

Testing Capabilities and Unique Features of High Capacity MTRs (from publication profiles)

Frances Marshall (F.Marshall@iaea.org)

Research Reactor Section International Atomic Energy Agency November 2017

High Capacity MTRs

60 Years

- Advanced Test Reactor USA
- Belgium Reactor 2 Belgium
- Halden Boiling Water Reactor Norway
- High Flux Isotope Reactor USA
- MIR.M1 Russia
- SM-3 Russia

Discharge

Advanced Test Reactor (USA) Overview

3.65 m diameter cylinder, 10.67 m high stainless steel

cooled; beryllium reflector

Pressurized, light-water moderated and

Maximum Flux, at 250 MW

 1×10^{15} n/cm²-sec thermal 5×10^{14} n/cm²-sec fast

Operating Conditions

Reactor Type

Reactor Vessel

Pressure - 2.44 MPa Outlet Temperature - ~72 °C Fuel Temperature - ~240 °C

ATR Test Positions

- Test size 1.2m length, 01.25 to 12.5 cm diameter
- 77 Irradiation Positions
- Rotating Hafnium Control Cylinders – symmetrical axial flux
- Power/Flux Adjustments ("Tilt") across the Core - <a> 3:1 ratio
- 4 corners

 ("Lobes") can be
 operated at
 different powers –
 like 4 reactors
 operating as one

Unique ATR Design Features

- Combination of high flux and large test volumes
- Symmetrical axial power profile
- Individual experiment parameter control for multiple tests in a single irradiation position
- Individual experiment control in separate loops
- Accelerated testing for fuels up to 20x actual operation time for some fuel types
- No design limited lifetime: expected to operate for many more years
 - Core Internals Changeout outages – new reactor internals
 - Large stainless steel reactor vessel – minimal embrittlement
- Capability to perform operating transient testing (i.e., not accidents)

Center Flux Trap Flux Profile (at 125 MW)

Instrumented Lead Experiments

• On-line experiment measurements

Reflector positions or flux traps

- With or without temperature control
- Structural materials, cladding, fuel pins

Pressurized Water Loops

Simple Static Capsules

- Six loops installed in flux traps
- Control pressure, temperature, chemistry
- Structural materials, cladding, tubing, fuel assemblies

Hydraulic Shuttle Irradiation System

- 14 capsules in a set
- Inserted and removed during reactor operations

ATR Experiment Configurations

Isotopes, structural materials, fuel coupons or pellets

ATR Pressurized Water Loop Layout

Belgium Reactor 2 (BR2) Overview

- Pool Reactor with Pressurized Water Reactor Experiment Loops
- Core Irradiation channels
 - Center vertical channel, 200 mm diameter
 - Surrounding inclined channels, 84 mm diameter
- A large number of experimental positions, including four peripheral 200 mm channels for large irradiation devices
- Irradiation conditions

 (temperature, pressure, environment, neutron spectrum, etc.) representative of various power reactor types
- High neutron fluxes, both thermal and fast (up to 10¹⁵ n·cm⁻²·s⁻¹), at 100 MWt

BR2 Cross Section and Experiments

Testing Loops in BR2:

- CALLISTO CApabiLity for Light water Irradiation in Steady state and Transient Operation
- MISTRAL Multipurpose Irradiation System for Testing Reactor Alloys
- ROBIN ROtating Basket with Instrumented Needles
- *LIBERTY LI*fting *B*asket in the *Experimental Rig for BR2 Thimble tube sYstem*

BR2 CALLISTO Loop

- Experiments to support predictive model validation and qualification testing under realistic power reactor operating conditions
- Three experimental rigs, called in-pile sections (IPS)
- Connected to a common pressurized cooling loop, to deliver variable pressure and temperature environments
- Investigate behaviour of advanced fuel under representative PWR operating conditions
- Assess the irradiation assisted stress corrosion cracking (IASCC) phenomena in typical light water reactor materials
- Study the corrosion process on candidate materials for future fusion reactors
- Characterise performances of high neutron dose irradiated materials for light water and fusion reactors, ADS systems
- Develop and qualify new on-line in-pile detectors

