

Current Capabilities of Material Test Reactors (MTRs)

Frances Marshall, Danas Ridikas (F.Marshall@iaea.org)

Research Reactor Section International Atomic Energy Agency November 2017

60 Years

Outline

- Research Reactor Types
- Research Reactor Purpose
- Material Test Reactor Capabilities
- Currently Operating MTRs
- New MTRs and Potential MTR Capability
- MTR Experiment Types
- Some MTR Profiles

MIR.M1 reactor layout, Russia

Types of Research Reactors

- Large variety, no easy categorization, 26 different types
- Manufacturer types: Slowpoke, MNSR, Argonaut, TRIGA, IRT, WWR
- Coolant/moderator: heavy water, light water, liquid metal, organic
- Fuel: plate (flat, curved, and concentric), TRIGA, rods, homogeneous
- Purpose: critical assembly, research, test, training, prototype, radioisotope production

https://nucleus.iaea.org/RRDB/RR/ReactorSearch.aspx?rf=1 F.Marshall@iaea.org

Features of Research Reactors

- Typically, RR cores have small volume
- Typically, very low powers (many less than 5 MW_{th}) compared to commercial power plant reactor (>3000 MW_{th})
- Higher fuel enrichments (~ 20 %) than power reactors (~5%), some very high enrichments (> 20%), but trying to convert fuel to <20%
- Lower temperatures and pressures than power reactors
- Natural and forced cooling
- Pulsing capability

Comparison between ATR and Power PWR

Reactor Parameter	ATR	PWR (Typical)
Power (MW _{th})	250 (Max Design)	~ 3,800
Operating Pressure (psig)	~ 355	~ 2235
Inlet Temp. (F)	~ 125	~550
Outlet Temp. (F)	~ 160	~620
Power Density (kW/ft ³)	~ 28,300	~ 2,800
Neutron Flux	~10 ¹⁵	~10 ¹¹
Fuel	Enriched U-235	3 – 4 % U-235
Fuel Temp. (F)	~ 462	> 1000

Research Reactor General Purpose 60 Years

- Purpose is to produce and provide *access to the neutrons*
- Access to neutrons can be provided:
 - Inside core
 - Along core boundary
 - From external beams
- Typical Power range 100kW to 10MW
- Typical Steady-State Neutron Flux \rightarrow 10¹² to 10¹⁴ n/(cm²·s)

F.Marshall@iaea.org

Research Reactor Applications

- Education & Training
- Fuel/material testing and qualification
- Supporting power reactor programmes
- Radioisotope production
- Neutron scattering
- Neutron radiography
- Material science investigations
- Neutron Activation Analysis (NAA)
- Geochronology
- Neutron transmutation doping
- Gemstone colour enhancement
- Positron source
- Neutron capture therapy

F.Marshall@iaea.org

Total Number of Research Reactors*

TOTAL:	768			
Operational	216			
Temp. shutdown	22			
Under construction	8			
Planned	11			
Shutdown/Decommissioned 502				

*from the RR Database, https://nucleus.iaea.org/RRDB

Application	Number of RR involved (Op.)
Education & Training	146
Neutron Activation Analysis	106
Radioisotope production	79
Neutron radiography	63
Material/fuel testing/irradiations	58
Neutron scattering	40
Nuclear Data Measurements	42
Silicon doping	22
Geochronology	23
Gem coloration	17
Neutron Therapy	16
Other	107

MTR Capabilities and Considerations

- Neutron Flux high fast and thermal fluxes
- Number of Experiment Positions
- Size of Experiment Positions
- Flexibility of Experiment Design
- Compatibility with Test Materials
- Steady State, Pulsed, and Transient Operations
- Complementary Capabilities
 - Experiment preparation (cold and hot)
 - Transportation
 - Post irradiation Examination (PIE)

High Power Test Reactors (>20 MW)

Reactor Name	Country	Туре	Power (MWt)	Flux (n/cm²-s)	Utilization
BR-2	Belgium	Tank	100	1E15 (T), 7E14 (F)	Fuel & material, isotopes
CARR	China	Tank in Pool	60	8E14 (T), 6E14 (F)	Fuel & material
CEFR	China	Pool/ Na	65	3.2E14 (T), 3.5E14 (F)	Fast Rx materials, prototype
ETRR-2	Egypt	Pool	22	2.8E14 (T), 2.2E14 (F)	Neutron sci., fuel
OSIRIS	France	Pool	70	2.7E13 (T), 2.6E14 (F)	Material and fuel
DHRUVA	India	Tank	100	1.8E14 (T)	Material, isotopes, neutron sci.
RSG-GAS	Indonesia	Pool	30	2.51E13 (T), 2.28E14 (F)	Material, neutron sci., corrosion

High Power Test Reactors (cont.)

