are
independent. When however system and reservoir have undergone prior interactions, they may
be correlated, and we give a Landauer-like bound for this case in Eq. (57). (The case of extreme
correlations would correspond to reversible computation [Ben73, Ben82], which indeed does not
require any energy expenditure but su↵ers from error build-up in practical implementations.)
Furthermore, as we are assuming an initially thermal reservoir (see Eq. (4)), correlations in
SR would be unnatural unless the full initial state ⇢SR were also thermal, but this would then
require a (Hamiltonian) interaction term between S and R; see also [dRi13]. Some reported
“violations” of Landauer’s bound [AN01, Orl12] can be explained by their not respecting the
initial product state assumption (5).

Extensions of the product state assumption (5) and the inclusion of an additional memory
register are discussed in Section 5.1 (see also Section 5.2).

So far we have described the assumptions on the initial state ⇢SR, Eqs. (4) and (5). The
fourth and last assumption is that the process itself happens by any unitary evolution

⇢0SR = U(⇢S ⌦ ⇢R)U
† = U⇢SRU

† , (6)

4

(Im)proving Landauer: 
Reeb & Wolf

D. Reeb, and M. Wolf, NJP 16, 103011 (2014)

1 Introduction

The Maxwell’s Demon paradox suggested that one can lower the entropy of a gas of particles
without expending energy, and thus violate the Second Law of Thermodynamics, if one has
information about the positions and momenta of the particles [Max71, LR03]. During the reso-
lution of this puzzle it became however clear that thermodynamics imposes physical constraints
on information processing [Szi29, vNe49]. Rolf Landauer [Lan61] recognized that it is the logi-
cally irreversible erasure of information that necessitates a corresponding entropy increase in the
environment [Ben82]; i.e. information erasure from the information-bearing degrees of freedom
of a memory register or computer causes entropy to flow to the non-information-bearing degrees
of freedom. At inverse temperature �, this entropy increase causes heat

�Q � �S/� (1)

to be dissipated, where �S denotes the entropy decrease in the memory. This consequence is
Landauer’s Principle, and the inequality (1) is also called the Landauer bound or limit.

Since its inception [Lan61], the above argument has been controversially discussed on di↵er-
ent levels. For example, it has been disputed whether it is necessary to assume the validity of the
Second Law of Thermodynamics in order to derive Landauer’s Principle or whether, conversely,
the Second Law itself is actually a consequence of the Principle (see e.g. [EN99, Ben03, LR03]).
Situations have been reported – both theoretically [AN01, Ali12] and in experiment [Orl12] –
which supposedly violate Landauer’s Principle. And it was actually already recognized by Ben-
nett [Ben73, Ben82] that all computation can be done reversibly, thereby avoiding irreversible
erasure and requiring no heat dissipation in principle. On the other hand, the Principle was
successful in exorcising Maxwell’s Demon [Ben82, LR03], and a recent experiment [Ber12] ap-
proached Landauer’s limit but could not surpass it. Attempts to formulate and prove Landauer’s
Principle by more microscopic methods followed later (e.g. [Pie00, SU09]), but they still have
deficiencies as we discuss more detail in Section 2.2.

Much of the misunderstanding and controversy around Landauer’s Principle appears to be
due to the fact that its general statement has not been written down formally or proved in a
rigorous way in the framework of quantum statistical mechanics. To remedy this situation is
the first goal of the present work.

We formulate in precise mathematical and statistical mechanics terms the setup for Lan-
dauer’s Principle. The four assumptions are listed at the beginning of Section 2.1 (see also
Fig. 1 for an overview of the setup). Our formulation encompasses processes more general than
“erasure”, and the setting is minimal in the sense that Landauer’s bound can be violated when
any one of our assumptions is dropped.

Our first main result is a proof of Landauer’s Principle in the form of a sharpened equality
version (Theorem 3):

��Q = �S + I(S0 : R0) + D(⇢0Rk⇢R) � �S , (2)

where the mutual information I(S0 : R0) quantifies the correlations built up between system and
reservoir during the process and the relative entropy D(⇢0Rk⇢R) can be physically interpreted
as the free energy increase in the reservoir. Closer examination reveals that Landauer’s bound
��Q � �S can be tight only if �S = 0. The Landauer bound (1) can thus be improved for all
non-trivial processes.

Our second main result is then an explicit improvement of Landauer’s bound (Section 4),
which will be possible when the thermal reservoir assisting in the process has a finite Hilbert
space dimension d < 1. A paradigmatic result is here (see Theorem 6):

��Q � �S +
2(�S)2

log2(d� 1) + 4
for any physical process in which �S � 0 . (3)

2

1st result

2nd result
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on information processing [Szi29, vNe49]. Rolf Landauer [Lan61] recognized that it is the logi-
cally irreversible erasure of information that necessitates a corresponding entropy increase in the
environment [Ben82]; i.e. information erasure from the information-bearing degrees of freedom
of a memory register or computer causes entropy to flow to the non-information-bearing degrees
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to be dissipated, where �S denotes the entropy decrease in the memory. This consequence is
Landauer’s Principle, and the inequality (1) is also called the Landauer bound or limit.

Since its inception [Lan61], the above argument has been controversially discussed on di↵er-
ent levels. For example, it has been disputed whether it is necessary to assume the validity of the
Second Law of Thermodynamics in order to derive Landauer’s Principle or whether, conversely,
the Second Law itself is actually a consequence of the Principle (see e.g. [EN99, Ben03, LR03]).
Situations have been reported – both theoretically [AN01, Ali12] and in experiment [Orl12] –
which supposedly violate Landauer’s Principle. And it was actually already recognized by Ben-
nett [Ben73, Ben82] that all computation can be done reversibly, thereby avoiding irreversible
erasure and requiring no heat dissipation in principle. On the other hand, the Principle was
successful in exorcising Maxwell’s Demon [Ben82, LR03], and a recent experiment [Ber12] ap-
proached Landauer’s limit but could not surpass it. Attempts to formulate and prove Landauer’s
Principle by more microscopic methods followed later (e.g. [Pie00, SU09]), but they still have
deficiencies as we discuss more detail in Section 2.2.

Much of the misunderstanding and controversy around Landauer’s Principle appears to be
due to the fact that its general statement has not been written down formally or proved in a
rigorous way in the framework of quantum statistical mechanics. To remedy this situation is
the first goal of the present work.

We formulate in precise mathematical and statistical mechanics terms the setup for Lan-
dauer’s Principle. The four assumptions are listed at the beginning of Section 2.1 (see also
Fig. 1 for an overview of the setup). Our formulation encompasses processes more general than
“erasure”, and the setting is minimal in the sense that Landauer’s bound can be violated when
any one of our assumptions is dropped.

Our first main result is a proof of Landauer’s Principle in the form of a sharpened equality
version (Theorem 3):

��Q = �S + I(S0 : R0) + D(⇢0Rk⇢R) � �S , (2)

where the mutual information I(S0 : R0) quantifies the correlations built up between system and
reservoir during the process and the relative entropy D(⇢0Rk⇢R) can be physically interpreted
as the free energy increase in the reservoir. Closer examination reveals that Landauer’s bound
��Q � �S can be tight only if �S = 0. The Landauer bound (1) can thus be improved for all
non-trivial processes.

