

MTR Test Design

Frances Marshall (F.Marshall@iaea.org) Research Reactor Section International Atomic Energy Agency November 2017

With material from David Senor Pacific Northwest National Laboratory, USA

Presentation Objectives

- Intended to familiarize potential experimenters with the steps involved in planning and executing irradiation experiments
- Addresses materials and fuel experiments
- Focus is on neutron irradiation in reactors, not accelerator, ion, or gamma irradiation
- Design topics
 - Irradiation experiment design
 - Specimen design
 - Capsule design
 - Irradiation vehicle design
 - Ex-reactor experiment design
 - Experiment quality assurance
 - Experiment control and monitoring

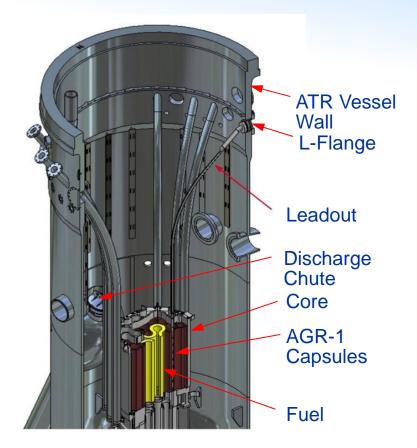
Irradiation Experiment Process

- Interface between experimenter and facility staff starts during proposal development
 - Level of proposal detail influences design activities and timeline
- Experiment Design

TERATE

- Define goals/objectives: materials, temperature, dose, energy spectrum
- Reactor irradiation position: dimensions, flux
- Experiment hardware: dimension, individual containers,
- Sample configuration: sample fixtures, standoffs, loading order
- Analyses and Documentation: design and safety, neutronic and thermal
- Paperwork- Requirements, drawings, fabrication and inspection plans
- Fabrication, QA Review
- Insertion of experiment into reactor
- Irradiation and As-run Analyses
- Post Irradiation Activities Transportation and Post Irradiation Examination (PIE)

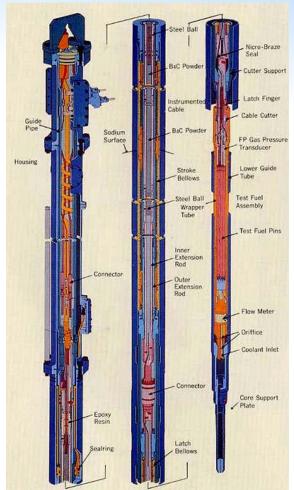
Define Test Objectives


These questions seem obvious, but they must be addressed systematically to ensure useful results through proper experiment design

- Is irradiation absolutely necessary to investigate the phenomena of interest?
 - Irradiation tests are expensive and time-consuming
 - Irradiation volume is limited
- What is the purpose of the experiment?
 - Evaluate materials/fuels performance
 - Generate engineering data
 - Investigate scientific phenomena
- What is the desired outcome of the experiment?
 - Irradiated materials/fuels for PIE
 - Generation of in-situ data during irradiation

Irradiation Vehicle Design

- Test Conditions
- In-Reactor Components
- Ex-Reactor Systems
- Test Specimen Design
- Capsule Design
- Other Design
 Considerations
- Typical Documentation



Advanced Gas Reactor-1 Test in ATR, USA

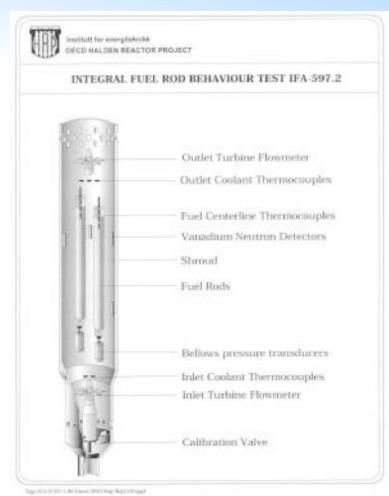
Materials or Fuels?

