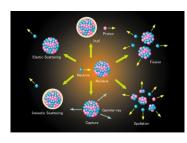
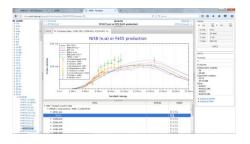


Nuclear data measurements Part I

Stephan Pomp stephan.pomp@physics.uu.se Department of physics and astronomy Uppsala University

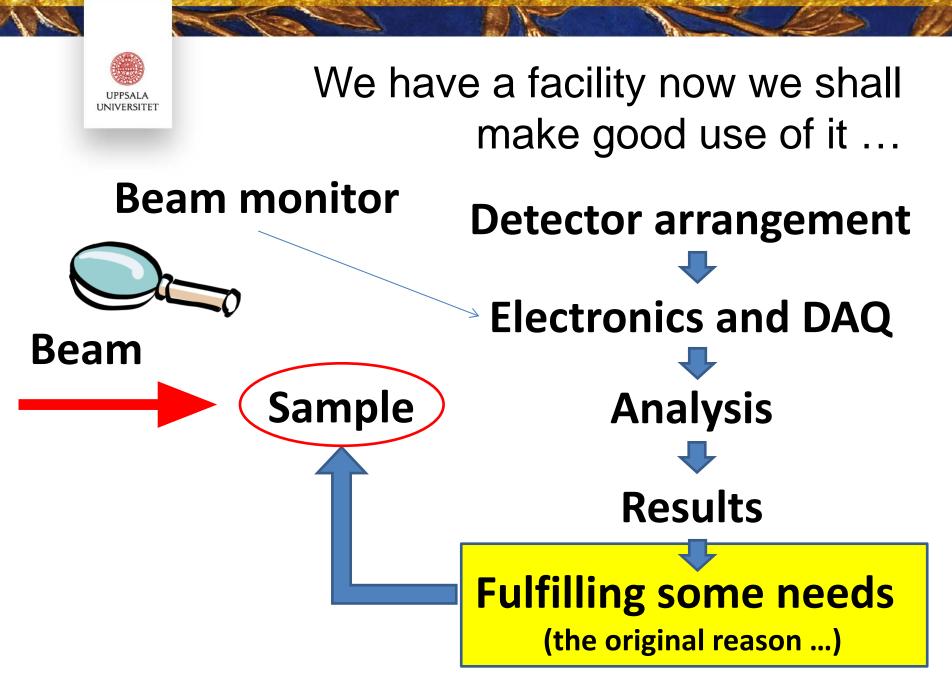



• Nuclear data measurements is about fulfilling needs ...

• Which data?

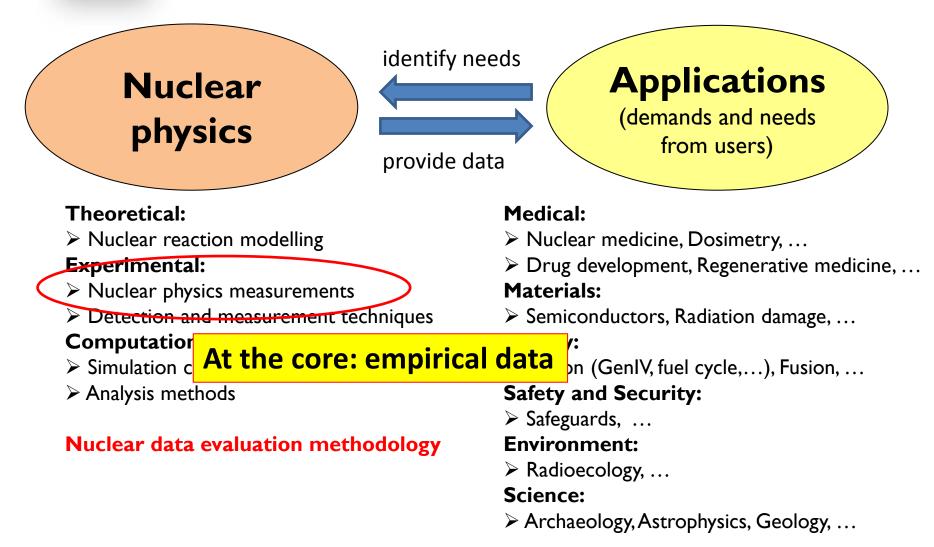
- User needs, HPRL, JANIS, EXFOR ...