Our second main result is then an explicit improvement of Landauer’s bound (Section 4),
which will be possible when the thermal reservoir assisting in the process has a finite Hilbert
space dimension d < 1. A paradigmatic result is here (see Theorem 6):

��Q � �S +
2(�S)2

log2(d� 1) + 4
for any physical process in which �S � 0 . (3)
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Using the operational framework of completely positive, trace preserving operations and thermodynamic
fluctuation relations, we derive a lower bound for the heat exchange in a Landauer erasure process on a quantum
system. Our bound comes from a non-phenomenological derivation of the Landauer principle which holds for
generic non-equilibrium dynamics. Furthermore the bound depends on the non-unitality of dynamics, giving it
a physical significance that differs from other derivations. We apply our framework to the model of a spin-1/2
system coupled to an interacting spin chain at finite temperature.

Introduction.— The most convincing evidence that infor-
mation is indeed physical is provided by Landauer’s prin-
ciple [1]. It states that the logically-irreversible erasure of
information carried by a physical system comes at the ex-
pense of heat dissipation to the environment. Stated equiv-
alently, the principle provides a direct link between the do-
mains of information theory and thermodynamics. The deep
consequences of Landauer’s principle were instrumental for
Bennett to attach a minimum entropy production to the log-
ically irreversible procedure of erasure [2, 3], thus operating
an information-theoretical exorcism of Maxwell demon and
recognising that computation can be done reversibly, in prin-
ciple, requiring no heat production.

Turning to quantum systems, it is surprising that very few
papers have a clear operational framework which is suitable
to understand the emergence of Landauer’s principle from the
underlying microscopic equations. In a recent work [4], Reeb
and Wolf use techniques from quantum statistical mechanics
to prove that a finite-size environment can provide a tighter
bound to the quantity of heat generated in an erasure process.
The usual Landauer bound

bhQi � DS (1)

is retrieved when the thermodynamic limit is taken in the envi-
ronment. In Eq. (1), hQi is the average heat exchange with the
bath and DS is the information theoretic entropy change. The
finite size corrections to Eq. (1) proposed in Ref. [4] are, in
some sense, suggestive of intrinsic non-equilibrium dynamics
that we would expect away from the thermodynamic limit and
have been explored previously in the context of irreversible
entropy production [5].

One way to describe the thermodynamics of systems where
thermal and quantum fluctuations cannot be ignored is to con-
sider the so called quantum fluctuation relations [6–9]. The
fluctuation relations, extended to the quantum mechanical do-
main [10, 11] are a promising route to understand the ther-
modynamics of small quantum systems that are operating un-
der non-equilibrium conditions. Crucially, recent work has
demonstrated that this formalism is a tangible route for the ex-
perimental exploration of quantum thermodynamics [12–14].

In this Letter we bring together the tools of open quantum
systems, non-equilibrium statistical mechanics and quantum
information theory to derive a non-phenomenological lower
bound for heat generated in an erasure process. We begin
by recasting the erasure protocol given in Ref. [4] from the
point of view of fluctuation relations. Extension of the fluctu-
ation relation formalism to the open quantum-system frame-
work leads to difficulties unless fairly restrictive assumptions
are made [15, 16]. A series of papers have attempted to derive
fluctuation relations from the operational viewpoint, employ-
ing the full machinery of completely positive, trace preserving
operations [17–22], which are ubiquitous in quantum informa-
tion and it was found that fluctuation-like relations can hold if
the open system evolution is unital [23].

We construct a distribution of heat dissipated by an era-
sure protocol involving a finite size environment interacting
with a quantum system. We show that the non-unitality of
a given open-system dynamics can lead to a tighter bound
on the average heat exchanged during the process than pre-
viously known bounds. In addition, and more importantly, the
methodology developed here paves the way to the tantalising
possibility of analysing the thermodynamics of computation
under non-equilibrium conditions. Our work brings together
concepts from several disciplines of physics and constitutes a
promising route for the construction of a formal platform for
exploring the efficiency and limitations of small-scale thermo-
devices operating at and well within the quantum mechanical
domain [24].

Erasure protocol.— Starting from the analysis put forward
in Ref. [4], the starting point of our investigation is embodied
by a general erasure protocol that satisfies the following set of
pre-requisites:

1. A system S , whose information content we want to
erase, is subjected to an environment-aided erasure pro-
tocol. We call ĤS the free Hamiltonian of the system.

2. We label such environment as E and assume that the
initial total SE state is fully uncorrelated, i.e., r̂SE =
r̂S ⌦ r̂E .

3. The environment is initially in the Gibbs state r̂E =
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Using the operational framework of completely positive, trace preserving operations and thermodynamic
fluctuation relations, we derive a lower bound for the heat exchange in a Landauer erasure process on a quantum
system. Our bound comes from a non-phenomenological derivation of the Landauer principle which holds for
generic non-equilibrium dynamics. Furthermore the bound depends on the non-unitality of dynamics, giving it
a physical significance that differs from other derivations. We apply our framework to the model of a spin-1/2
system coupled to an interacting spin chain at finite temperature.

Introduction.— The most convincing evidence that infor-
mation is indeed physical is provided by Landauer’s prin-
ciple [1]. It states that the logically-irreversible erasure of
information carried by a physical system comes at the ex-
pense of heat dissipation to the environment. Stated equiv-
alently, the principle provides a direct link between the do-
mains of information theory and thermodynamics. The deep
consequences of Landauer’s principle were instrumental for
Bennett to attach a minimum entropy production to the log-
ically irreversible procedure of erasure [2, 3], thus operating
an information-theoretical exorcism of Maxwell demon and
recognising that computation can be done reversibly, in prin-
ciple, requiring no heat production.

Turning to quantum systems, it is surprising that very few
papers have a clear operational framework which is suitable
to understand the emergence of Landauer’s principle from the
underlying microscopic equations. In a recent work [4], Reeb
and Wolf use techniques from quantum statistical mechanics
to prove that a finite-size environment can provide a tighter
bound to the quantity of heat generated in an erasure process.
The usual Landauer bound

bhQi � DS (1)

is retrieved when the thermodynamic limit is taken in the envi-
ronment. In Eq. (1), hQi is the average heat exchange with the
bath and DS is the information theoretic entropy change. The
finite size corrections to Eq. (1) proposed in Ref. [4] are, in
some sense, suggestive of intrinsic non-equilibrium dynamics
that we would expect away from the thermodynamic limit and
have been explored previously in the context of irreversible
entropy production [5].

One way to describe the thermodynamics of systems where
thermal and quantum fluctuations cannot be ignored is to con-
sider the so called quantum fluctuation relations [6–9]. The
fluctuation relations, extended to the quantum mechanical do-
main [10, 11] are a promising route to understand the ther-
modynamics of small quantum systems that are operating un-
der non-equilibrium conditions. Crucially, recent work has
demonstrated that this formalism is a tangible route for the ex-
perimental exploration of quantum thermodynamics [12–14].

In this Letter we bring together the tools of open quantum
systems, non-equilibrium statistical mechanics and quantum
information theory to derive a non-phenomenological lower
bound for heat generated in an erasure process. We begin
by recasting the erasure protocol given in Ref. [4] from the
point of view of fluctuation relations. Extension of the fluctu-
ation relation formalism to the open quantum-system frame-
work leads to difficulties unless fairly restrictive assumptions
are made [15, 16]. A series of papers have attempted to derive
fluctuation relations from the operational viewpoint, employ-
ing the full machinery of completely positive, trace preserving
operations [17–22], which are ubiquitous in quantum informa-
tion and it was found that fluctuation-like relations can hold if
the open system evolution is unital [23].