- Significant differences in experiment design and operation
 - The presence of any fissile (²³³U, ²³⁵U, ²³⁹Pu) or fissionable (²³²Th, ²³⁸U, transuranics) isotopes in the test specimens will generally be considered a fueled experiment
 - Safety, analysis, and characterization requirements are different for fuels and materials
 - Choice of irradiation position and irradiation vehicle may differ for fuels and materials
 - In general the lead time will be longer and the cost higher for fuels irradiations
 - Strongly absorbing non-fuel materials (e.g., B, Li, Cd, Hf, Gd) may require extra scrutiny in the safety analyses
- The reactor operator will require a complete accounting for the materials incorporated in the test specimens and irradiation vehicle

Instrumented Test Ass'y (INTA) for Fueled experiments at JOYO, Japan

Irradiation Testing Progression

- Typical fuel and material development programs progress through a series of irradiation test types of increasing complexity
 - Screening
 - Separate-effects (single or multiple)
 - Integral (sometimes with in-situ data collection)
 - Lead test assembly
- Often combined with ex-reactor testing
 - To understand fundamental phenomena during early test phases
 - To establish fully representative fabrication processes during later phases


Define Test Conditions

- Screening Tests
 - Comparison of relatively large number of candidate materials or fuels under comparable conditions
 - Shallow but broad
 - Typical test parameters
 - Composition
 - Configuration
 - Fabrication Methods
- Separate Effects Tests
 - Used to generate engineering data for design or understanding of scientific phenomena
 - Single or multiple effects
 - Interactions with other components/other phenomena limited to evaluate effects of parameters on performance
 - Often combined with screening tests in the early stages of a qualification campaign
 - Typical test parameters
 - Temperature
 - Flux, Fluence (Burnup), Time
 - Damage (dpa) rate
 - Environment (e.g., water chemistry)

Define Test Conditions (2)

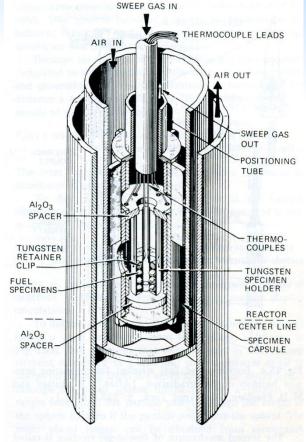
- Integral Tests
 - Performance evaluation of prototypic materials in near-prototypic configuration and conditions
 - Typically used in the latter stages of a qualification campaign after earlier tests have established the science and engineering
 - Steady-state normal operation
 - Transient accident conditions
 - Scaling from integral test results at short lengths (rodlets) to predict full-length performance is not always straightforward
 - Requires fundamental understanding of performance phenomena to apply correct scaling factors

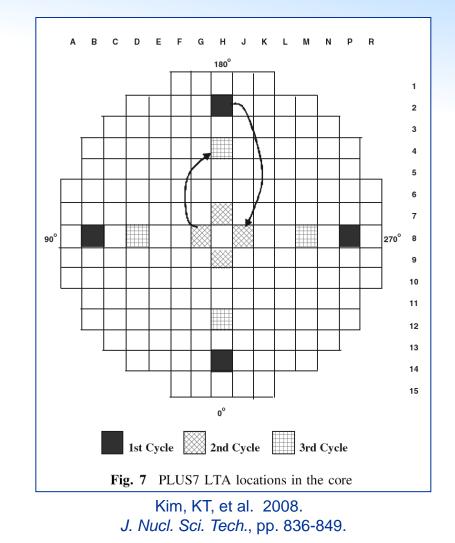
T Tverberg and W Wiesenack. 2002. IAEA-TECDOC-1299, pp. 7-16.

Define Test Conditions (3)

60 Years IAEA Atoms for Peace and Development

- In-situ experiments
 - Measure phenomena of interest during irradiation
 - Material properties
 - Electrical (e.g., resistivity)
 - Thermal (e.g., thermal diffusivity)
 - Mechanical (e.g., creep strain)
 - Performance parameters
 - Fission gas release
 - Swelling
 - Very challenging, particularly for in-core instrumentation




Fig. 15.3 Detail of capsule for in-pile fission-gas release investigation of fused crystal spheres of UO₂. [From R. M. Carroll et al., *Nucl. Sci. Eng.*, 38: 143 (1969).]

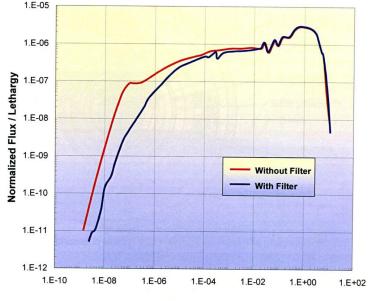
DR Olander.1976. Fundamental Aspects of Nuclear Reactor Fuel Elements.