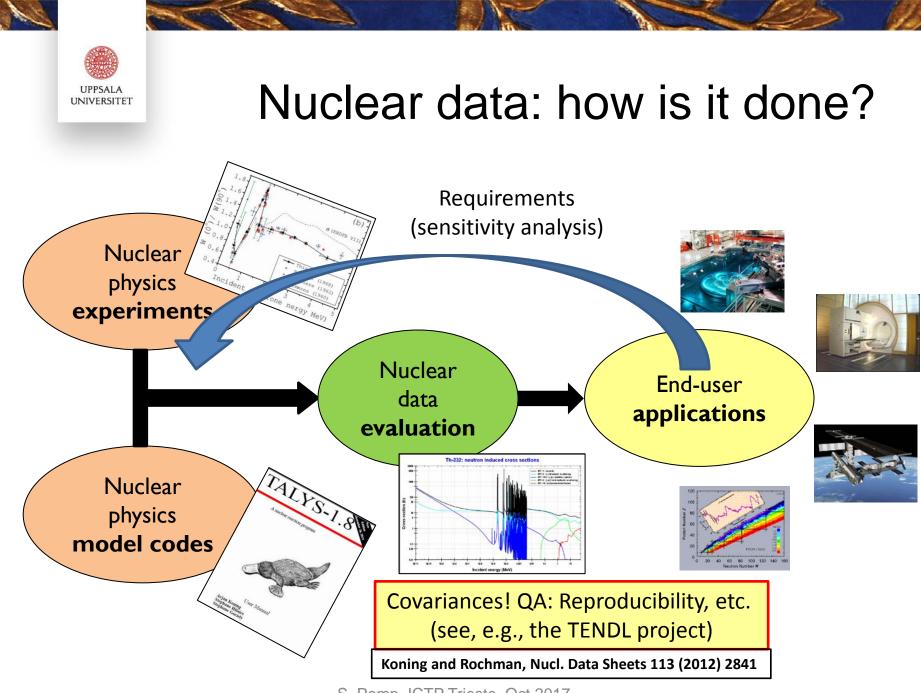
• An example


 Nuclear data measurements is about fulfilling needs ...

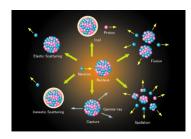
• Which data?

How to select? And where to start?
User needs, HPRL, JANIS, EXFOR ...