We construct a distribution of heat dissipated by an era-
sure protocol involving a finite size environment interacting
with a quantum system. We show that the non-unitality of
a given open-system dynamics can lead to a tighter bound
on the average heat exchanged during the process than pre-
viously known bounds. In addition, and more importantly, the
methodology developed here paves the way to the tantalising
possibility of analysing the thermodynamics of computation
under non-equilibrium conditions. Our work brings together
concepts from several disciplines of physics and constitutes a
promising route for the construction of a formal platform for
exploring the efficiency and limitations of small-scale thermo-
devices operating at and well within the quantum mechanical
domain [24].

Erasure protocol.— Starting from the analysis put forward
in Ref. [4], the starting point of our investigation is embodied
by a general erasure protocol that satisfies the following set of
pre-requisites:

1. A system S , whose information content we want to
erase, is subjected to an environment-aided erasure pro-
tocol. We call ĤS the free Hamiltonian of the system.

2. We label such environment as E and assume that the
initial total SE state is fully uncorrelated, i.e., r̂SE =
r̂S ⌦ r̂E .

3. The environment is initially in the Gibbs state r̂E =
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e�bĤE /ZE , with Hamiltonian ĤE = Âm Em|rmihrm|, the
inverse temperature b, and the partition function ZE =

tr[e�bĤE ].

4. The system and environment interact via a perfectly
unitary mechanism described by the time propagator
Û generated by the total Hamiltonian Ĥ = ĤS + ĤE +
ĤSE .

These points constitute a non-restrictive set of rules for the
erasure protocol to be performed.

Thermodynamics of the environment.— We describe the
erasure process as the protocol that, starting from the joint
SE initial state, generates the following reduced state of the
environment only

r̂0
E = trS [Û(r̂S ⌦ r̂E )Û†] = Â

l
Âl r̂E Â†

l . (2)

Here, Âl= jk =
p

l jhsk|Û |s ji where {l j} and {|s ji} are the
eigenvalues and eigenstates of r̂S . It can be rigorously shown
that the operators Âl satisfy the trace-preserving condition
Âl Â†

l Âl = 11E . It is worth stressing that Eq. (2) does not em-
body a map, but an operation. In fact, we can vary r̂S , thus
changing the form of the Âl’s while keeping r̂E fixed.

In analogy to the work distribution, we now define the heat
distribution for the environment [25] as

P(Q) = Â
l,m,n

hrn|Âl |rmi(r̂E )mmhrm|Â†
l |rnid(Q�Enm) (3)

with (r̂E )nm = hrn|r̂E |rmi the matrix element of the environ-
mental initial state in the basis of its eigenstates and Enm =
En �Em. The first moment of the heat distribution is the aver-
age heat, which can be written as

hQi=
Z

QP(Q)dQ = Â
n

En(r̂0
E )nn �Â

m
Em Â

l
tr[Âl r̂E Â†

l ]

= tr[ĤE r̂0
E ]� tr[ĤE r̂E ]. (4)

The distribution of heat contains much more information than
just the first moment. For instance, Jarzynski has found an im-
portant equality using the work distribution [7], which relates
the average exponentiated work to the equilibrium free energy.
In the same spirit, we now evaluate the average exponentiated
heat to derive a heat fluctuation relation. We have

he�bQi=
Z

e�bQ dQP(Q)

= Â
l,m,n

hrn|Âl |rmihrm|Â†
l |rni(r̂E )mme�bEnm . (5)

Plugging in e�bEm/ZE for (r̂E )mm and summing over n we
have

he�bQi= Â
l

tr[Â†
l r̂E Âl ] = tr[Â r̂E ] (6)

with Â=Âl Âl Â†
l . On the other hand if we expand the operator

Â in terms of the initial states of both system and environment

under the action of the unitary process Û and use the cyclicity
of trace we get

he�bQi= tr[r̂S ⌦ 11E Û† 11S ⌦ r̂E Û ] = tr[M̂ r̂S ], (7)

where M̂ = trE [Û† 11S ⌦ r̂E Û ].
Eqs. (6) and (7) are the central results of this Letter. We will

discuss their significance below. However, let us first obtain a
lower bound on the average heat exchange. In order to formu-
late such a bound from the above equality, we use the Jensen
inequality h f (x)i � f (hxi), which holds for any convex func-
tion f (x). That is, using he�bQi � e�bhQi we have the desired
bound

bhQi � BQ, (8)

where BQ =� ln(tr[Â r̂E ]) =� ln(tr[M̂ r̂S ]).
Care should be used in order to interpret Eq. (6) as a fluctu-

ation relation. As discussed by Talkner et al. in Ref. [26], only
the joint probability distribution of the internal energy change
of the system and heat exchanged with the environment satisfy
proper fluctuation relations, i.e., equalities between quantities
that do not depend on the total process but only on its end
points. While in order to evaluate the left-hand side of Eq. (6)
we used the probability distribution for the heat exchanged
with the environment in Eq. (3). Nevertheless, it has been
shown that relations which bear mathematical resemblance to
fluctuation relations, can be derived for unital or bistochastic
processes [18–22]. A process is unital if and only if Â = 11E ,
and in general a quantum operation is not unital. In the case
considered here the process at hand is surely not unital, as the
erasure of S would inevitably perturb a hypothetically pre-
pared maximally mixed state of the environment (i.e., a Gibbs
state at infinite temperature), therefore violating the condition
that defines unitality of a process. The fluctuation-like relation
in Eq. (6) links the non-unital nature of the process being con-
sidered to the heat exchanged with the environment through
the average of the function e�bQ. We would also like to point
out that, although a suggestive similarity exists between the
form of Eq. (6) and fluctuation relations derived under the
explicit consideration of feedback mechanisms [27, 28], our
study is very far from any feedback-based formalism.

Operator Â depends on the choice of states r̂S . For prac-
tical applications one would be interested in computing the
heat generated in erasing a state of choice. This would require
computing Â for each instance. On the other hand, given a
thermal state r̂E and a unitary interaction Û , we can deter-
mine M̂ as defined below Eq. (7). This is easily achievable by
running a given circuit implementing Û in reverse order, i.e.,
by taking the Hermitian conjugate of each elementary gates
into which Û is decomposed. Once M̂ is determined, a non-
trivial lower bound on heat generation is computed for any
state rS using Eq. (8). In this Letter we are working with
the protocol used in Ref. [4] to derive a stronger version of
the Landauer bound. The structure of our bound in Eq. (8)
stems solely from the exponentiated average heat, which re-
lies on the information encoded in the full distribution rather

2
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tr[Âl r̂E Â†

l ]

= tr[ĤE r̂0
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Âl r̂E Â†
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= tr[ĤE r̂0
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Â in terms of the initial states of both system and environment

under the action of the unitary process Û and use the cyclicity
of trace we get
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by taking the Hermitian conjugate of each elementary gates
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Using the operational framework of completely positive, trace preserving operations and thermodynamic
fluctuation relations, we derive a lower bound for the heat exchange in a Landauer erasure process on a quantum
system. Our bound comes from a non-phenomenological derivation of the Landauer principle which holds for
generic non-equilibrium dynamics. Furthermore the bound depends on the non-unitality of dynamics, giving it
a physical significance that differs from other derivations. We apply our framework to the model of a spin-1/2
system coupled to an interacting spin chain at finite temperature.