60 Years

Define Test Conditions (4)

- Lead Test Assemblies
 - Typically the final step of a qualification campaign
 - Serves as a performance verification
 - Fully prototypic materials, configuration, and conditions
 - Typically conducted in prototypic plant rather than test reactor

Define Test Conditions (5)

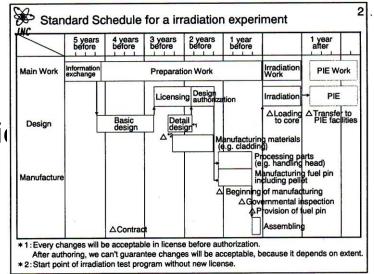

- When test specimens and test conditions are fully defined, the result is the test matrix for the experiment
- Because a complete test matrix is rarely practical (due to cost and volume limitations), experiment design is used to bound the results and provide some statistical analysis opportunities

Specimen ID	Capsule	Material	Temperature (□F)	D ₂ O Pressure (torr)
TMIST-1D-1	TMIST-1D	Zircaloy-4	626	7.5
TMIST-1D-2	TMIST-1D	Zircaloy-4 LTA	626	7.5
TMIST-1D-3	TMIST-1D	SM-0.0002	626	7.5
TMIST-1D-4	TMIST-1D	SM-0.0003	626	7.5
TMIST-1C-1	TMIST-1C	Zircaloy-4	698	7.5
TMIST-1C-2	TMIST-1C	Zircaloy-2	698	7.5
TMIST-1C-3	TMIST-1C	SM-0.0002	698	7.5
TMIST-1C-4	TMIST-1C	SM-0.0003	698	7.5
TMIST-1B-4	TMIST-1B	Zircaloy-4	698	2.25
TMIST-1B-3	TMIST-1B	SM-0.0001	698	2.25
TMIST-1B-2	TMIST-1B	SM-0.0002	698	2.25
TMIST-1B-1	TMIST-1B	SM-0.0004	698	2.25
TMIST-1A-4	TMIST-1A	Zircaloy-4	626	2.25
TMIST-1A-3	TMIST-1A	SM-0.0001	626	2.25
TMIST-1A-2	TMIST-1A	SM-0.0002	626	2.25
TMIST-1A-1	TMIST-1A	SM-0.0004	626	2.25

Reactor Selection - Spectrum

- Typically try to match prototypic environment as closely as possible
- Materials damage is primarily caused by fast neutrons so matching prototypic fast flux is desirable
- Matching prototypic thermal flux is typically more important for fuels or absorbing materials
- Matching prototypic conditions is not always possible
 - Accelerated damage (e.g., irradiating thermal reactor materials in a fast reactor spectrum)
 - Fusion reactor materials
 - Must consider effects of nonprototypic spectrum on interpretation of results
- In some cases, spectrum can be tailored for experiment requirements:
 - Addition of thermal filters
 - Addition of reflectors to increase thermal flux
 - Addition booster fuel to increase fast flux

Energy (MeV)


Figure 18. A filter may be used with the ITV to substantially reduce the thermal neutron flux density.

ATR Users Handbook

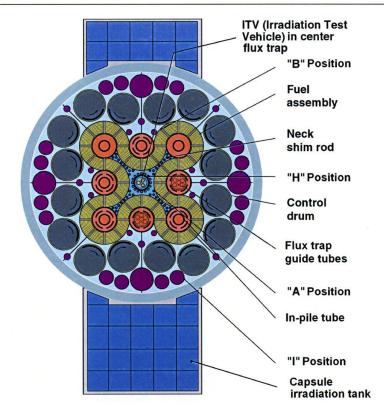
Reactor Selection (2)

- Coolant -Spectrum choice will dictate coolant options
 - Separate consideration of coolant is important if specimens are to be exposed to fluid during irradiation (e.g., corrosion experiment)
 - Incompatible fluids will present reactor safety issues (e.g., alkali metals and water)
- Operating Characteristics
 - Availability (EFPD per year)
 - Cycle length
 - Experiment planning lead time
 - Reactor mission will impact operation
 - Irradiation testing (ATR, JOYO)
 - Isotope production (NRX, HFIR)
 - Demonstration plant (Monju)
 - Power reactor

Reactor Selection (3)

- Special Considerations
 - Projected reactor lifetime
 - Security requirements on test specimens or data
 - Unique irradiation capabilities
 - Materials or gas handling (e.g., tritium)
 - Rabbit or loop operations
 - Reactor instrumentation (e.g., gas tagging)
 - Special post-irradiation examination (PIE) capabilities
 - Experiment reconstitution
 - In-cell examination or test capabilities