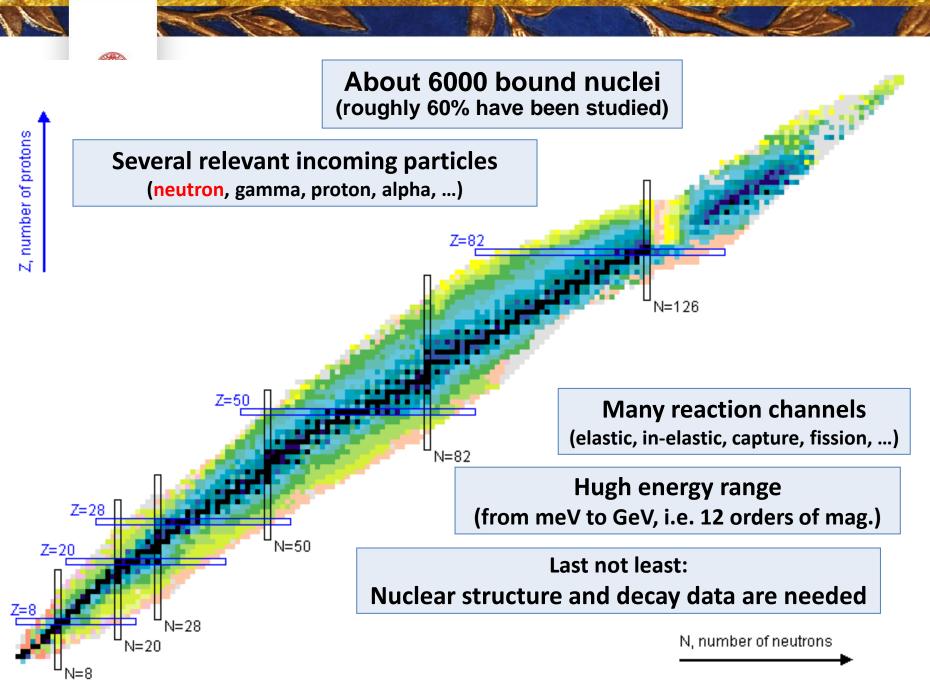

• An example

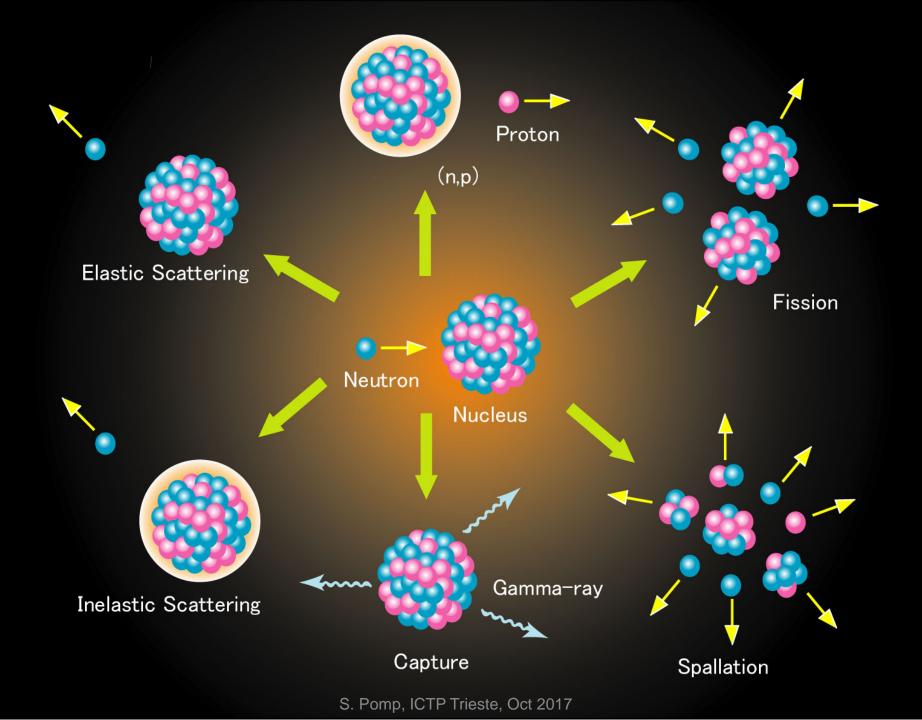


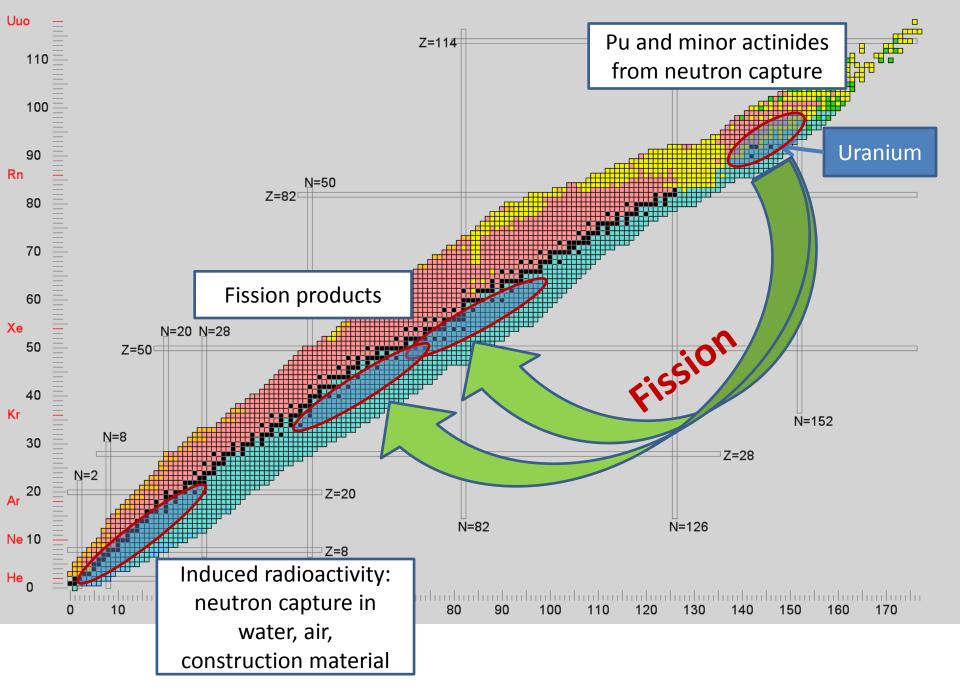
Nuclear data: what's it about?