Introduction.— The most convincing evidence that infor-
mation is indeed physical is provided by Landauer’s prin-
ciple [1]. It states that the logically-irreversible erasure of
information carried by a physical system comes at the ex-
pense of heat dissipation to the environment. Stated equiv-
alently, the principle provides a direct link between the do-
mains of information theory and thermodynamics. The deep
consequences of Landauer’s principle were instrumental for
Bennett to attach a minimum entropy production to the log-
ically irreversible procedure of erasure [2, 3], thus operating
an information-theoretical exorcism of Maxwell demon and
recognising that computation can be done reversibly, in prin-
ciple, requiring no heat production.

Turning to quantum systems, it is surprising that very few
papers have a clear operational framework which is suitable
to understand the emergence of Landauer’s principle from the
underlying microscopic equations. In a recent work [4], Reeb
and Wolf use techniques from quantum statistical mechanics
to prove that a finite-size environment can provide a tighter
bound to the quantity of heat generated in an erasure process.
The usual Landauer bound

bhQi � DS (1)

is retrieved when the thermodynamic limit is taken in the envi-
ronment. In Eq. (1), hQi is the average heat exchange with the
bath and DS is the information theoretic entropy change. The
finite size corrections to Eq. (1) proposed in Ref. [4] are, in
some sense, suggestive of intrinsic non-equilibrium dynamics
that we would expect away from the thermodynamic limit and
have been explored previously in the context of irreversible
entropy production [5].

One way to describe the thermodynamics of systems where
thermal and quantum fluctuations cannot be ignored is to con-
sider the so called quantum fluctuation relations [6–9]. The
fluctuation relations, extended to the quantum mechanical do-
main [10, 11] are a promising route to understand the ther-
modynamics of small quantum systems that are operating un-
der non-equilibrium conditions. Crucially, recent work has
demonstrated that this formalism is a tangible route for the ex-
perimental exploration of quantum thermodynamics [12–14].

In this Letter we bring together the tools of open quantum
systems, non-equilibrium statistical mechanics and quantum
information theory to derive a non-phenomenological lower
bound for heat generated in an erasure process. We begin
by recasting the erasure protocol given in Ref. [4] from the
point of view of fluctuation relations. Extension of the fluctu-
ation relation formalism to the open quantum-system frame-
work leads to difficulties unless fairly restrictive assumptions
are made [15, 16]. A series of papers have attempted to derive
fluctuation relations from the operational viewpoint, employ-
ing the full machinery of completely positive, trace preserving
operations [17–22], which are ubiquitous in quantum informa-
tion and it was found that fluctuation-like relations can hold if
the open system evolution is unital [23].

We construct a distribution of heat dissipated by an era-
sure protocol involving a finite size environment interacting
with a quantum system. We show that the non-unitality of
a given open-system dynamics can lead to a tighter bound
on the average heat exchanged during the process than pre-
viously known bounds. In addition, and more importantly, the
methodology developed here paves the way to the tantalising
possibility of analysing the thermodynamics of computation
under non-equilibrium conditions. Our work brings together
concepts from several disciplines of physics and constitutes a
promising route for the construction of a formal platform for
exploring the efficiency and limitations of small-scale thermo-
devices operating at and well within the quantum mechanical
domain [24].

Erasure protocol.— Starting from the analysis put forward
in Ref. [4], the starting point of our investigation is embodied
by a general erasure protocol that satisfies the following set of
pre-requisites:

1. A system S , whose information content we want to
erase, is subjected to an environment-aided erasure pro-
tocol. We call ĤS the free Hamiltonian of the system.

2. We label such environment as E and assume that the
initial total SE state is fully uncorrelated, i.e., r̂SE =
r̂S ⌦ r̂E .

3. The environment is initially in the Gibbs state r̂E =
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work leads to difficulties unless fairly restrictive assumptions
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fluctuation relations from the operational viewpoint, employ-
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e�bĤE /ZE , with Hamiltonian ĤE = Âm Em|rmihrm|, the
inverse temperature b, and the partition function ZE =

tr[e�bĤE ].

4. The system and environment interact via a perfectly
unitary mechanism described by the time propagator
Û generated by the total Hamiltonian Ĥ = ĤS + ĤE +
ĤSE .

These points constitute a non-restrictive set of rules for the
erasure protocol to be performed.

Thermodynamics of the environment.— We describe the
erasure process as the protocol that, starting from the joint
SE initial state, generates the following reduced state of the
environment only

r̂0
E = trS [Û(r̂S ⌦ r̂E )Û†] = Â

l
Âl r̂E Â†

l . (2)

Here, Âl= jk =
p

l jhsk|Û |s ji where {l j} and {|s ji} are the
eigenvalues and eigenstates of r̂S . It can be rigorously shown
that the operators Âl satisfy the trace-preserving condition
Âl Â†

l Âl = 11E . It is worth stressing that Eq. (2) does not em-
body a map, but an operation. In fact, we can vary r̂S , thus
changing the form of the Âl’s while keeping r̂E fixed.

In analogy to the work distribution, we now define the heat
distribution for the environment [25] as

P(Q) = Â
l,m,n

hrn|Âl |rmi(r̂E )mmhrm|Â†
l |rnid(Q�Enm) (3)

with (r̂E )nm = hrn|r̂E |rmi the matrix element of the environ-
mental initial state in the basis of its eigenstates and Enm =
En �Em. The first moment of the heat distribution is the aver-
age heat, which can be written as

hQi=
Z

QP(Q)dQ = Â
n

En(r̂0
E )nn �Â

m
Em Â

l
tr[Âl r̂E Â†

l ]

= tr[ĤE r̂0
E ]� tr[ĤE r̂E ]. (4)

The distribution of heat contains much more information than
just the first moment. For instance, Jarzynski has found an im-
portant equality using the work distribution [7], which relates
the average exponentiated work to the equilibrium free energy.
In the same spirit, we now evaluate the average exponentiated
heat to derive a heat fluctuation relation. We have

he�bQi=
Z

e�bQ dQP(Q)

= Â
l,m,n

hrn|Âl |rmihrm|Â†
l |rni(r̂E )mme�bEnm . (5)

Plugging in e�bEm/ZE for (r̂E )mm and summing over n we
have

he�bQi= Â
l

tr[Â†
l r̂E Âl ] = tr[Â r̂E ] (6)

with Â=Âl Âl Â†
l . On the other hand if we expand the operator

Â in terms of the initial states of both system and environment

under the action of the unitary process Û and use the cyclicity
of trace we get

he�bQi= tr[r̂S ⌦ 11E Û† 11S ⌦ r̂E Û ] = tr[M̂ r̂S ], (7)

where M̂ = trE [Û† 11S ⌦ r̂E Û ].
Eqs. (6) and (7) are the central results of this Letter. We will

discuss their significance below. However, let us first obtain a
lower bound on the average heat exchange. In order to formu-
late such a bound from the above equality, we use the Jensen
inequality h f (x)i � f (hxi), which holds for any convex func-
tion f (x). That is, using he�bQi � e�bhQi we have the desired
bound

bhQi � BQ, (8)

where BQ =� ln(tr[Â r̂E ]) =� ln(tr[M̂ r̂S ]).
Care should be used in order to interpret Eq. (6) as a fluctu-

ation relation. As discussed by Talkner et al. in Ref. [26], only
the joint probability distribution of the internal energy change
of the system and heat exchanged with the environment satisfy
proper fluctuation relations, i.e., equalities between quantities
that do not depend on the total process but only on its end
points. While in order to evaluate the left-hand side of Eq. (6)
we used the probability distribution for the heat exchanged
with the environment in Eq. (3). Nevertheless, it has been
shown that relations which bear mathematical resemblance to
fluctuation relations, can be derived for unital or bistochastic
processes [18–22]. A process is unital if and only if Â = 11E ,
and in general a quantum operation is not unital. In the case
considered here the process at hand is surely not unital, as the
erasure of S would inevitably perturb a hypothetically pre-
pared maximally mixed state of the environment (i.e., a Gibbs
state at infinite temperature), therefore violating the condition
that defines unitality of a process. The fluctuation-like relation
in Eq. (6) links the non-unital nature of the process being con-
sidered to the heat exchanged with the environment through
the average of the function e�bQ. We would also like to point
out that, although a suggestive similarity exists between the
form of Eq. (6) and fluctuation relations derived under the
explicit consideration of feedback mechanisms [27, 28], our
study is very far from any feedback-based formalism.

