

Transient Test Reactors

Dr. Daniel M. Wachs National Technical Lead for Transient Testing Idaho National Laboratory, USA

November 8, 2017 (15:30-16:15)

Why do we need Transient Reactors?

- Nuclear reactors are a complex multi-physics problem
 - Nuclear feedback mechanisms (coupled to thermal and mechanical response) are critical to enable reactor control and to maintain safe operations
 - All analysis codes must be benchmarked against representative experimental data
- The performance limits of engineered reactor systems must be demonstrated to receive an operating license
 - Used extensively to qualify current LWR systems (and ongoing optimization)
 - Research and development of advanced systems

Transient Nuclear Physics

- Annular Core Research Reactor (ACRR) at Sandia National Laboratory
 - <u>https://www.youtube.com/watch?v=pa0Fmcv83nw</u>
 - Transient response
 - Large reactivity insertion (rod ejection)
 - Very strong negative temperature feedback coefficient that rapidly reduces reactor power
 - Short power pulse (~10's of ms)
- Special Purpose Experimental Reactor Test (SPERT) at Idaho National Laboratory
 - <u>https://www.youtube.com/watch?v=0FlhafVX_61</u>
 - Transient response
 - Large reactivity insertion (rod ejection)
 - Fairly strong negative temperature feedback coefficient that rapidly reduces reactor power (just not fast enough)
 - Short power pulse (~10's of ms)

Fuel Performance and Safety Limits

Fuel Safety Research

- To receive a design or operating license for a nuclear reactor the licensee must describe the off-normal performance of the system to define
 - Operating limits
 - Risk to the public
- For design basis accidents including both overpower (reactivity initiated accident) and undercooling (loss of coolant accident)
 - Maintain coolable geometry (prevent propagation of failure)
 - Establish the related source term (and confirm its within regulatory limits)
 - Fraction of fuel failed (threshold for cladding rupture)
 - Radionuclide release (fraction of fission product retained)

Visualization of Fuel Behavior During RIA

https://www.youtube.com/watch?v=h0o4P_F4s9s

Transient Test Results

Fuel Safety Research Objectives

Fuel Safety Science Objectives

Transient Neutron Sources

• Specialized reactors are required to deliver shaped neutron pulses to

- Simulate off-normal conditions ranging from
 - Operational transients
 - Design basis accidents
 - Beyond design basis (severe) accidents
- All without destroying the reactor!
- Currently available test facilities include
 - CABRI (France) recently refurbished
 - TREAT (USA) to resume operations next week
 - NSRR (Japan)
 - IGR (Kazakhstan)

Transient Reactor Test (TREAT) Facility

TREAT's unique design delivers the nuclear environment required to meet fuel safety research needs

- 19 GW Peak Transient Power (with 100 kW Steady-state power option)
- Core: ~1.2 m high x 2 m. dia19 x 19 array of 10 x 10-cm. fuel and reflector assemblies
- Instantaneous, large negative temperature coefficient (self protecting driver core)

Resumption of Operations

- 'Mission Need Statement for Resumption of Transient Testing' issued by DOE in January 2010
- TREAT Selected as 'preferred option' in February 2014 and restart activities were initiated at the beginning of FY15
- Authorization to restart received in Sept 2017, First critical expected next week!

Transient Testing Capability

Transient Testing Capability

Sample Environment

Characterization

In-pile instrumentation and PIE capabilities

TREAT Transients

Sample Environment

- The irradiation test vehicle used in TREAT are cartridge type devices operated independently of the reactor.
- These devices deliver the experiment specific thermal-hydraulic environment. Systems can be developed to deliver a wide range of conditions
 - Prototypic pressure/temperature/flow for LWR, SFR, LFR, GR or MSR applications
 - Specialized or simplified environments for separate effects studies
- Program strategy will focus on development of modular devices that can be adapted for various user applications with minimal cost and schedule

TREAT Fast Neutron Hodoscope

How to access these facilities?

- Joint International Projects
 - Fuel safety research is typically cross-cutting and of universal interest
 - Data shared between reactor designers, fuel vendors, utilities, and regulators (incentive to work together)
 - Limited number of transient test facilities (most nations don't operate their own)
 - Examples include the
 - CABRI International Project (OECD NEA)
 - Halden Reactor Project (OECD NEA)
 - US Nuclear Science User Facility program (US Dept. of Energy)
- Bilateral agreements between individual nations

Questions?

2017/10/02 11:37:02