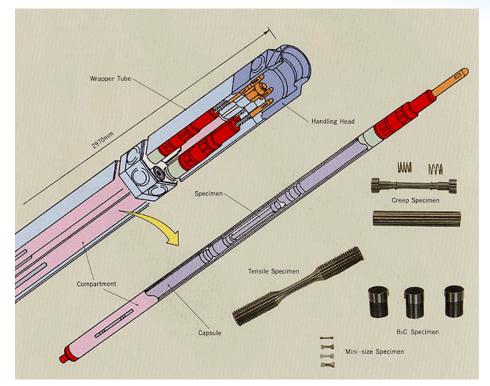
Reactor Selection (4)



- Reactor location
 - Impacts cost and (potentially) schedule
 - Language barriers impact cost/schedule and increase importance of deliberate planning
 - Inter-governmental agreements typically required for work outside your country before specific scope can be agreed
- Quality Assurance Requirements
 - It is important to understand the quality expectations of the reactor
 - Material certification required?
 - Who owns design responsibility?
 - The reactor QA organization will evaluate your QA program particularly if test articles will be provided by you
 - ASME NQA-1 (basic, supplemental, different versions)
 - ISO programs common overseas
 - ASME Boiler and Pressure Vessel Code

Select Irradiation Position

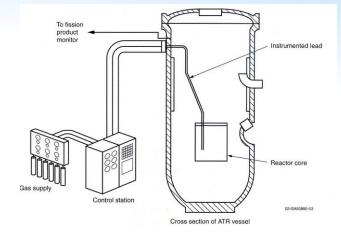
- Match desired test conditions
 - Spectrum
 - Flux
 - Environment
- Irradiation volume
 - Most reactors offer a variety of irradiation positions that vary in size
 - In general, higher volume locations tend to be in regions of lower flux
- Special experiment needs
 - Active gas handling
 - Closed coolant loop



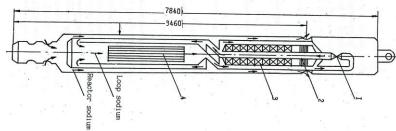
The Advanced Test Reactor

Select Test Design Type

- Static Capsule
 - Relatively simple to design and fabricate
 - Usually located in specific reactor positions with welldefined spectrum/flux
 - No active temperature measurement or control
 - Passive temperature monitoring possible
- Hydraulic Tube ("rabbit")
 - Good for short exposure
 - Least expensive option
 - Little to no temperature control
 - Passive temperature and fluence monitoring possible



Materials Irradiation Test Assembly (MITA) at JOYO, Japan

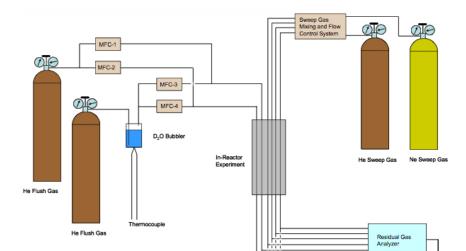

60 Years IAEA Atoms for Peace and Development

Select Test Design Type (2)

- Instrumented (lead) experiments
 - More complex and costly to design and fabricate
 - Can be tailored for very specialized experiments
 - Active temperature measurement and control possible
 - Introduction of sweep gases possible
 - Leads for in-situ testing
 - Available reactor positions may be limited due to possible interference of leads with fuel handling
- Loops
 - Some test reactors operate closed coolant loops that can provide an isolated environment
 - ATR, SM-2 Pressurized water loops
 - BOR-60 Sodium loop channel within core
 - Specific coolant conditions possible
 - Separate experiment releases from reactor primary coolant
 - Typically most expensive option

ATR Users Handbook

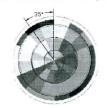
RIAR. 1995.

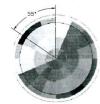

Experiment Design Considerations

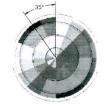
- Sample material, size, and geometry
 - Finite test volume
 - Potential materials interactions
 - Sample preparation for PIE
 - Sample positioning (experiment will be turned upside down!)
- Rodlet/capsule size and geometry
 - Existing designs may save analysis time and cost
 - Independent volumes (for tailored temperatures) require increased volume (plenum, hardware)
 - Gas gap size and gas composition (for tailored temperature)

Ex-Reactor Systems (Lead Experiments Only)

- Ex-reactor support systems must be designed to interface safely with reactor systems
- Number of leads dictated by
 - Experimental needs
 - Available cross-section area within irradiation position
 - Available ex-reactor space for necessary equipment
 - Cost