Operator Â depends on the choice of states r̂S . For prac-
tical applications one would be interested in computing the
heat generated in erasing a state of choice. This would require
computing Â for each instance. On the other hand, given a
thermal state r̂E and a unitary interaction Û , we can deter-
mine M̂ as defined below Eq. (7). This is easily achievable by
running a given circuit implementing Û in reverse order, i.e.,
by taking the Hermitian conjugate of each elementary gates
into which Û is decomposed. Once M̂ is determined, a non-
trivial lower bound on heat generation is computed for any
state rS using Eq. (8). In this Letter we are working with
the protocol used in Ref. [4] to derive a stronger version of
the Landauer bound. The structure of our bound in Eq. (8)
stems solely from the exponentiated average heat, which re-
lies on the information encoded in the full distribution rather
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Âl r̂E Â†
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that the operators Âl satisfy the trace-preserving condition
Âl Â†
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tr[Âl r̂E Â†
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mine M̂ as defined below Eq. (7). This is easily achievable by
running a given circuit implementing Û in reverse order, i.e.,
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Here, Âl= jk =
p
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and in general a quantum operation is not unital. In the case
considered here the process at hand is surely not unital, as the
erasure of S would inevitably perturb a hypothetically pre-
pared maximally mixed state of the environment (i.e., a Gibbs
state at infinite temperature), therefore violating the condition
that defines unitality of a process. The fluctuation-like relation
in Eq. (6) links the non-unital nature of the process being con-
sidered to the heat exchanged with the environment through
the average of the function e�bQ. We would also like to point
out that, although a suggestive similarity exists between the
form of Eq. (6) and fluctuation relations derived under the
explicit consideration of feedback mechanisms [27, 28], our
study is very far from any feedback-based formalism.
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FIG. 1. (Color online.) The quantum circuit which is used to measure
the heat of a quantum process. The ancilla qubit in the upper branch
is prepared in a |+i state, the system of interest is prepared in an
arbitrary initial state, whereas the reservoir state rR defined in the
text is a thermal state. First, a controlled operation v† = eiHRt is
applied on the reservoir, next, the protocol unitary U is applied, and
then another controlled operation v is performed on the reservoir and
the qubit is measured in the x� y plane.

the change of the energy in the reservoir is the average heat of
the process [5],

hQi= tr[HR r0
R]� tr[HR rR]. (3)

However, care must be taken in interpreting this quantity as
heat in the most general sense because in the strong-coupling
regime the division of the energy changes into heat and work
becomes unclear. However, one can still define an energy dis-
sipation to the reservoir in order to avoid any issues of inter-
pretation.

It is important to point out that if we are dealing with a
truly microscopic system both quantum and thermal fluctua-
tions will be prominent [18]. In fact the heat exchanged is
actually the first moment of a total probability distribution for
heat P(Q),

P(Q) = Â
mn

pm pn|md(Q� (En �Em)). (4)

This distribution is equivalent to the marginal distribution of
the joint distribution studied in [18] and it is important to
stress it is in fact that it is only the joint distribution which
satisfies a fluctuation relation of the standard form [8]. The
distribution is built by the following procedure: Before the
unitary protocol is applied the reservoir is projectively mea-
sured to have energy Em with probability given by the Boltz-
mann factor pm = e�bEm/ZR, then a generally non unitary dy-
namics occurs on the reservoir (and the system) and the en-
ergy is measured again with conditional probability pm|n =

tr[U |rmihrm|⌦ rS U†|rnihrn|] thus forming a distribution of
heat changes. It is important to stress that the dynamics of
the reservoir is not unitary and the problem may have been
set up from the beginning using the approach of describing
the reservoir (system) dynamics using completely positive and
trace preserving maps. This approach has recently been taken
in order to derive fluctuation like relations for general quan-
tum channels [24–29]. In [24–29] the relationship between
the non-unitality of a channel and the microreversibility of
the process was studied, which is indeed an interesting link

between the non-unitality of a channel and a bound on the
heat dissipated in a generic quantum process [30].

Measuring the heat distribution.— The heat distribution
Eq. (4) has a corresponding characteristic function or cumu-
lant generating function defined by a Fourier transform

Q(t) =
Z •

�•
P(Q)eitQ dQ, (5)

carrying out the Fourier transform we can recast Q(t) in the
following compact form

Q(t) =Â
mn

pm pn|me�i(En�Em)t

=Â
lmn

e�bEl

ZR
e�i(Em�En)t

⇥ tr[U |rlihrl |rmihrm|⌦rS U†|rnihrn|]
=tr[U rR v† ⌦rS U† v], (6)

with the new unitary operator vt = e�iHRt . We stress that the
first cumulant in an expansion of Eq. (6) corresponds to aver-
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p
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FIG. 1. Graphical depiction of the two-step protocol for the work distribution. At t < 0 a system is in contact with a bath
until thermal equilibrium is reached [panel (a)]. At t = 0+, system and bath are detached, while the energy of the system is
measured. Let the outcome of such measurement be E0

n, which projects the state of the system onto the energy eigenstates��E0
n

↵
[panel (b)]. The system’s Hamiltonian is then changed following to a given protocol and the system evolves according to

the unitary evolution operator U(⌧, 0) for a time ⌧ [panel (c)], at which time it is measured (over the eigenbasis of the new
Hamiltonian). Outcome E⌧

m is achieved, which gives the new state |E⌧
mi [panel (d)]. By repeating this protocol many times a

distribution of values E⌧
m �E0

n is achieved, which embodies the probability distribution of the work done by/on the system as
a result of the protocol that has been implemented.

linearization of the interaction, where the Hamiltonian
is cast into a quadratic form that is more amenable to
analysis. Here, we eschew this simplification, which is
formally valid when the cavity field is strongly driven [9],
and address the full nonlinear optomechanical Hamilto-
nian. We note at this point that the thermodynami-
cal properties of the equivalent linearized model were re-
cently explored by some us in Ref. [10]. By retaining the
full optomechanical coupling, our work therefore aims to
address the out-of-equilibrium thermodynamical behav-
ior of nonlinearly coupled bosonic modes in the quantum
regime, and thus go beyond the results reported in liter-
ature so far.

