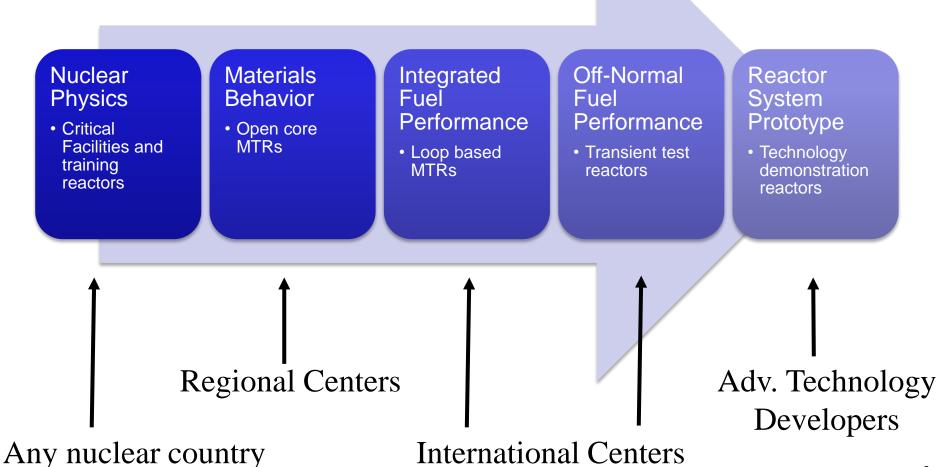
Possible Next Generation Reactors – Advanced Material Research Needs

Dan Wachs Idaho National Laboratory November 8, 2017 (11:15-12:00)

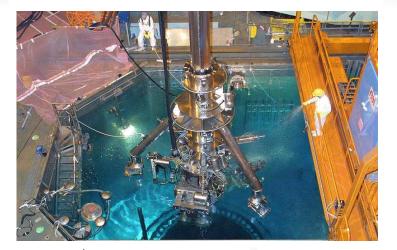
ww.inl.gov

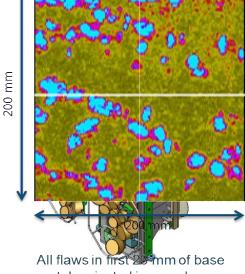


Introduction

- Research reactors are a critical resource to enable nuclear energy applications including
 - Workforce training
 - Fuels and materials research
 - Optimization of Light Water Reactors (LWR)
 - Development of fuels and materials for GEN-IV reactor concepts
 - Special purpose reactors (research reactors, isotope production, space reactors, ...)
 - Technology demonstrations for advanced reactor systems
- Research reactors are required to conduct high risk, high uncertainty experiments in a controlled, representative environment prior to insertion in a power reactor

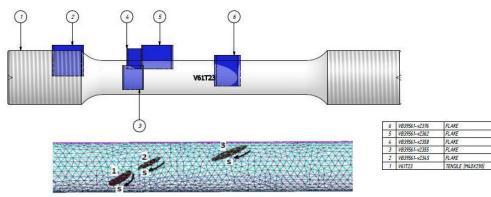
Research Reactor Need Spectrum


LWR Applications for Materials Test Reactors


- Resolve emerging operations and safety issues
- Enable optimization of existing designs
- Develop new technology

Example of LWR Issue Resolution

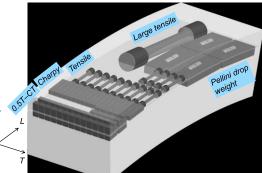
- License extension request for Belgian power reactors required 'health assessment'
- Application of modern non-destructive inspection tools identified defects in reactor pressure vessel
- Updated safety analysis required understanding of material properties
- How can the material behavior after 20 years of additional irradiation be projected?



metal projected in one plane

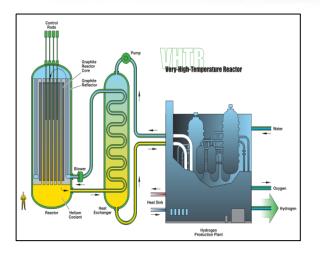
m

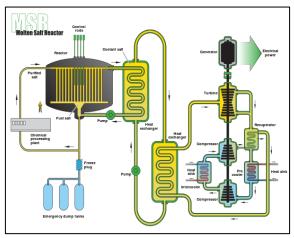
Accelerated Aging of Materials

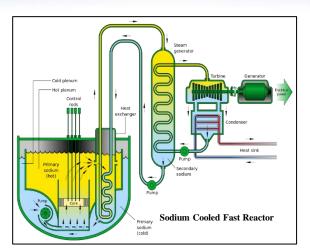

- A representative material with similar defects was identified (from a rejected steam generator)
- Samples were extracted form the material and characterized
- Samples were irradiated in the BR2 reactor in a high neutron flux position to accumulate irradiation damage
- Post irradiation examination was conducted to evaluate the impact of the defects on performance

