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Problems 1, 2 are neither long nor difficult and highly recommended. Problems 3, 5 are long but (in the opinion of
the author) very instructive. Problem 4 is shorter but rather calculatory, and should be considered as optional.

1. Time-of-flight experiments
We consider the time evolution of a non-interacting gas (classical or quantum) initially at equilibrium in a trap potential
U(r). At t = 0, the potential is instantaneously switched off and the gas released to expand. The goal is to obtain an
expression for the spatial density after an expansion time t (corresponding to the quantity measured experimentally
using absorption imaging).

1.1. Classical version
A classical gas is described by its phase-space density f(r,p). From f one can obtain all physically interesting quantities,
for instance

P(p) =
∫
d3r f(r,p) : momentum distribution

nat(r) =
∫
d3p f(r,p) : spatial distribution.

Using Liouville’s theorem, show that the spatial distribution n(r, r) for long times is proportional to the initial
momentum distribution evaluated at p = Mr

t . What condition must be imposed on the expansion time to reach this
asymptotic regime ?

1.2. Quantum version
What is the momentum distribution of a quantum-mechanical particle prepared in the state ψ0(r) ? Using the stationary
phase approximation (see Appendix A), show that the same conclusion as in the classical case is true for a time of
flight experiment with ψ(r, t = 0) = ψ0(r).

Solution:

2. BEC in a harmonic trap
The Gross-Pitaevskii energy functional describing a BEC of N atoms in a sherical harmonic trap is

EN (ψ,ψ∗) =
∫
d3r

(
− ~2

2Mψ∗∆ψ + 1
2Mω2r2|ψ|2 + g

2 |ψ|
4
)
,

with g = 4π~2a/M and with a the s−wave scattering length. Functional minimization with respect to ψ∗ yields the
Gross-Pitaevskii equation :

µψ = − ~2

2M∆ψ + 1
2Mω2r2ψ + g|ψ|2ψ
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2.1.
Assume a spherical cloud of radius R. Without detailed calculation, give order of magnitude estimates for the kinetic
energy, potential energy and interaction contributions to the total energy. It is advised to use the oscillator energy ~ω
and oscillator length aho =

√
~/(Mω) to obtain dimensionless quantities.

2.2.
Discuss in what limits the kinetic energy or the interaction can be neglected. Can the potential energy be neglected ?

2.3.
We now assume to be in the limit of large interactions. Compute the chemical potential, mean energy and cloud radius.

3. BEC hydrodynamics
The stationary Gross-Pitaevskii equation can be generalized to time-dependent problems as follows :

i~
∂

∂t
ψ = − ~2

2M∆ψ + U(r)ψ + g|ψ|2ψ

3.1.
Write the BEC wavefunction as ψ =

√
neiθ, and obtain equations of motion for n and θ. How to interpret these

equations ?

3.2.
We now consider an infinite uniform system with mean density n0 (potential U = 0). Consider small deviations from
the equilibrium solution, n = n0 + δn, θ = θ0 + δθ, obtain the equations of motion for δn and δθ. Obtain the dispersion
relation of the normal modes of these equation of motions, and discuss their behavior at low and high energies.

4. Bose-Hubbard model for U → 0
For a non-interacting gas, we know that the atoms will condense in the lowest Bloch state at q = 0. If there are exactly
N atoms in the system, the many-body state at zero temperature will be given by

|ΨN 〉 = 1√
N !

(
b̂†q=0

)N
|∅〉 = 1√

N !

(
1√
Ns

∑
i

â†i

)N
|∅〉. (1)

Here b̂q=0 is an annihilation operator for a particle in the Bloch state q = 0, Ns is the total number of sites, and
n = N/Ns is the filling fraction. We note {ni} a configuration of occupation numbers for which the site i contains ni
particles, and |{ni}〉 =

∏
i |ni〉i the corresponding Fock state.

Show that the probability p(ni) to find ni atoms at one particular site i approximately follow a Poisson distribution
when N,Ns are both large with n finite.

You will need the multinomial formula(
N∑
i=1

ai

)M
=

∑
{ni}i=1,··· ,N ,

∑
i
ni=M

N∏
i=1

M !anii
ni!

and Stirling’s formula,

N ! ≈N→∞
√

2πNNNe−N .
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5. Approximate ground state of the Bose-Hubbard model
We consider here a simplified version of the Gutzwiller trial wave function, where one truncates the on-site Fock basis
to just three states,

|φi〉 = c(n0 − 1)|ni = n0 − 1〉i + c(n0)|ni = n0〉i + c(n0 + 1)|ni = n0 + 1〉i. (2)

Here n0 is the integer closest to the average filling fraction n and the nearest integers. Taking the normalization of |φi〉
into account, the coefficients can be parametrized as

c(n0 − 1) = cos(χ) sin (θ) eiφ− , (3)
c(n0) = cos (θ) , (4)

c(n0 + 1) = sin(χ) sin (θ) eiφ+ , (5)

where θ, χ ∈ [0, π/2] and φ± ∈ [0, 2π].

5.1.
Compute the average filling factor (number of atoms per lattice site) for the trial wavefunction above. What parameters
correspond to a commensurate filling of the lattice (n0 = n) ?

5.2. Commensurate filling n = n0

We focus now on the commensurate case n = n0.

5.2.1.

Compute the free energy of the trial state. Hint : separate the kinetic energy part from the local parts. Be careful with
the tunneling terms in the former.

5.2.2.

Minimize the free energy with respect to the trial parameters χ, θ, φ±. Discuss the result for the ground state
wavefunction when U increases from 0.

5.2.3.

Calculate the superfluid order parameter as defined in the Lectures.
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A. The method of stationary phase
Given an integral of the form

I =
∫ b

a

dxf(x)eiφ(x), (6)

where φ varies rapidly in the interval [a, b] and f varies slowly, one expands the phase around the stationary phase
points xν where dφ/dx = 0,

φ(x) ≈
∑
ν

φ(xν) + 1
2φ
′′(xν)(x− xν)2 + · · · , (7)

and set f(x) ≈ f(xν) in the integrand. Then one breaks up the integral into several pieces around each of the xν , and
extend the integration bounds to ±∞ for each piece (this gives a good approximation since the fast oscillations average
out the contributions far from the stationary points). This gives

I ≈
∑
ν

f(xν)ei
∑

ν
φ(xν)

∫ +∞

−∞
dxei

1
2φ
′′(xν)(x−xν)2

(8)

=
∑
ν

f(xν)ei
∑

ν
φ(xν)

√
2π

|φ′′(xν)|e
iarg[φ′′(xν)]−iπ4 . (9)

The Gaussian integral is calculated using contour integration. This method can be generalized to more than 1 dimension
("saddle-point integration").
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