The remainder of this work is organized as follows: In
Sec. II we introduce the two-measurement protocol nec-
essary to extract the work distribution, and review the
quantum fluctuation relations. Sec. III contains a de-
tailed analysis of the dynamical features of an optome-
chanical system subject to a sudden quench of the cou-
pling parameter and assesses its thermodynamical behav-
ior, first in the case of linear optomechanical coupling and
then in the quadratically-coupled case. Finally, in Sec. IV
we summarize our findings and discuss new perspectives
opened up by this work.

II. WORK DISTRIBUTION AND QUANTUM
FLUCTUATION THEOREMS

Let us consider a system described by a time-
dependent Hamiltonian Ĥ(Gt), whose dependence on
time is realized via the externally tunable parameter Gt.
This parameter, which we refer to as the driving param-

eter, determines the configuration of the system at any
time. Moreover, let us assume that at t = 0 the system
is in thermal equilibrium with a bath at inverse temper-

ature �, and is hence described by the Gibbs state

%̂�(G0

) =
e�� ˆH(G0)

Z(G
0

)
, (1)

where Z(G
0

) = Tr
n

e�� ˆH(G0)

o

is the canonical parti-

tion function of the system. This system is taken out
of equilibrium by applying a chosen transformation that
modifies Gt in time. Here we are concerned with the
statistics of the work done on or by the system when
applying such a protocol. We thus proceed as follows
(cf. Fig. 1 for a graphical depiction of the the pro-
cess): At time t = 0+ the system is detached from the
reservoir and a projective energy measurement is per-
formed on the system in the energy eigenbasis of Ĥ(G

0

),
yielding an eigenstate which we label

�

�E0

n

↵

. The driv-
ing parameter is changed according to the aforemen-
tioned transformation until a final time ⌧ . During this
period, the state of the system evolves as dictated by
the action of the unitary evolution operator Û⌧,0 on
the post-measurement state. Finally, a second projec-
tive energy measurement is made on the system, this
time in the eigenbasis of Ĥ(G⌧ ) and yielding eigenstate
|E⌧

mi. Given the spectral decompositions of the initial
and final Hamiltonians, Ĥ(G

0

) =
P

n E
0

n

�

�E0

n

↵ ⌦

E0

n

�

� and

Ĥ(G⌧ ) =
P

m E⌧
m |E⌧

mi hE⌧
m|, respectively, the energy

di↵erence between the two outcomes E⌧
m � E0

n may be
interpreted as the work performed by the external driv-
ing in a single realization of the protocol. This particular
value of the work occurs with probability p0np

⌧
m|n, where

p0n = e��E0
n/Z(G

0

) keeps track of the initial thermal
statistics, while p⌧m|n = | hE⌧

m| Û⌧,0

�

�E0

n

↵ |2 embodies the
transition probability arising from the change of basis.
The work performed due to the protocol described above
can be characterized by a stochastic variable W following
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e�bĤE /ZE , with Hamiltonian ĤE = Âm Em|rmihrm|, the
inverse temperature b, and the partition function ZE =

tr[e�bĤE ].

4. The system and environment interact via a perfectly
unitary mechanism described by the time propagator
Û generated by the total Hamiltonian Ĥ = ĤS + ĤE +
ĤSE .

These points constitute a non-restrictive set of rules for the
erasure protocol to be performed.

Thermodynamics of the environment.— We describe the
erasure process as the protocol that, starting from the joint
SE initial state, generates the following reduced state of the
environment only

r̂0
E = trS [Û(r̂S ⌦ r̂E )Û†] = Â

l
Âl r̂E Â†

l . (2)

Here, Âl= jk =
p

l jhsk|Û |s ji where {l j} and {|s ji} are the
eigenvalues and eigenstates of r̂S . It can be rigorously shown
that the operators Âl satisfy the trace-preserving condition
Âl Â†

l Âl = 11E . It is worth stressing that Eq. (2) does not em-
body a map, but an operation. In fact, we can vary r̂S , thus
changing the form of the Âl’s while keeping r̂E fixed.

In analogy to the work distribution, we now define the heat
distribution for the environment [25] as

P(Q) = Â
l,m,n

hrn|Âl |rmi(r̂E )mmhrm|Â†
l |rnid(Q�Enm) (3)

with (r̂E )nm = hrn|r̂E |rmi the matrix element of the environ-
mental initial state in the basis of its eigenstates and Enm =
En �Em. The first moment of the heat distribution is the aver-
age heat, which can be written as

hQi=
Z

QP(Q)dQ = Â
n

En(r̂0
E )nn �Â

m
Em Â

l
tr[Âl r̂E Â†

l ]

= tr[ĤE r̂0
E ]� tr[ĤE r̂E ]. (4)

The distribution of heat contains much more information than
just the first moment. For instance, Jarzynski has found an im-
portant equality using the work distribution [7], which relates
the average exponentiated work to the equilibrium free energy.
In the same spirit, we now evaluate the average exponentiated
heat to derive a heat fluctuation relation. We have

he�bQi=
Z

e�bQ dQP(Q)

= Â
l,m,n

hrn|Âl |rmihrm|Â†
l |rni(r̂E )mme�bEnm . (5)

Plugging in e�bEm/ZE for (r̂E )mm and summing over n we
have

he�bQi= Â
l

tr[Â†
l r̂E Âl ] = tr[Â r̂E ] (6)

with Â=Âl Âl Â†
l . On the other hand if we expand the operator

Â in terms of the initial states of both system and environment

under the action of the unitary process Û and use the cyclicity
of trace we get

he�bQi= tr[r̂S ⌦ 11E Û† 11S ⌦ r̂E Û ] = tr[M̂ r̂S ], (7)

where M̂ = trE [Û† 11S ⌦ r̂E Û ].
Eqs. (6) and (7) are the central results of this Letter. We will

discuss their significance below. However, let us first obtain a
lower bound on the average heat exchange. In order to formu-
late such a bound from the above equality, we use the Jensen
inequality h f (x)i � f (hxi), which holds for any convex func-
tion f (x). That is, using he�bQi � e�bhQi we have the desired
bound

bhQi � BQ, (8)

where BQ =� ln(tr[Â r̂E ]) =� ln(tr[M̂ r̂S ]).
Care should be used in order to interpret Eq. (6) as a fluctu-

ation relation. As discussed by Talkner et al. in Ref. [26], only
the joint probability distribution of the internal energy change
of the system and heat exchanged with the environment satisfy
proper fluctuation relations, i.e., equalities between quantities
that do not depend on the total process but only on its end
points. While in order to evaluate the left-hand side of Eq. (6)
we used the probability distribution for the heat exchanged
with the environment in Eq. (3). Nevertheless, it has been
shown that relations which bear mathematical resemblance to
fluctuation relations, can be derived for unital or bistochastic
processes [18–22]. A process is unital if and only if Â = 11E ,
and in general a quantum operation is not unital. In the case
considered here the process at hand is surely not unital, as the
erasure of S would inevitably perturb a hypothetically pre-
pared maximally mixed state of the environment (i.e., a Gibbs
state at infinite temperature), therefore violating the condition
that defines unitality of a process. The fluctuation-like relation
in Eq. (6) links the non-unital nature of the process being con-
sidered to the heat exchanged with the environment through
the average of the function e�bQ. We would also like to point
out that, although a suggestive similarity exists between the
form of Eq. (6) and fluctuation relations derived under the
explicit consideration of feedback mechanisms [27, 28], our
study is very far from any feedback-based formalism.