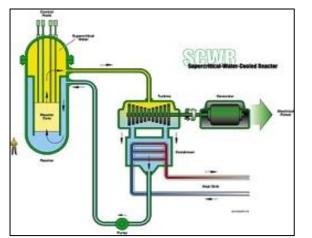
Optimization and Advanced LWR Fuel Designs

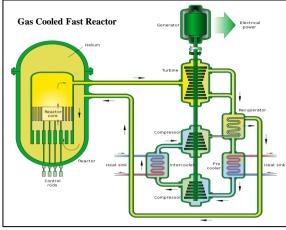
- Improved reliability, power uprates, and burnup extension
 - Advanced cladding or pellet development and qualification
 - Demonstration of performance under new operating conditions
 - Improved evaluation of off-normal fuel performance (improved regulatory rules)
- Example: Development of Advanced Fuel Designs
 - Testing of Accident Tolerant Fuel Designs for use in current generation LWR

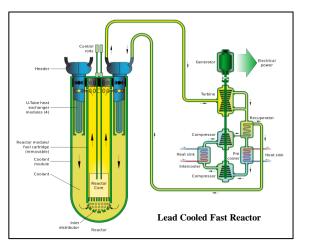

High performance accident tolerant LWR fuels


- Accident tolerant
- Ceramic coated zircaloys
- Multi-layer ceramic claddings
- High density ceramics
- High thermal performance

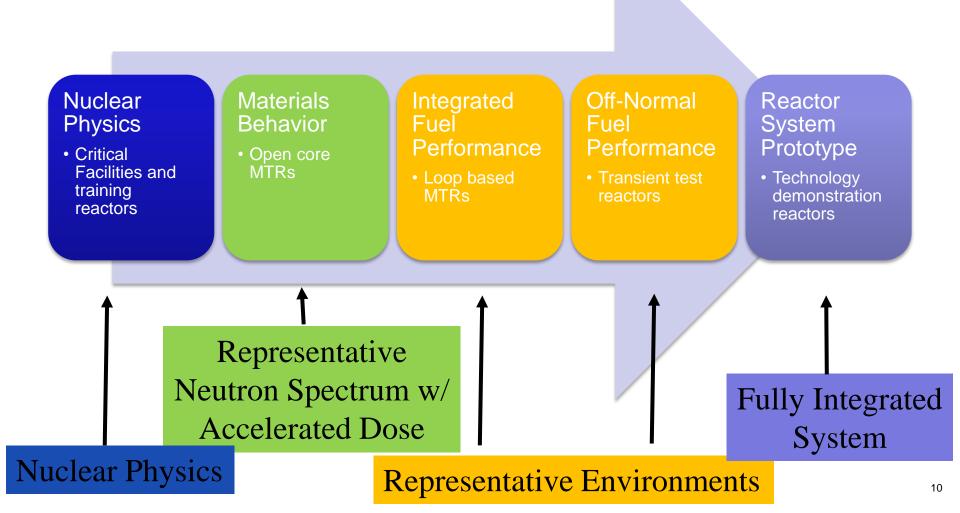

Kernel




GEN-IV Reactor Systems Require New Fuels



https://www.gen-4.org/gif/jcms/c_40465/generation-iv-systems


GENIV – General Features

System	Spectrum	Coolant	Outlet T (°C)	Likely fuel system		
VHTR (very-high-temperature reactor)	Thermal	Helium	900-1000	TRISO Pebble or Prismatic		
SFR (sodium cooled fast reactor)	Fast	Sodium	500-550	Metallic/Oxide/Nitride/Carbide		
SCWR (super critical water reactor)	Thermal/fast	Water	510-625	Oxide in high temp corrosion resistant steel		
GFR (gas-cooled fast reactor)	Fast	Helium	850	Carbide in dispersion or pin SiC		
LFR (lead-cooled fast reactor)	Fast	Lead	480-570	Metallic/Oxide/Nitride/Carbide		
MSR (molten salt reactor)	Thermal/Fast	Fluoride/ chloride salts	700-800	Liquid fuel or TRISO particle		