Reactor Name	Country	Туре	Power (MWt)	Flux (n/cm²-s)	Utilization
JMTR	Japan	Tank	50	4E14 (T), 4E14 (F)	Material, fuel
JOYO	Japan	Fast, Na	140	4E15 (F)	Material, fuel
HANARO	Republic of Korea	Tank in Pool	30	4E14 (T), 2E14 (F)	Material, fuel
HFR	Netherlands	Tank in Pool	45	2.7E14 (T), 5.1E14 (F)	Material
HBWR	Norway	Heavy Water	20	1.5E14 (T), 8E13 (F)	Material, fuel
MARIA	Poland	Pool	30	4E14 (T), 2E13 (F)	Neutron science, materials
SM-3	Russian Federation	Pool	100	5.4E13 (T), 1.5E14 (F)	Material, fuel
BOR-60	Russian Federation	Fast Breeder	60	2E14 (T), 3.5E15 (F)	Material, isotopes

High Power Test Reactors (cont.)

Reactor Name	Country	Туре	Power (MWt)	Flux (n/cm²-s)	Utilization
MIR.M1	Russian Federation	Pool	100	5E14(T), 3E14 (F)	Fuel, material, isotopes
ATR	USA	Tank	250	1E15 (T), 5E14 (F)	Material, fuel, isotopes
HFIR	USA	Tank	85	2.5E15 (T), 1E15 (F)	Isotopes, beam, fuel, material

Reactor and related facilities in the Oarai R&D centre (Japan)

Medium Power Test Reactors (5-20 MW)

Reactor Name	Country	Туре	Power (MWt)	Flux (n/cm²-s)	Utilization
BRR	Hungary	Tank	10	2.5E14 (T), 1E14 (F)	Material, isotopes, NAA, beams
WWR-K	Kazkhstan	Tank in Pool	6	1E14 (T), 3E13 (F)	Beams, isotopes, radiography
TRIGAII- Pitesti	Romania	Pool	14	4.2E14 (T)	Material, fuel
IVV-2M	Russian Federation	Pool	15	7E14 (T), 2E14 (F)	Material, beams
IR-8	Russian Federation	Pool	8	3.1E14(T), 1.7E13 (F)	Material, beams
RBT-6	Russian Federation	Pool	6	3.2E13 (T), 1.2E14 (F)	Material, fuel
MURR	USA	Tank in Pool	10	6E14 (T), 1E14 (F)	Material, silicon, isotopes, NAA, gemstones
MITR	USA	Tank	5	5E13 (T), 1.7E14 (F)	Material, beams, NAA, silicon

r.marsnan@iaea.org

New RRs or Developing MTR Capability

Reactor Name	Country	Туре	Power (MWt)	Flux (n/cm²-s)	Utilization
RA-10	Argentina	Pool	30	6E14 (T), 5E14 (F)	Material, fuel, radiography
MYRRHA	Belgium	ADS/ Critical	100	4.2E14 (T)	Material, fuel
JHR	France	Tank	100	5.5E14 (T), 5.5E14 (F)	Material, fuel
HFRR	India	Pool	30	6.7E14(T), 1.8E14 (F)	Material, beams, NAA, silicon

HFRR facility and experiment positions, India

F.Marshall@iaea.org

MTR Experiment Types

- Static Capsule
- Hydraulic or
 Pneumatic Tube
- Instrumented Lead
- Loops
 - Water
 - Gas
 - Other coolants
- Radial Beams
- Tangential Beams

Capsule controller and connection

Capsule and capsule controller in JMTR, Japan

Cross section of a typical capsule

Static Capsule Experiments

- Passive instrumentation (flux wires, melt wires)
- Enclosed in sealed tube, or fuel plates
- Temperature target controlled by varying gas mixture in conduction gap and with material selection
- Used for isotope production, fuel and material testing
- Single internal capsule, or multiples in stacks

Small irradiation receptacles, HANARO, Republic of Korea

> Static capsule configuration in ATR, USA

Six heat controlled zones

Target holder, filled with specimens, in the Budapest Research Reactor, Hungary

F.Marshall@iaea.org

Material Tests in JOYO, Japan

- Capsules can be sealed or unsealed
- Can be filled with Na or inert gas (HE, Ar)