Operator Â depends on the choice of states r̂S . For prac-
tical applications one would be interested in computing the
heat generated in erasing a state of choice. This would require
computing Â for each instance. On the other hand, given a
thermal state r̂E and a unitary interaction Û , we can deter-
mine M̂ as defined below Eq. (7). This is easily achievable by
running a given circuit implementing Û in reverse order, i.e.,
by taking the Hermitian conjugate of each elementary gates
into which Û is decomposed. Once M̂ is determined, a non-
trivial lower bound on heat generation is computed for any
state rS using Eq. (8). In this Letter we are working with
the protocol used in Ref. [4] to derive a stronger version of
the Landauer bound. The structure of our bound in Eq. (8)
stems solely from the exponentiated average heat, which re-
lies on the information encoded in the full distribution rather
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where BQ =� ln(tr[Â r̂E ]) =� ln(tr[M̂ r̂S ]).
Care should be used in order to interpret Eq. (6) as a fluctu-

ation relation. As discussed by Talkner et al. in Ref. [26], only
the joint probability distribution of the internal energy change
of the system and heat exchanged with the environment satisfy
proper fluctuation relations, i.e., equalities between quantities
that do not depend on the total process but only on its end
points. While in order to evaluate the left-hand side of Eq. (6)
we used the probability distribution for the heat exchanged
with the environment in Eq. (3). Nevertheless, it has been
shown that relations which bear mathematical resemblance to
fluctuation relations, can be derived for unital or bistochastic
processes [18–22]. A process is unital if and only if Â = 11E ,
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discuss their significance below. However, let us first obtain a
lower bound on the average heat exchange. In order to formu-
late such a bound from the above equality, we use the Jensen
inequality h f (x)i � f (hxi), which holds for any convex func-
tion f (x). That is, using he�bQi � e�bhQi we have the desired
bound

bhQi � BQ, (8)

where BQ =� ln(tr[Â r̂E ]) =� ln(tr[M̂ r̂S ]).
Care should be used in order to interpret Eq. (6) as a fluctu-

ation relation. As discussed by Talkner et al. in Ref. [26], only
the joint probability distribution of the internal energy change
of the system and heat exchanged with the environment satisfy
proper fluctuation relations, i.e., equalities between quantities
that do not depend on the total process but only on its end
points. While in order to evaluate the left-hand side of Eq. (6)
we used the probability distribution for the heat exchanged
with the environment in Eq. (3). Nevertheless, it has been
shown that relations which bear mathematical resemblance to
fluctuation relations, can be derived for unital or bistochastic
processes [18–22]. A process is unital if and only if Â = 11E ,
and in general a quantum operation is not unital. In the case
considered here the process at hand is surely not unital, as the
erasure of S would inevitably perturb a hypothetically pre-
pared maximally mixed state of the environment (i.e., a Gibbs
state at infinite temperature), therefore violating the condition
that defines unitality of a process. The fluctuation-like relation
in Eq. (6) links the non-unital nature of the process being con-
sidered to the heat exchanged with the environment through
the average of the function e�bQ. We would also like to point
out that, although a suggestive similarity exists between the
form of Eq. (6) and fluctuation relations derived under the
explicit consideration of feedback mechanisms [27, 28], our
study is very far from any feedback-based formalism.

Operator Â depends on the choice of states r̂S . For prac-
tical applications one would be interested in computing the
heat generated in erasing a state of choice. This would require
computing Â for each instance. On the other hand, given a
thermal state r̂E and a unitary interaction Û , we can deter-
mine M̂ as defined below Eq. (7). This is easily achievable by
running a given circuit implementing Û in reverse order, i.e.,
by taking the Hermitian conjugate of each elementary gates
into which Û is decomposed. Once M̂ is determined, a non-
trivial lower bound on heat generation is computed for any
state rS using Eq. (8). In this Letter we are working with
the protocol used in Ref. [4] to derive a stronger version of
the Landauer bound. The structure of our bound in Eq. (8)
stems solely from the exponentiated average heat, which re-
lies on the information encoded in the full distribution rather
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e�bĤE /ZE , with Hamiltonian ĤE = Âm Em|rmihrm|, the
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Âl r̂E Â†
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e�bĤE /ZE , with Hamiltonian ĤE = Âm Em|rmihrm|, the
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that the operators Âl satisfy the trace-preserving condition
Âl Â†
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In analogy to the work distribution, we now define the heat
distribution for the environment [25] as

P(Q) = Â
l,m,n
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mental initial state in the basis of its eigenstates and Enm =
En �Em. The first moment of the heat distribution is the aver-
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The distribution of heat contains much more information than
just the first moment. For instance, Jarzynski has found an im-
portant equality using the work distribution [7], which relates
the average exponentiated work to the equilibrium free energy.
In the same spirit, we now evaluate the average exponentiated
heat to derive a heat fluctuation relation. We have

he�bQi=
Z

e�bQ dQP(Q)

= Â
l,m,n
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Plugging in e�bEm/ZE for (r̂E )mm and summing over n we
have
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tr[Â†
l r̂E Âl ] = tr[Â r̂E ] (6)

with Â=Âl Âl Â†
l . On the other hand if we expand the operator

Â in terms of the initial states of both system and environment

under the action of the unitary process Û and use the cyclicity
of trace we get

he�bQi= tr[r̂S ⌦ 11E Û† 11S ⌦ r̂E Û ] = tr[M̂ r̂S ], (7)

where M̂ = trE [Û† 11S ⌦ r̂E Û ].
Eqs. (6) and (7) are the central results of this Letter. We will

discuss their significance below. However, let us first obtain a
lower bound on the average heat exchange. In order to formu-
late such a bound from the above equality, we use the Jensen
inequality h f (x)i � f (hxi), which holds for any convex func-
tion f (x). That is, using he�bQi � e�bhQi we have the desired
bound

bhQi � BQ, (8)

where BQ =� ln(tr[Â r̂E ]) =� ln(tr[M̂ r̂S ]).
Care should be used in order to interpret Eq. (6) as a fluctu-

ation relation. As discussed by Talkner et al. in Ref. [26], only
the joint probability distribution of the internal energy change
of the system and heat exchanged with the environment satisfy
proper fluctuation relations, i.e., equalities between quantities
that do not depend on the total process but only on its end
points. While in order to evaluate the left-hand side of Eq. (6)
we used the probability distribution for the heat exchanged
with the environment in Eq. (3). Nevertheless, it has been
shown that relations which bear mathematical resemblance to
fluctuation relations, can be derived for unital or bistochastic
processes [18–22]. A process is unital if and only if Â = 11E ,
and in general a quantum operation is not unital. In the case
considered here the process at hand is surely not unital, as the
erasure of S would inevitably perturb a hypothetically pre-
pared maximally mixed state of the environment (i.e., a Gibbs
state at infinite temperature), therefore violating the condition
that defines unitality of a process. The fluctuation-like relation
in Eq. (6) links the non-unital nature of the process being con-
sidered to the heat exchanged with the environment through
the average of the function e�bQ. We would also like to point
out that, although a suggestive similarity exists between the
form of Eq. (6) and fluctuation relations derived under the
explicit consideration of feedback mechanisms [27, 28], our
study is very far from any feedback-based formalism.