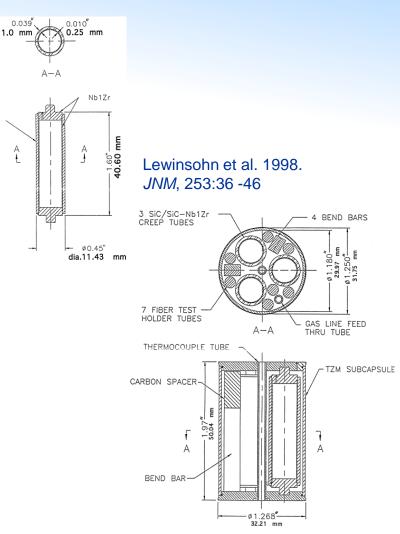

Test Specimen Design


- Geometry influences irradiation characteristics
 - Temperature
 - Radial temperature profile
 - Gamma or neutron heating
 - Internal heat generation for fuels or strong absorbers
 - Self-shielding
 - Fluence
- Adjacent test specimens (within same holder or capsule) must be chemically compatible



Fast Neutron Flux Gradient 30 cm below core mid-plane At core mid-plane

Fast Neutron Flux Gradient Fast Neutron Flux Gradient 30 cm above core mid-plane

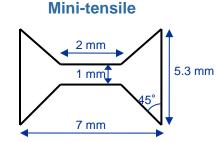


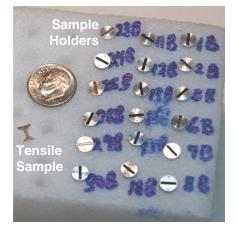
Fast flux gradients across small B position in ATR (Parry 2007)

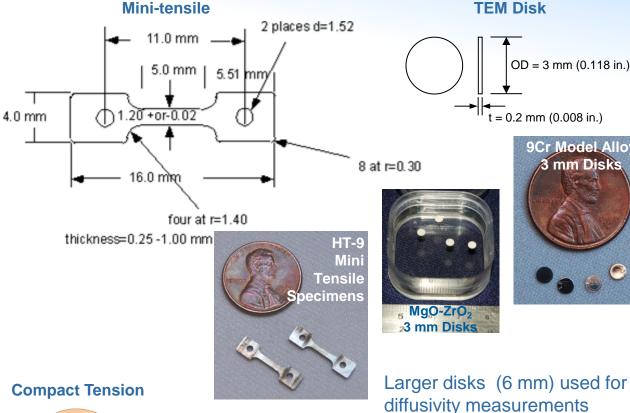
Test Specimen Design (2)

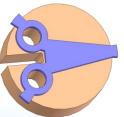
- Capsule Fixturing
 - Holds specimens in place to achieve desired test conditions
 - Must be inert at operating conditions in capsule environment
 - Must survive desired fluence (with margin)
 - Must allow for thermal expansion and irradiation growth of specimens
 - Must allow disassembly and removal of specimens for PIE
- Specimen environment
 - Gas (e.g., He)
 - Liquid (e.g., water or liquid metal)

SiC

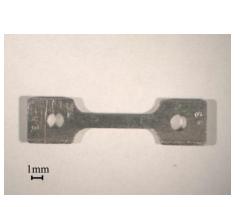

Specimen Examples, Materials


OD = 3 mm (0.118 in.)


9Cr Model Alloy


3 mm Disks

thickness = 0.2-1.0 mm

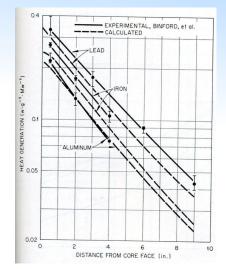


Thicker disks used for shear punch and hardness testing

Sample Preparation and Marking

60 Years

- Consider PIE preparation during experiment design
- Evaluate potential material interaction
- Label samples with unique ID
 - Mini-punch set to mark samples
- Sample loading sequence recorded during experiment assembly



1mm


Capsule Design - Temperature

60 Years

- Gamma/Neutron Heating
 - Caused by interaction of gammas or neutrons with nuclei
 - Heating is proportional to the flux
 - Gamma heating most important for structural materials
 - Neutron heating can be important for low-Z materials or reactor positions with very soft spectrum
- Ballast
 - Used when specimen temperatures need to be increased beyond the ability of gas gaps and gamma heating in specimens/fixturing
 - Takes advantage of fact that gamma heating is proportional to atomic number
- Gas Gap Temperature Control
 - Introduces a low conductivity radial gap to increase temperature of capsule interior
 - Can be passive (fixed mixture) or active (variable mixture)
 - One or more gas gaps using He-Ne or He-Ar mixtures