https://www.gen-4.org/gif/jcms/c_9353/systems

GEN-IV Research Reactor Need Spectrum

Irradiation Testing Capability for Integrated Fuel Testing

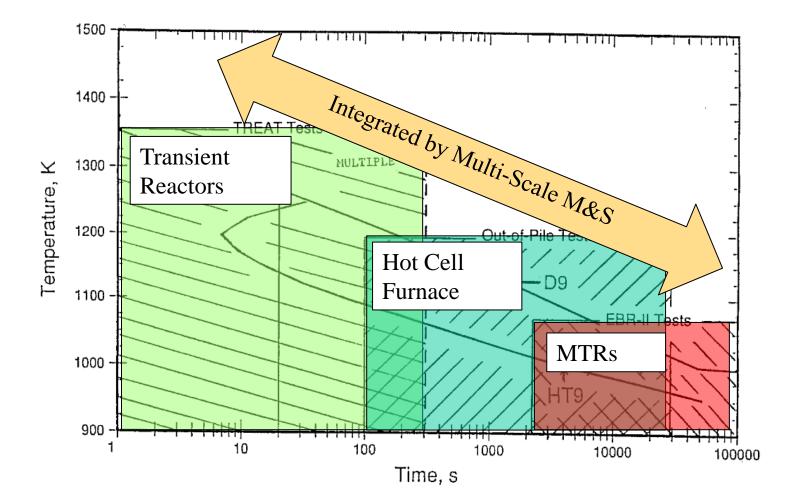
Neutron source defined by dose rate and energy spectrum

Testing Capability Nuclear Transient Characterization Sample Environment In-pile instrumentation and PIE capabilities Experiment vehicles that simulate the desired environment

Traditional Nuclear Technology Development

	<u>\$/test</u>	<u>time</u>	<u># tests</u>
Integral Irradiation Testing • Event simulations conducted in prototypic environments and configurations	\$\$\$\$	yrs	####
 Semi-integral Testing Partial event simulations in simplified environments that engage multiple relevant phenomena. Tests can be used to validate integral M&S tools 	\$\$\$	~yr	###
 Phenomenological Tests Separate effects studies conducted to understand and describe individual physical phenomena Analytical models developed for use in future integral testing 	\$\$	mths	##
Material Properties • Definition of thermal physical and mechanical properties of materials and components used in fuel system.	\$	wks γ	#

R&D is specific to a single fuel design. Effort is expensive and takes a long time


Modern Multi-Scale, Multi-Physics Development

		<u>\$/test</u>	<u>time</u>	<u># tests</u>
n M&S	Integral Irradiation Testing Event simulations conducted in prototypic environments and configurations 	\$\$\$\$	yrs	#
R&D Integrated through M&S	 Semi-integral Testing Partial event simulations in simplified environments that engage multiple relevant phenomena. Tests can be used to validate integral M&S tools 	\$\$\$	~yr	##
ntegratec	 Phenomenological Tests Separate effects studies conducted to understand and describe individual physical phenomena Analytical models developed for use in future integral testing 	\$\$	mths	###
R&D Ir	Material Properties • Definition of thermal physical and mechanical properties of materials and components used in fuel system.	\$	wks	####
	P&D is relevan	t to many fu	I design	20

R&D is relevant to many fuel designs. Effort is still expensive and takes a long time

Integration of Fuel Research

Summary

- Research reactors are flexible scientific tools used to support a wide variety of nuclear reactor applications
 - Current generation LWRs
 - Advanced reactor application
- R&D Infrastructure should support
 - Diverse modern technologies that are under development
 - Application of modern technology development methodologies
 - Structured technical collaboration to optimize utilization of specialized irradiation capabilities

Questions?

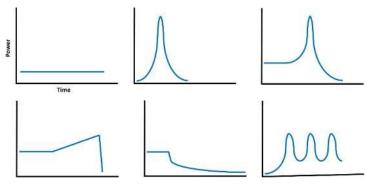
www.inl.gov

ldaho National Laboratory

Post Irradiation Examination Facilities

November 9, 2017 (10:30-11:15)

Idaho National Laboratory


Concrete

Rotating

Concrete

Introduction

- Transient Reactor Test (TREAT) resuming operations to support fuel safety testing
 - First tests to include baseline UO₂ in Zry fuels followed by fresh ATF specimens
- Graphite-based air-cooled reactor
 - 120 kW steady state, 19 GW peak in pulse mode
 - Virtually any power history possible within 2500 MJ max core transient energy
- Experiment design
 - Reactor provides neutrons, experiment vehicle does the rest
 - Safety containment, specimen environment, and support instruments
 - Handled outside concrete shield in cask (cavity 25cm dia × 387cm L)
 - Tests typically displace a few driver fuel assemblies (each 10cm square, 122cm L)
- 4 slots with view of core center, 2 in use
 - Fast neutron hodoscope, neutron radiography

Example Transient Shapes

Transient Shaping

- TREAT is a <u>transient</u> reactor, not a <u>pulse</u> reactor
- Graphite heat sink, nimble control rod system \rightarrow flexible power maneuvers

150

Time (s)

Steady State

250

200

150

100

50

0

0

Reactor Power (MW)

