Future MTR capabilities: Jules Horowitz Reactor

Jean-François VILLARD, Gilles BIGNAN
French alternative energies and atomic energy commission
Nuclear Energy Division – Reactor Studies Department
Cadarache – F-13108 St Paul Lez Durance, France

Joint ICTP/IAEA Workshop “Research Reactors for Development of Materials and Fuels for Innovative Nuclear Energy Systems”
6-10 November 2017, ICTP - Trieste, Italy
Summary

1. Context and objectives of the JHR
2. General figures of the JHR
3. Experimental capabilities of the JHR
4. JHR consortium and collaborations
5. Status of the reactor construction
1. Context and objectives of the JHR
1. Context and objectives of the JHR

In-pile testing in support of the nuclear Industry

Just for France, 58 NPPs means more than 10 000 fuel assemblies under irradiation at a time…

The fuel has to be carefully designed, with enough **Safety Analysis Design Margins**

+ new fuel managements
+ new LWR standards… → need to generate additional margins

1. Improve Modeling, Calculation tools and Testing
2. Improve Safety Analysis design Methods
3. Improve Fuel Product

In-pile data required!
1. Context and objectives of the JHR

The Key-Role of Material Testing Reactors for Fuel and Material qualification under irradiation

- Codes Validation
- Qualification Documents
- Experimental Data Expertise
- Post Irradiation Examinations
- Single Effect Experiments
- Behaviour under Irradiation
- Material Test Reactor
- BASIS RESEARCH & NUMERICAL SIMULATION
- Manufacturing Refabrication Characterization
- Hot Lab. for PIE
- Design

CEA Design

Validation Expertise
1. Context and objectives of the JHR

MTRs in France

OSIRIS
Shutdown 2015

PHENIX
Shutdown 2010

SILOE
Shutdown 1997
1. Context and objectives of the JHR

Jules Horowitz Reactor
Main objectives

1. R&D in support to nuclear Industry
 - Safety and Plant life time management (ageing & new plants)
 - Fuel behavior validation in incidental and accidental situation
 - Assess innovations and related safety for future NPPs

2. Radio-isotopes supply for medical application
 - 99Mo production
 JHR will supply 25% of the European demand
 (today about 8 millions protocols/year)
 + Up to 50% upon specific request

3. A key tool to support expertise
 - Training new generations (JHR simulator, secondees program)
 - Maintaining a national expertise staff and credibility for public acceptance
 - Assessing safety requirements evolution and international regulation harmonization
2. General figures of the JHR
2. General figures of the JHR

JHR: a modern 100 MWth pool-type light water MTR optimized for fuel and material testing
2. General figures of the JHR

General layout of the JHR site

Reactor Building
- Reactor pool (DD, NDE)
- Experimental rooms

About 200 aseismic pads

Cooling systems

Nuclear Auxiliary Building
- Laboratories
- Control room
- Hot cells (NDE + handling)
- Storage pools (NDE)

Warehouse and cold workshop
- Changing rooms + power supply

Offices
2. General figures of the JHR

Reactor building

- I&C rooms for loop + test device
- Cubicle; Control of Thy conditions and water treatment
- FP laboratory dedicated to on-line FP measurement
- Connection lines
- Test device
- Piping penetration
- Reactor vessel
- Core
2. General figures of the JHR

The core is under moderated:
- High fast neutron flux in the core
- High thermal neutron flux in the reflector

In reflector
- Up to 5.5×10^{14} n/cm².s
- ~20 fixed positions (100mm ; 1 position 200mm)
- and 6 displacement systems

Fuel studies: up to 600 W/cm with a 1% 235U PWR rod

Material ageing (low ageing rate)

Displacement systems:
- Adjust the fissile power
- Study transients

In core
- Up to 5.5×10^{14} n/cm².s $>$ 1 MeV
- Up to 10^{15} n/cm².s $>$ 0.1 MeV

7 Small locations (F \sim 32 mm)
3 Large locations (F \sim 80 mm)

Fuel experiment (fast neutron flux – GEN IV)

Material ageing (up to 16 dpa/y)
GEN II & III + GEN IV

Core Designed for UMoAl fuel
Start-up with U_2Si_2-Al fuel
70 MWth / 100 MWth
25 to 30 days cycle length
6-7 days shutdown
2. General figures of the JHR

A large range of neutron fluxes and spectra (and possible adaptation with « neutron filters »)
3. Experimental capabilities of the JHR
3. Experimental capabilities of the JHR

Hosting experimental systems (dedicated to LWR material testing)

OCCITANE
For pressure vessel steel testing

- Irradiated material behaviour
 Tensile tests, resilience test (Charpy),
 crack propagation tests
- Behaviour of Thermal affected zones

CLOE Corrosion loop
for “Zr alloy Corrosion” and “Irradiation Assisted Stress Corrosion Cracking”

CALIPSO, MICA
For material testing under high dpa and accurate temperature control (+ mechanical loading)

specimen for µ structure evolution, tensile test ; for 1 or 2 D creep tests ; for bending tests (stress relieving experiments) ;...
3. Experimental capabilities of the JHR

Hosting experimental systems (dedicated to LWR fuel testing)

LORELEI fuel testing under accidental conditions (LOCA)

- Source Term (FP releases)
- Rod thermal-mechanical behaviour
 - Ballooning and clad burst (fuel relocation)
 - Corrosion at high temperature
 - Quenching and post-quench behaviour

ADELINE
For fuel testing under off-normal conditions

Power transient, post clad failure fuel behavior, Lift-off experiment...