Blizard and Abbott (Eds), Reactor Handbook, Vol. IIIB - Shielding, 1962

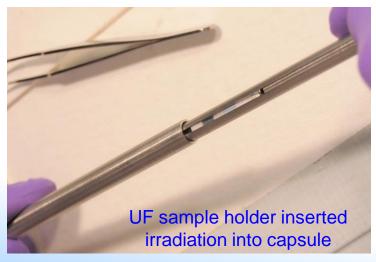
DR Olander.1976. Fundamental Aspects of Nuclear Reactor Fuel Elements

F.Marshall@iaea.org

Sample / Experiment Configuration

- Example capsule OD / ID
 - 9/6 mm
 - 9.5 / 7.7 mm
 - 12.2 / 10.9 mm
 - 12.1 / 11 mm
- Gas mixtures in sample holders and capsules tailor temperatures: 200-700°C
- UW Sample Configuration in Rodlet

 Plug

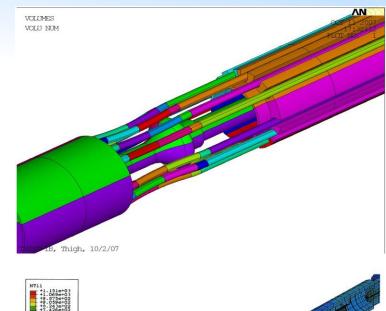

 Rodlet Tube

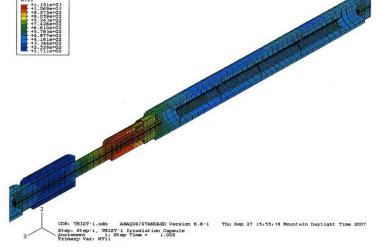

 Mini-tensile pairs

 TEM Fixture

 Insulator
 Pellet

– Ar/He



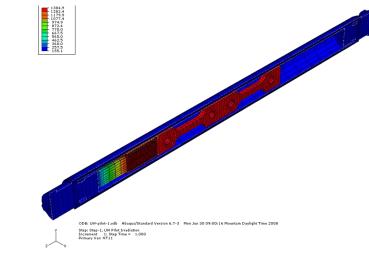


Capsule Design

- Thermal Modeling
 - Scoping calculations may be performed using 2D codes (e.g., Heating)
 - Final calculations, particularly for complex arrangements, should be performed using 3D codes (e.g., ANSYS, ABAQUS)
 - Consider axial and circumferential variability
 - Radiation effects
- Routing leads
 - Number of leads
 - Active temperature control will require pair of inlet/outlet gas lines for each temperature control region
 - Sweep gases also will require pairs of lines
 - Materials/Sizes
 - Typically 304 or 316 SS (1.57 mm OD x 0.381mm wall thickness)
 - Smaller gas lines can be used, but present significant fabrication challenges
 - Generally routed from the top of the experiment down - must be accommodated by capsule design features

Capsule Design (2)

- Bulkheads
 - Used to isolate independent temperature control gas volumes
 - Penetrations through bulkheads for gas lines/thermocouples must be gas tight (e.g. via brazing)
 - Capsule design must consider effects of welding/brazing bulkheads on test specimens
 - Braze material must survive irradiation
- Differential Strain Relief
 - Differential axial strain will occur in lead experiments
 - Temperatures inside the gas gap are hotter than pressure boundary, causing capsule internals to expand more than pressure boundary
 - Various approaches have been used
 - Bellows or pigtails attached to bulkheads to accommodate strain of capsule internals
 - Pre-bends in gas lines/thermocouples to accommodate differential strain without uncontrolled bowing