Operator Â depends on the choice of states r̂S . For prac-
tical applications one would be interested in computing the
heat generated in erasing a state of choice. This would require
computing Â for each instance. On the other hand, given a
thermal state r̂E and a unitary interaction Û , we can deter-
mine M̂ as defined below Eq. (7). This is easily achievable by
running a given circuit implementing Û in reverse order, i.e.,
by taking the Hermitian conjugate of each elementary gates
into which Û is decomposed. Once M̂ is determined, a non-
trivial lower bound on heat generation is computed for any
state rS using Eq. (8). In this Letter we are working with
the protocol used in Ref. [4] to derive a stronger version of
the Landauer bound. The structure of our bound in Eq. (8)
stems solely from the exponentiated average heat, which re-
lies on the information encoded in the full distribution rather
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inverse temperature b, and the partition function ZE =

tr[e�bĤE ].

4. The system and environment interact via a perfectly
unitary mechanism described by the time propagator
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and in general a quantum operation is not unital. In the case
considered here the process at hand is surely not unital, as the
erasure of S would inevitably perturb a hypothetically pre-
pared maximally mixed state of the environment (i.e., a Gibbs
state at infinite temperature), therefore violating the condition
that defines unitality of a process. The fluctuation-like relation
in Eq. (6) links the non-unital nature of the process being con-
sidered to the heat exchanged with the environment through
the average of the function e�bQ. We would also like to point
out that, although a suggestive similarity exists between the
form of Eq. (6) and fluctuation relations derived under the
explicit consideration of feedback mechanisms [27, 28], our
study is very far from any feedback-based formalism.
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4. The system and environment interact via a perfectly
unitary mechanism described by the time propagator
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l |rnid(Q�Enm) (3)

with (r̂E )nm = hrn|r̂E |rmi the matrix element of the environ-
mental initial state in the basis of its eigenstates and Enm =
En �Em. The first moment of the heat distribution is the aver-
age heat, which can be written as

hQi=
Z

QP(Q)dQ = Â
n

En(r̂0
E )nn �Â

m
Em Â

l
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lies on the information encoded in the full distribution rather

2

e�bĤE /ZE , with Hamiltonian ĤE = Âm Em|rmihrm|, the
inverse temperature b, and the partition function ZE =

tr[e�bĤE ].

4. The system and environment interact via a perfectly
unitary mechanism described by the time propagator
Û generated by the total Hamiltonian Ĥ = ĤS + ĤE +
ĤSE .

These points constitute a non-restrictive set of rules for the
erasure protocol to be performed.

Thermodynamics of the environment.— We describe the
erasure process as the protocol that, starting from the joint
SE initial state, generates the following reduced state of the
environment only

r̂0
E = trS [Û(r̂S ⌦ r̂E )Û†] = Â

l
Âl r̂E Â†

l . (2)

Here, Âl= jk =
p

l jhsk|Û |s ji where {l j} and {|s ji} are the
eigenvalues and eigenstates of r̂S . It can be rigorously shown
that the operators Âl satisfy the trace-preserving condition
Âl Â†

l Âl = 11E . It is worth stressing that Eq. (2) does not em-
body a map, but an operation. In fact, we can vary r̂S , thus
changing the form of the Âl’s while keeping r̂E fixed.

In analogy to the work distribution, we now define the heat
distribution for the environment [25] as

P(Q) = Â
l,m,n

hrn|Âl |rmi(r̂E )mmhrm|Â†
l |rnid(Q�Enm) (3)

with (r̂E )nm = hrn|r̂E |rmi the matrix element of the environ-
mental initial state in the basis of its eigenstates and Enm =
En �Em. The first moment of the heat distribution is the aver-
age heat, which can be written as

hQi=
Z

QP(Q)dQ = Â
n

En(r̂0
E )nn �Â

m
Em Â

l
tr[Âl r̂E Â†

l ]

= tr[ĤE r̂0
E ]� tr[ĤE r̂E ]. (4)

The distribution of heat contains much more information than
just the first moment. For instance, Jarzynski has found an im-
portant equality using the work distribution [7], which relates
the average exponentiated work to the equilibrium free energy.
In the same spirit, we now evaluate the average exponentiated
heat to derive a heat fluctuation relation. We have

he�bQi=
Z

e�bQ dQP(Q)

= Â
l,m,n

hrn|Âl |rmihrm|Â†
l |rni(r̂E )mme�bEnm . (5)

Plugging in e�bEm/ZE for (r̂E )mm and summing over n we
have

he�bQi= Â
l

tr[Â†
l r̂E Âl ] = tr[Â r̂E ] (6)

with Â=Âl Âl Â†
l . On the other hand if we expand the operator

Â in terms of the initial states of both system and environment

under the action of the unitary process Û and use the cyclicity
of trace we get

he�bQi= tr[r̂S ⌦ 11E Û† 11S ⌦ r̂E Û ] = tr[M̂ r̂S ], (7)

where M̂ = trE [Û† 11S ⌦ r̂E Û ].
Eqs. (6) and (7) are the central results of this Letter. We will

discuss their significance below. However, let us first obtain a
lower bound on the average heat exchange. In order to formu-
late such a bound from the above equality, we use the Jensen
inequality h f (x)i � f (hxi), which holds for any convex func-
tion f (x). That is, using he�bQi � e�bhQi we have the desired
bound

bhQi � BQ, (8)

where BQ =� ln(tr[Â r̂E ]) =� ln(tr[M̂ r̂S ]).
Care should be used in order to interpret Eq. (6) as a fluctu-

ation relation. As discussed by Talkner et al. in Ref. [26], only
the joint probability distribution of the internal energy change
of the system and heat exchanged with the environment satisfy
proper fluctuation relations, i.e., equalities between quantities
that do not depend on the total process but only on its end
points. While in order to evaluate the left-hand side of Eq. (6)
we used the probability distribution for the heat exchanged
with the environment in Eq. (3). Nevertheless, it has been
shown that relations which bear mathematical resemblance to
fluctuation relations, can be derived for unital or bistochastic
processes [18–22]. A process is unital if and only if Â = 11E ,
and in general a quantum operation is not unital. In the case
considered here the process at hand is surely not unital, as the
erasure of S would inevitably perturb a hypothetically pre-
pared maximally mixed state of the environment (i.e., a Gibbs
state at infinite temperature), therefore violating the condition
that defines unitality of a process. The fluctuation-like relation
in Eq. (6) links the non-unital nature of the process being con-
sidered to the heat exchanged with the environment through
the average of the function e�bQ. We would also like to point
out that, although a suggestive similarity exists between the
form of Eq. (6) and fluctuation relations derived under the
explicit consideration of feedback mechanisms [27, 28], our
study is very far from any feedback-based formalism.

Operator Â depends on the choice of states r̂S . For prac-
tical applications one would be interested in computing the
heat generated in erasing a state of choice. This would require
computing Â for each instance. On the other hand, given a
thermal state r̂E and a unitary interaction Û , we can deter-
mine M̂ as defined below Eq. (7). This is easily achievable by
running a given circuit implementing Û in reverse order, i.e.,
by taking the Hermitian conjugate of each elementary gates
into which Û is decomposed. Once M̂ is determined, a non-
trivial lower bound on heat generation is computed for any
state rS using Eq. (8). In this Letter we are working with
the protocol used in Ref. [4] to derive a stronger version of
the Landauer bound. The structure of our bound in Eq. (8)
stems solely from the exponentiated average heat, which re-
lies on the information encoded in the full distribution rather

Assume unitality hQi � 0

(Im)proving Landauer: 
our way

A tighter bound than Reeb and Wolf’s ? Yes!