Hydraulic or Pneumatic Shuttle Tests (aka "rabbit")

- Used for small quantity of sample material
- Insertion and removal of experiment during reactor operations
- Short irradiation times; can be scoping test for longer irradiation tests
- Can have single capsule or a "train" of multiple capsules
- Capsule/specimen combination needs to account for heating during the irradiation time (avoid over-pressure)
- NAA laboratories can have direct shuttle delivery to counting station
- Materials, NAA, isotope production

Capsule send and receive stations for ETRR-2, Egypt

Hydraulic shuttle capsule for ATR, USA

F.Marshall@iaea.org

Instrumented Lead Experiments

- On-line experiment measurements and control
- Temperature, pressure, gas and water chemistry
- Monitoring of temperature control exhaust gases for experiment performance (e.g., fission products, leaking materials, etc.)
- Monitoring can be built into experiment or in reusable experiment facility
- Specialized gas environments (oxidized, inert, etc.)

Material Test Rig with Temperature Control, JOYO, Japan

Irradiation Test Vehicle

- Reusable irradiation test rig, for fuel or materials, ATR, USA
- Three independent irradiation rigs in one reactor position

Loop Experiments

- Used to perform experiments in prototypic operating conditions for variety of power reactor designs
 - PWR
 - BWR
 - VVER
 - CANDU
 - Liquid metal
- Isolated from reactor primary coolant system
- Most complex type of MTR experiment
- Enables fuel failure tests without spread of fission products into reactor primary coolant sytem or other experiments
- Some MTRs can operate several loop experiments simultaneously

HBWR water loop schematic, Norway

Loop Experiments in BOR-60, Russia Tears

Neutron Beam Experiments

- Support to material irradiation with investigative instruments
- Neutron scattering science

Layout of the horizontal neutron beam facilities at the BRR, Hungary

Neutron Beam Experiments (cont.)

In DHRUVA

- 4 tangential beams
- 6 radial beams
- Two though- beam tubes
- Cold neutron source beam
- Hot neutron source with side ports for beam extraction
- Used for
 - development and testing of ion chambers
 - Other instrumentation for NPPs
 - Material property investigations

Cross section of DHRUVA, showing the beam ports, India

Neutron Scattering Instruments in HANARO Reactor Hall, Korea

Complementary Facilities

DN3 — high resolution powder diffractometer. For investigations on crystal structure, RSG-GAS, Indonesia

High temperature sodium static test facility for corrosion studies, CEFR, China

NRG's actinides laboratory; inset shows examples of experimental fuels for incineration of plutonium for the OTTO and FP6 experiment LWR Deputy, respectively; Netherlands

Impact Testing Machine, BOR-60, Russian Federation

New RR: CARR, China

- 1st criticality in May 2010
- 60 MW, in core flux ~1×10¹⁵ n/(cm² ·s)
- Fuel: 19% U-235, Moderator: H₂O, Reflector: D₂O
- Replacement for 10MW HWRR (2007)
- Multipurpose RR with the main objectives in basic research
- Open to users from universities, governmental laboratories, industry

New RR: PIK, Russian Federation 60 Years

- 1st criticality in March 2011, still considered under construction
- 100 MW, in neutron trap flux ~4.5×10¹⁵ n/(cm²·s)
- Fuel: ~90% U-235, Moderator & Reflector: D₂O
- Replacement for WWR-M (18MW)
- Multipurpose RR with the main objectives in basic research
- Open to users from universities, governmental laboratories, industry

New RR: Jordan Research & Training Reactor (JRTR)

- Fully constructed, in commissioning operations
- 5 MW (upgradable to 10MW), neutron flux ~1.5×10¹⁴ n/(cm²·s)
- Fuel: ~19.75 % U-235, U_3Si_2 -Al, Coolant & Moderator: H_2O , Reflector: Be
- Multipurpose RR: radioisotope production, Si doping, neutron beams, NAA, E&T, etc.
- 1st step to the national NPP programme

New RR: Jules Horowitz Reactor

- MTR pool, 100 MW
 - In core maximum fast flux ~1×10¹⁵ n/(cm²·s)
 - Maximum thermal flux ~5×10¹⁴ n/(cm²·s)
- Startup fuel U₃Si₂ 20-27 % U-235; use of LEU U-Mo possible
- In support of future nuclear power, Gen3+ & Gen4
- Dedicated for material/fuel irradiation and testing
- Other applications planned (isotope production)
- Funded and steered by an International Consortium

Thank you!

F.Marshall@iaea.org