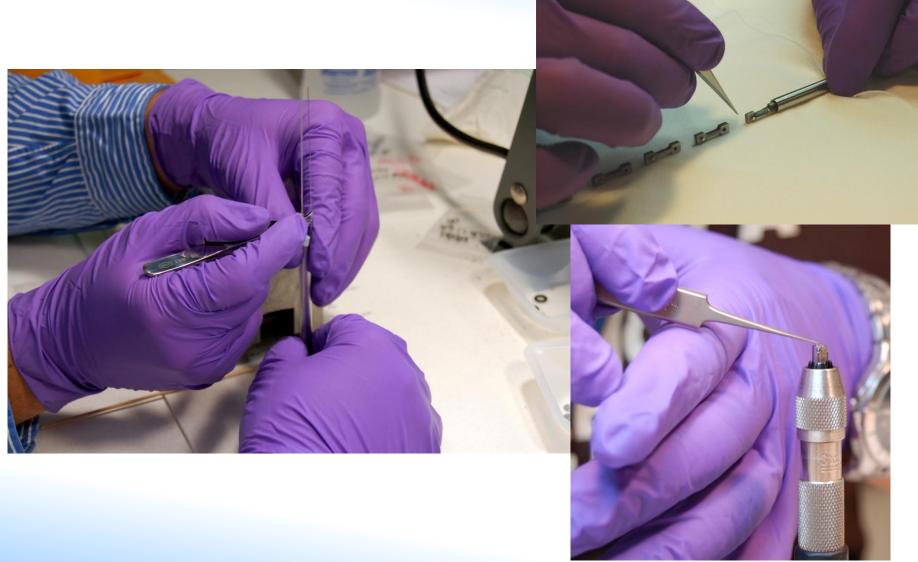

Mini-Flex Hydroformed Bellows

Capsule Design Analysis

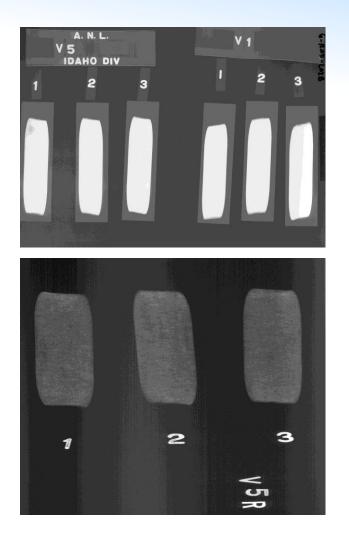
- Neutronics
 - Reactivity worth
 - Activation analysis
- Thermal-Hydraulics
 - Departure from Nucleate Boiling (DNB)
 - Flow Instability Ratio
 - Various steady-state and transient conditions
- Structural
- Radiological
- Overpressure protection
- Seismic

Experiment and Reactor Safety Analyses – Required by the experiment facility to ensure no risk to facility or personnel due to experiment

Other Design Considerations

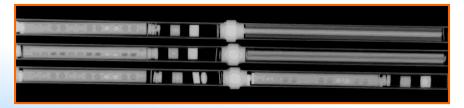

- Fabricability
 - Clearances/straightness
 - Weld/braze joint design, approved process?
 - Handling/cleanliness
 - Glovebox assembly required for fuel?
- Post-Irradiation Examination
 - Ease of disassembly
 - Activation/dose effects
 - Specimen identification
- Shipping/handling
 - Existing shipping container?
 - Closed road
 - International
- Waste Disposal
 - Existing disposition path for all activated materials?

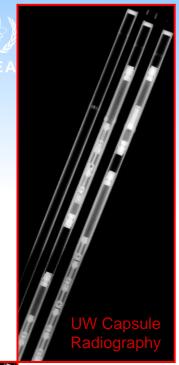
Sample Loading

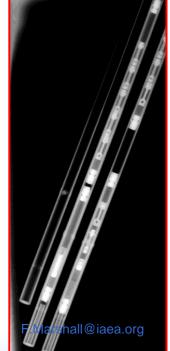


Quality Assurance on Finished Specimens

- Dimensional inspection
- Visual inspection
- Contamination
- Bond testing
- Blister testing
- Radiography
 - Fuel location
 - Fuel density



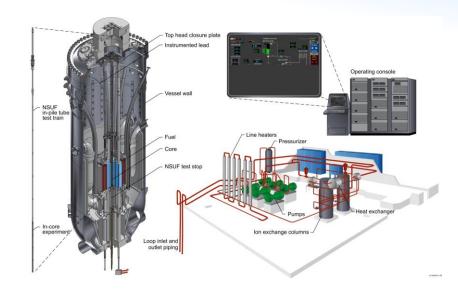



Fabrication Inspection

- Weld inspection
 - Visual
 - Radiography
 - Liquid penetrant
 - Helium leak test
- Loading verification
- Dimensional inspection, straightness
- Material / sample chemistry verification or analysis