MADISON
For fuel testing under nominal conditions

Available at JHR start-up
3. Experimental capabilities of the JHR

Other possible hosting experimental systems (conceptual studies)

High temp. material irradiation (600-1000°C)
Large capacity

Transmutation studies
CALIPSO adapted to SFR fuel and material
Normal=> in core
Off normal => in reflector

MICA (material irrad) adapted to 1000°C gas conditions (Phaeton type – Osiris technology)

LWR : Adeline « FP » ; Adeline “power to melt”
LWR severe accident studies
GFR : fuel irradiation (normal and off-normal conditions)
Fuel characterization : basic properties under irradiation (thermal diffusivity, thermal creep...)

Other topics

3. Experimental capabilities of the JHR

Other possible hosting experimental systems (conceptual studies)

High temp. material irradiation (600-1000°C)
Large capacity

Transmutation studies
CALIPSO adapted to SFR fuel and material
Normal=> in core
Off normal => in reflector

MICA (material irrad) adapted to 1000°C gas conditions (Phaeton type – Osiris technology)

LWR : Adeline « FP » ; Adeline “power to melt”
LWR severe accident studies
GFR : fuel irradiation (normal and off-normal conditions)
Fuel characterization : basic properties under irradiation (thermal diffusivity, thermal creep...)

Other topics
3. Experimental capabilities of the JHR

Non Destructive Examination (NDE) Benches

Gamma and X-Ray tomography systems

Multipurpose test benches

Test device examination in pools
- Neutron imaging system in reactor pool
- Coupled X-ray & γ bench in reactor pool
- Coupled X-ray & γ bench in storage pool

Neutron Imaging System

- Initial checks of the experimental loading
- Adjustment of the experimental protocol
- On-site NDE tests after the irradiation phase

Sample examination in hot cells
4. JHR consortium and collaborations
4. JHR consortium and collaborations

JHR Consortium: economical model for investment & operation

- CEA = Owner & nuclear operator with all liabilities
- JHR Consortium Members own **Guaranteed Access Rights** (in proportion of their financial commitment to the construction)
- A Member can use totally or partly his access rights for implementing proprietary programs with full property of results and/or for participating to the **Joint International Programs** open to non-members
- **Open to new member entrance until JHR completion**

JHR Consortium current partnership: Research centers & Industrial companies

- Studsvik
- VATTENFALL
- AREVA
- EDF
- Associated Partnership: JAEA
- IAEC
4. JHR consortium and collaborations

THE JHR AND ANCILLARY FACILITIES AS AN “ICERR”

Objectives of the CEA-ICERR (IAEA Terms of Ref):

- Create international scientific networks
- Make available CEA facilities and experience to affiliates
- Lead innovative joint programs with shared results
- Enhance utilization of Research Reactors
- Host international scientists/engineers (visiting scientists, operators…)
- Provide “hands on” nuclear education “in the field”

Since CEA designation in September 2015, 6 Member States from the IAEA have signed an Agreement with CEA

Strong CEA intention to welcome Junior and/or Senior Scientists, Nuclear Engineers, Operators, Safety Managers… within JHR teams for various topics (R&D programs, Hands-on training on equipment…)
5. Status of the reactor construction
5. Status of the reactor construction

- Civil work of Reactor Building and Auxiliary Unit Building nearly completed
- Preparation for pool liner setting-up
- Delivery of Hot Cells end of 2016 (Czech partners)
5. Status of the reactor construction

March 2017 : NUCLEAR UNIT CLOSURE

December 2016
5. Status of the reactor construction

Core components

- Horse saddle flange
- Main water box with primary system connection
- Last welding on the vessel Electron beam welding
- Rack for fuel elements
- Heat Exchangers (Spanish partner)
5. Status of the reactor construction

JHR Fuel qualification
(EVITA Program performed in BR2 reactor)

- Fuel plate: 0.51 mm thick
- Coolant gap: 1.95 mm thick
- Stiffener: 1.95 mm thick
- Aluminium filler or Hf control rod or Irradiation device (Ø 37 mm)
5. Status of the reactor construction

Development and experimental validation of a new calculation scheme for JHR

AMMON program performed in EOLE reactor (2010-2013): provided relevant experimental data for the qualification of the main JHR safety and design parameters

<table>
<thead>
<tr>
<th>Neutron/photon parameter</th>
<th>Experimental uncertainty (1σ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core excess reactivity</td>
<td>±12 pcm</td>
</tr>
<tr>
<td>Hafnium reactivity worth</td>
<td><±0.5% (critical state technique)</td>
</tr>
<tr>
<td></td>
<td>±5% (MSM technique)</td>
</tr>
<tr>
<td>Assembly power</td>
<td>±1 %</td>
</tr>
<tr>
<td>Plate power density</td>
<td>±1 %</td>
</tr>
<tr>
<td>Axial plate power profile</td>
<td>±1 to 1.5%</td>
</tr>
<tr>
<td>Azimuthal plate power profile</td>
<td>±1 to 1.5%</td>
</tr>
<tr>
<td>Fuel plate modified conversion ratio</td>
<td>±2 %</td>
</tr>
<tr>
<td>Spectrum indexes</td>
<td>±1.8 to 3%</td>
</tr>
<tr>
<td>Effective delayed neutron fraction</td>
<td>±19 pcm</td>
</tr>
<tr>
<td>Effective prompt neutron generation time</td>
<td>±0.8 $</td>
</tr>
<tr>
<td>Photon heating (TLDs/OSLDs)</td>
<td>±4 to 4.5%</td>
</tr>
</tbody>
</table>
General conclusion

1. Material Testing Reactors remains key-tools in R&D support for nuclear power industry

2. Research Reactors are now more “costly machines” than in the past…

3. Considering the increasing complexity of the experiments (due to enhanced requirements from simulation) the use of international platform (as will be JHR) is recommended

4. **Innovative in-core instrumentation** is a key for the quality and attractiveness of future MTR experimental programs, together with Post-Irradiation Analysis capabilities