Outline

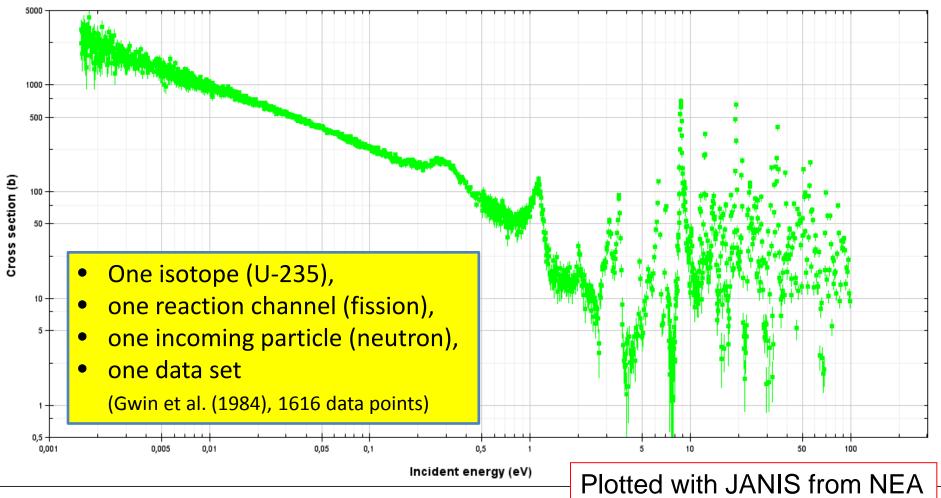

• Nuclear data measurements is about fulfilling needs ...


• Which data?



How to select? And where to start?
User needs, HPRL, JANIS, EXFOR ...

• An example


S. Pomp, ICTP Trieste, Oct 2017

UPPSALA UNIVERSITET

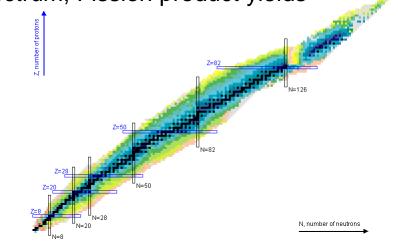
The truth? (yes we need models)

basic

oractica

Physical quantities of interest (i.e. to be stored in nuclear data files)

- Cross sections
- Angular distributions (emitted particles)
- Energy spectra (emitted particles)
- Energy-Angle correlated spectra (Double-differential cross section, DDX)


d*σ*/dE'

 $d\sigma/d\Omega$

 $\sigma(E)$

 $d^2\sigma/dE'd\Omega$

- Resonance parameters
- Neutrons per fission, Fission energy spectrum, Fission product yields
- ...
- Covariance data



• Nuclear data measurements is about fulfilling needs ...

• Which data?

How to select? And where to start?
 User needs, HPRL, JANIS, EXFOR ...

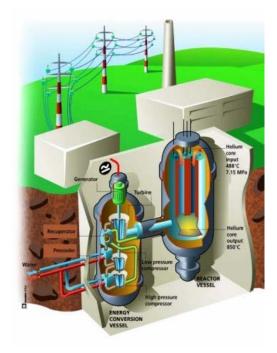
• An example

E.g.: Needs for fission reactors

- Fast neutron
- Transmutation and target design in ADS
- High burn-up systems.
- Structural materials and coolants

A High Priority Request List (Short list) :

- fission cross sections of ²³⁴U, ²³⁷Np, ^{238,240-242}Pu, ^{241,242m,243}Am, ²⁴²⁻²⁴⁶Cm
- fission nu-bar of ^{238,240}Pu, ²⁴¹Am and ²⁴⁴Cm
- capture of ^{235,238}U, ²³⁷Np, ²³⁸⁻²⁴²Pu, ^{241,242m,243}Am, ²⁴⁴Cm
- inelastic scattering of ²³⁸U, ^{239,240,242}Pu, ^{241,243}Am, C, O, Na, ⁵⁶Fe, Pb, Bi, ⁹⁰Zr
- neutron removal of ¹⁰B, C, O, Na, Si, Fe, Ni, Pb
- elastic scattering of ²³⁸U, C, ¹⁵N, O, ⁵²Cr, ⁵⁶Fe, Pb