U Florida Capsule Radiography

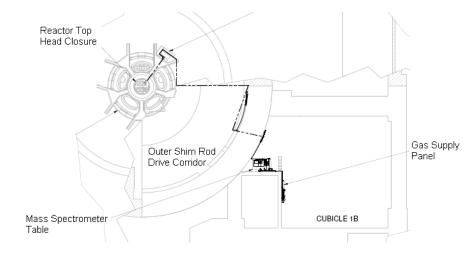
Experiment Quality Assurance



Process worksheets with verification	Nome Sample Designation: UWSS12 The Fature Designation: 6 (continual height 0.29:) Verify correct fature Ubbr Fature Skells 1, Assembly 2) Verify correct TEM Specimens V Verify correct TEM Specimens V Verify correct TEM Specimens Verify correct TEM Specimens Verify correct TEM Specimens Verify correct TEM Specimens <t< th=""></t<>
HID-22 O3/29/2007 Rev. 03	Condition of the second of
W.O./Purchase Order Revision No. Receipt No. Quality Let No. 2710 0 N/A 1 (2) Line Item No. Quantity Inspected Catalog I.D. QA/UTC No. Item Description University of Wisconsin Logded Art Specification/Drawing Rev. Work Order No. Serial PLN 2790 0 N/A U.U.	Set glove box atmosphere to 10% He / 90% Ar 3 0. A DGS UL
Facility/Area/System Inspector Date NSUF Childophis S-2	Le 21-08 F.Marshall@iaea.org 35

Experiment Control and Monitoring

- Temperature Control
- Temperature
 Measurement
- Dosimetry
- Ex-Reactor Systems
 Control
- Remote Data Viewing
- Operating Procedures

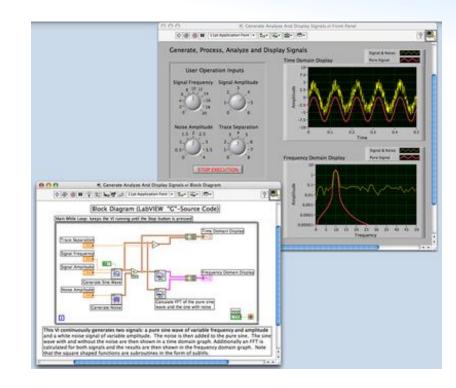


ATR Loop Experiment

Ex-Reactor System Control

- Temperature Control
 - Gas analyzers to distinguish He, Ne, Ar
 - Automated or manual mixing via mass flow controllers
 - Back pressure control
- Environment Control (e.g., oxidation experiment)
 - Oxidants usually in low concentration within an inert carrier gas (e.g., He)
 - For a water vapor, the dewpoint can be controlled via bubblers and mass flow controllers or by dewpoint generators
 - Similar mass flow control methods can be used for other oxidizing gases
 - Mass spectrometers can be used to monitor partial pressures and depletion

Longhurst and Sprenger. 2008. TFG Meeting, Richland, WA


Ex-Reactor System Control

- Sweep Gas Control
 - Shielding, contamination control, and effluent processing for systems sweeping radioactive species (e.g., tritium, fission gases)
 - Must consider possibility of chemical interactions over long tubing runs (typically > 15 m)
 - Measurement methods will depend on species (ion gage, scintillation counter, gamma spec)
- In-situ Experiment Control
 - Degradation of thermocouple or electrical wiring with dose
 - Moving parts in mechanical systems for in-situ loading

Remote Data Collection and Viewing^{Years}

- Use of data acquisition software (e.g., LabVIEW) and high-speed internet communication protocols makes remote data viewing (but not experiment control) possible
 - Reduces travel expenses and data manipulation time at reactor site
- Consider data archive requirements for system design
 - Frequency of collection
 - Retention time

Experiment Control Documentation

- Safety analyses must be completed and accepted by reactor operator before experiment can be inserted
 - QA documentation must be complete, including closure of all non conformance reports, deficiency reports, unresolved safety questions, etc.
- Operating guidance from experimenter to reactor operator
- Operating procedures for experiment systems
 - Experiments generally controlled by reactor operators or dedicated experiment operators at reactor site

MTR Test Design Summary

- Irradiation testing requires a thoughtful, methodical approach
 - Reactor safety
 - QA culture
 - Expensive experiments with long lead times
- A proactive approach with Safety and QA organizations is necessary to avoid surprises (i.e., unexpected costs and delays)
- Careful planning and good communications between experimenter, designer, fabricator, reactor operator, safety analyst, and hot cell operator (for PIE) are vital

Thank you!

F.Marshall@iaea.org