BR2 MISTRAL Test Rig

- Reusable irradiation device for research on reactor materials exposed to a high fast neutron flux at temperatures below 350°C
- Pressurised water capsule containing metallic specimens
- Loaded inside a BR2 driver fuel element
- Neutron flux (> 0.1 MeV) $2-3 \times 10^{14} \text{ n} \cdot \text{cm}^{-2} \cdot \text{s}^{-1}$
- Temperature regulation in the range 160– 350°C (electrical heaters)
- 0.6 dpa per 21-day cycle at 60 MWth (nominal)
- Full instrumentation
- Number of specimens and their dimension: typically, MISTRAL is designed to irradiate mini-charpy samples (4 mm × 3 mm × 27 mm) and round tensile (5 mm diameter & 27 mm long) specimens

Up to 80 specimens over 500 mm length

BR2 ROBIN Basket

- Contains specimens (typically tensile or mini-charpy) in needles in a large thimble in a standard BR2 channel, open to the reactor pool allowing devices to be loaded during reactor operation
- Contains up to nine needles with 11 mm outside diameter
- an instrumented needle containing thermocouples, a gamma-thermometer, a SPND or a fission chamber, can be loaded into ROBIN to measure parameters on-line and in real time
- To compensate for the fast flux radial gradient through the selected irradiation position, this basket can be rotated during irradiation
- Maximum fast neutron flux (E > 1 MeV) ~ 3×10^{13} n·cm⁻²·s⁻¹ at the central basket position
- The temperature of the specimens could be adjusted by encapsulating them into a matrix made of material that has a good thermal conductivity and or a suited density, with gas gap design

BR2 LIBERTY Basket

Fundamentally the ROBIN basket with some design improvements

- Each needle can be independently lifted up (and down) above the reactor core level when the specified fluence is reached, while the other needles remain in the neutron flux
- Each needle can be separately instrumented
- Larger specimens like the mini CT-specimens (10 mm × 10 mm) can be tested
- LIBERTY can be loaded while BR2 is in full operation
- Some electrical heating wires could be put into the needles to control the temperature of the specimens
- The specimens can be irradiated from 50°C up to 500°C and even higher (depending for instance on the needle filling material). Each of the 5 needles can have different temperatures

Halden Boiling Water Reactor (HBWR)

- Initially intended to be prototype for a boiling water reactor power plant, also intended to provide steam for a near-by paper factory
- Now focused on fuels and irradiation experiments.
- 25 MWt design, but usually operates at 18-20 MWt
- Heavy water moderated and cooled reactor with natural conditions similar to commercial water moderated and cooled reactors
- Over 300 testing positions, and can have up to 30 fuelled experiments simultaneously
- About 110 positions in the central core (light blue in core cross section)
- Height of active core 80 cm

HBWR Test Rigs

- Loop systems for simulation of BWR/PWR/WWER/CANDU conditions;
- Pressurisation system for imposing up to 500 bar pressure on fuel rods under operating conditions
- Gas flow system
- Gas analysis system
- Hydraulic drive system
- Fuel testing instrumentation
 - Thermocouple
 - Rod pressure transducer
 - Cladding extensometer
 - Fuel stack elongation detector
 - Moveable diameter gauge
 - Neutron detectors for flux mapping in the rig to calibrate experiment power
- Material testing instrumentation:
 - DC potential drop measurement
 - Electrochemical potential sensor
 - Water conductivity cell
 - Electrochemical impedance measurement

HBWR Loops

Schematic of a HBWR steady state loop system - can have up to 10 loop systems

F.Marshall@iaea.org

HBWR Test Loops

- Rigs for fuel and material testing under simulated water reactor conditions are inserted into in-core pressure flasks connected to light or heavy water circulation systems.
- These systems, completely separated from the reactor cooling systems, are designed for operation at pressures and temperatures of 165 bar and 340°C.
- Most simulate thermal-hydraulic and chemistry conditions of LWRs
- One loop is operated with heavy water providing prototypical CANDU reactor conditions
- The maximum heat removal capacity from a pressure flask is approximately 200 kW
- Operation with normal or hydrogen water chemistry is possible
- Boron and lithium concentrations can be varied over a wide range
- Can operate with controlled additions of water impurities such as chromium, zinc, sulphuric acid etc.
- Loop systems are used both for fuel testing as well as for core material studies, e.g. IASCC
- Have facility to disassemble NPP irradiated fuel, instrument pellets and reassemble into test for HBWR.