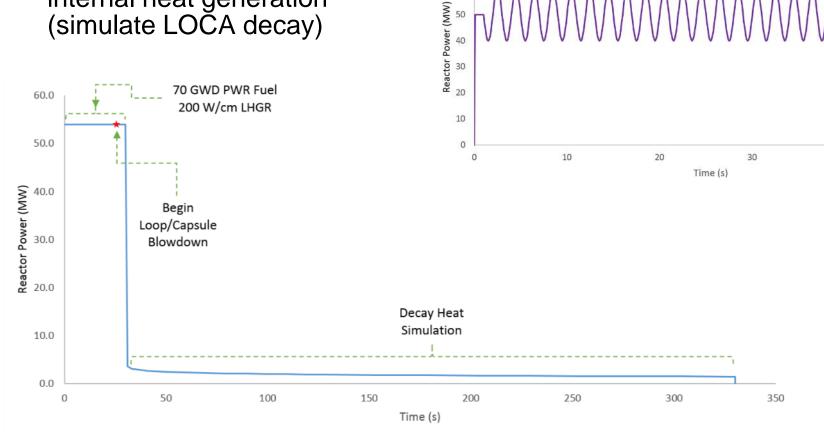
- ≤120 kW steady state core power
- Specimen power coupling measurements
- Isotope build-in (e.g. ¹³¹I) for follow-on tests

100

Neutron radiography

50

- Flattop Transients
 - "Flattops" >120 kW are considered transients
 - Virtually any power level, time limited by 2500 MJ
 - Heat balance and nuclear instrument calibrations
 - Fission heating during TH transients (LOFA)
 - Can precede ramps, pulses, SCRAM decay, etc.



250

daho National Laboratory

Transient Shaping

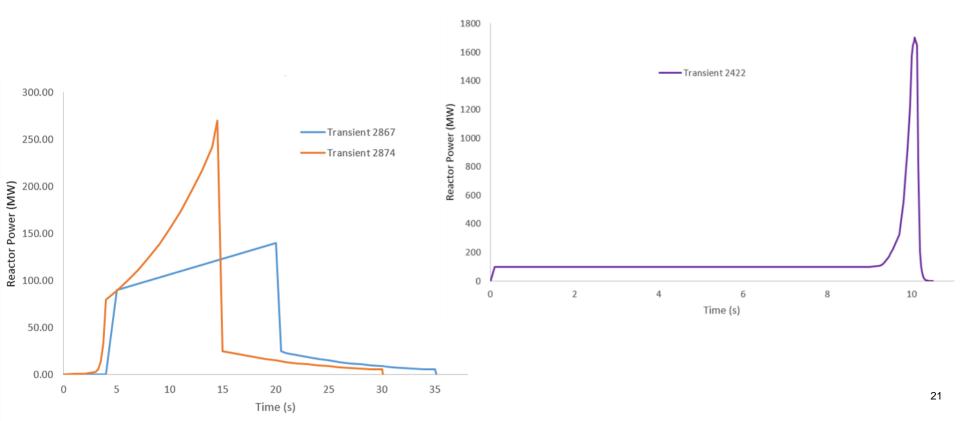
Fission heat to provide • internal heat generation (simulate LOCA decay)

70

60

50

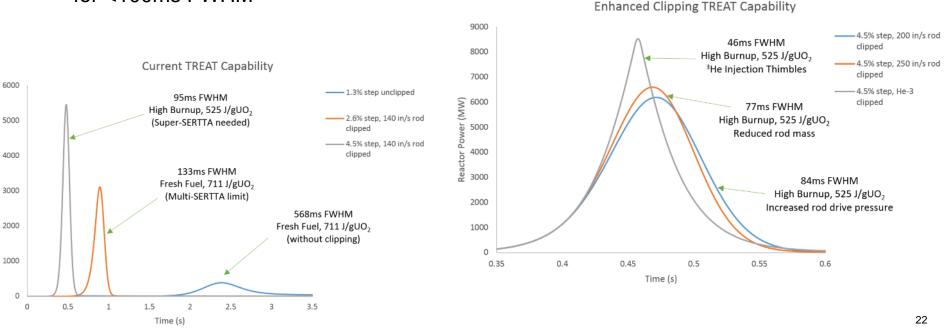
Transient rod oscillations to simulate • BWR void power instability


50

40

Transient Shaping

- TREAT has extensive historic with transient over power simulation
- Transient tuned to achieve desired fuel temperature and/or power history
- Ramp, pulse, shutdown, etc. can be triggered by experiment instruments


Transient Shaping

- Step insertion 4.5% Δk/k → 2500 MJ released in ~0.5 sec
 - Big dose for short-lived isotope studies
 - Facility's current energy limit
- Step insertion can follow a flattop Transient rod "clipping" → narrower pulses

Reactor Power (MW)

 Higher capacity vehicles needed for <100ms FWHM

- Enhanced clipping viable for narrower pulses
 - Better simulation of LWR HZP RIA
 - Drives high burnup LWR fuel to reg. limits in <u>46ms FWHM</u>
- Current LDRD project addressing enhanced clipping design