HBWR Test Capabilities

- Accidental Conditions
 - Dry-out or LOCA conditions
 - Decay heat simulated
 - Fuel rod eat-up, ballooning, and burst occur
 - Small amounts of water/steam added postburst to enable cladding oxidation
 - System can be re-filled at hot conditions to simulate quenching
- Corrosion Investigations
 - Water loop systems with very precise chemistry control
 - Irradiation-assisted stress corrosion cracking (IASCC) – use of small bellows to apply stress during irradiation. Crack growth measured inpile with potential drop technique
- Fuel Behavior
 - Swelling and densification
 - Gas release
 - Pellet-clad interaction

HBWR irradiation test rig for instrumented fuel rods

High Flux Isotope Reactor, USA

- Extremely high fluxes
 - 2.3 x 10¹⁵ n/cm²-sec thermal
 - 1.2 x 10¹⁵ n/cm²-sec fast
- 85 MWt
- Tank in Pool, light water-reflected and moderated, with Be reflector
- Operates 140 days/year
- Steady state operations
- https://neutrons.ornl.gov/hfir

HFIR Irradiation Missions

- In-core irradiations for medical, industrial, and isotope production
- Research on severe neutron damage to materials
- Neutron activation analysis (NAA) to examine trace elements and identify the composition of materials
- Gamma irradiation capability that uses spent fuel assemblies
- Four beam lines with 12 worldclass instruments for condensed matter research. To use the neutron scattering capabilities of HFIR, contact the Neutron Scattering Sciences User Group at <u>neutrons.ornl.gov</u>

Cross section of HFIR, showing experiment positions

Experiment Options in HFIR

60 Years

- High flux center flux trap
 - Up to 30 target positions (2 can accommodate instrumented experiments)
 - 6 peripheral positions at the edge of the flux trap
 - 1 hydraulic shuttle irradiation position in flux trap
 - Isotopes, fuel and material irradiations
- 21 Vertical experiment facilities
 - Instrumented lead
 - Pneumatic hydraulic tube
 - Non-instrumented capsule experiments
- Materials Irradiation Facility
 - Instrumented in center flux trap
- 2 Slant access facilities
 - Pneumatic tube for NAA
 - Additional highly thermalized spectrum environment.

Target basket in the HFIR flux trap

Extensive PIE Capabilities for HFIR 60 Years

Irradiated Fuels Examination Laboratory Irradiated Material Examination and Testing Facility

- Sample sorting and identification
- Sample machining using a CNC milling machine and diamond saws
- Furnace annealing
- Automated welding
- Ultrasonic cleaning
- High-temperature, high-vacuum testing
- Tensile testing with high-vacuum chamber option
- Impact testing, fatigue and fracture toughness testing of standard and subsize impact specimens
- Automated micro-hardness testing;
- Profilometry
- Scanning Electron Microscopy

- Full-length LWR fuel examination
- Repackaging of spent fuel
- Metrology, metallography, grinding/polishing, optical and electron microscopy
- Fission gas sampling and analysis ٠
- Thermal imaging ٠
- SEM/microprobe
- Microsphere gamma analyser for ٠ individual fuel particle analysis

Irradiated Fuels Examination Laboratory

LAMDA Facility

Low activation materials development and analysis laboratory (LAMDA)

- For low activity samples low activation, or small samples of high activation
- From HFIR or elsewhere
- Mechanical properties testing
- Thermal diffusivity
- Dilatometer
- Elastic modulus
- Calorimetry
- electrical resistivity
- Density measurement

LAMBDA Facility

In-cell hardness testing, IMET

MIR.M1, Russian Federation

- Core arranged with loop channels surrounded by fuel assemblies and control rods
- Used to test structural materials and fuel assemblies from various power plant designs
- Radioisotope production

MIR.M1 core cross section

MIR.M1 Key Specifications

Maximal thermal power	100 MW
Loop channel diameter	≤148
Number of loop channels, max.	11
Thermal neutron flux density in the experimental channel	≤5·10 ¹⁴ ·n·cm ⁻² ·s ⁻¹
Volumetric heat rate in the core	0.85 MW/l
Coolant:	Water
 pressure at the reactor core inlet 	1.25 MPa
 temperature at the reactor inlet 	≤70°C
 temperature at the reactor outlet 	≤98°C
Fuel cycle duration	up to 40 days
Operating time at power,	~ 240 d/year
Planned operation time	More than 2030

Fuel Testing Techniques in MIR.M1 60 Years

- Dismountable and instrumented device for testing fuel rods ~1000 mm, containing up to 19 fuel rods
- Dismountable devices for testing short-size (~ 250 mm) fuel rods, up to four such rigs can be installed one over another in one loop channel
- Device for combined irradiation of refabricated (~1000 mm) and full-size fuel rods (≤ 3800 mm) of spent NPP fuel
- Dismountable devices for power cycling and RAMP experiments of instrumented fuel rods by displacement or rotation of the absorbing screens in the experimental channel
- Instrumented device for testing under LOCA and RIA conditions

Fuel Testing at MIR.M1

Technique for simulation of reactivity inserted accident (RIA)

F.Marshall@iaea.org

Hot Cells at MIR.M1

VVER Fuel Testing Program in MIR.M1

SM-3, Russian Federation

- Very high flux
 5E15 n/cm²-s
- 100 MWt
- Pressure tank
- Light water cooled and moderated
- Be reflector
- Primary use is fuel and material testing
- Capsule and loop testing capabilities

- 1 neutron trap
- 2 beryllium liners
- 3 beryllium reflector blocks
- 4 central compensating element

SM-3 Irradiation Cells

Number of cells for irradiation	Up to 81		
Тгар	Block option: up to 27 cells Ø 12–25 mm; Channel option: channel Ø 50 mm + 18 cells		
Core	Up to 6 and up to 4 FAs with 1 cell for targets Ø 24.5 mm		
Reflector	30 channels (of which 20 cells can be instrumented or supplied with separately coolant), Ø 64 mm		
Irradiation positions:	Neutron flux, n·cm ⁻² ·s ⁻¹		
	total	\geq 0.1 MeV	
Тгар	\leq 5.4 \times 10 ¹⁵	\leq 1.5 $ imes$ 10 ¹⁵	
Core	\leq 4.3 \times 10 ¹⁵	\leq 2.3 \times 10 ¹⁵	
Reflector	\leq 1.6 $ imes$ 10 ¹⁵	$\leq 5.3 imes 10^{14}$	

F.Marshall@iaea.org

SM-3 Irradiation Loops

60 Years

		Testing parameters	
Design of irradiation rig	Medium	φ, n·cm⁻²·s⁻¹,	Kt, dpa/
		(E >0.1MeV)	year
Loop channel	Water	1 0 ~ 1013 4 ~ 1014	0160
reflector	(≤350°C, ≤18.5 MPa)	$1.0^{-1} \times 10^{-2} - 4 \times 10^{-1}$	0.1-0.0
Loop channel	Water	$1.2 - 1.5 imes 10^{15}$	15–18
in the core	(≤350°C, ≤18.5 MPa)		13 10
Ampoule rig in the reflector	Boiling water (≤350°C, ≤17 MPa);	5×10^{12} - 5.3×10^{14}	0.1–6.0
	heavy liquid metal (≤650°C, ≤1 MPa);		
	supercritical water (≤650°C, ≤23 MPa);		
	gas (He, Ne, N₂) (≤2500°C, ≤23 MPa)		
Ampoule rig in the core	Boiling water (\leq 350°C, \leq 17MPa);	$1.5 imes 10^{15}$ 2.3 $ imes$ 10 ¹⁵	16–25
	heavy liquid metal (≤650°C, ≤1 MPa);		
	supercritical water (≤ 50°C, ≤23 MPa);		
	gas (He, Ne, N ₂) (≤2500°C, ≤23 MPa)		
		F.Marshall@jaea.org	32

SM-3 Testing Facilities

- Long-term strength and creep tests of steels and alloys under longitudinal tension (facility 'Neutron-8') and internal gas pressure test at 550–800°C
- In-pile tests of different types of fuel materials at 550– 2500°C
- In-pile investigation of relaxation resistance of structural materials
- In-pile investigation of creep of nuclear fuel at temperatures 700–1100°C, including pre-irradiated fuel samples to investigate the burn up effect on the creep characteristics
- In-pile tests of the core material for existing and advanced nuclear facilities at high damage rate of 1–25 dpa/year in the temperature range 100–2500°C and different environments

SM-3 Test Rigs

Capsule for irradiating vessel steel samples in boiling water

Thank you!

F.Marshall@iaea.org