And

- Prompt neutrons and gamma fission spectra
- Delayed neutrons and gamma yield

Need of accurate measurements of neutron induced reactions

S. Pomp, ICTP Trieste, Oct 2017

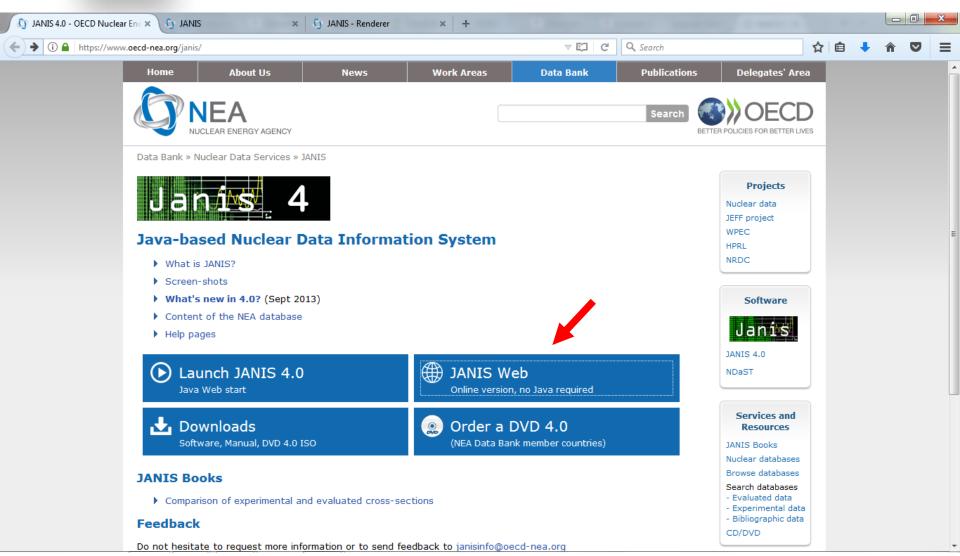
Cross sections (fission, capture, scattering) Fission neutron spectra, Nu-bar Gamma source term, Spent fuel inventories, Decay heat, and dose rates

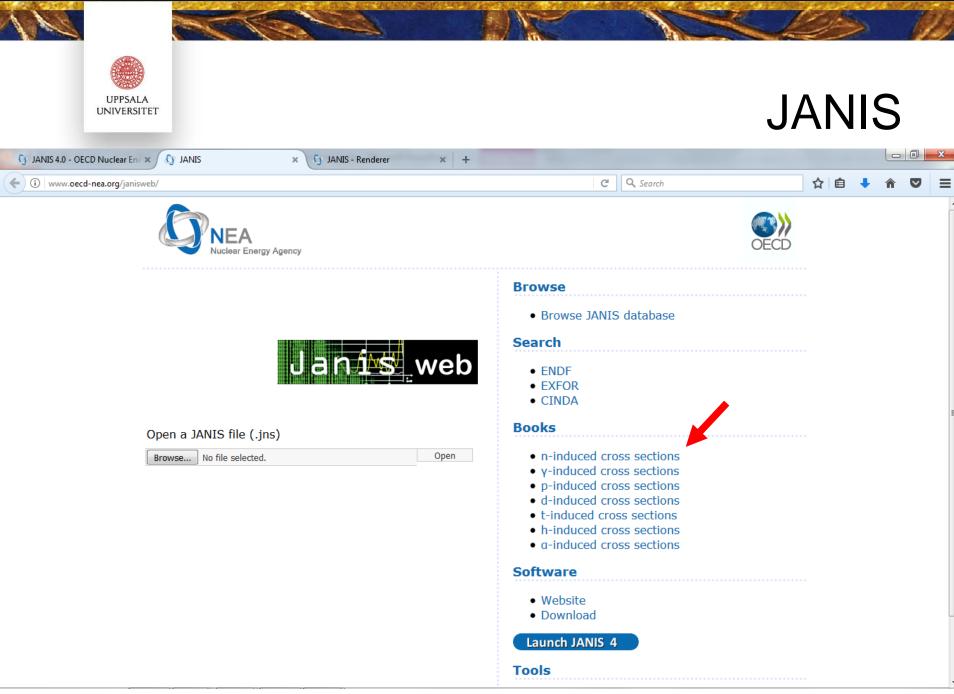
Slide courtesy X. Ledoux

NEA Nuclear Data HPRL http://www.oecd-nea.org/dbdata/hprl/

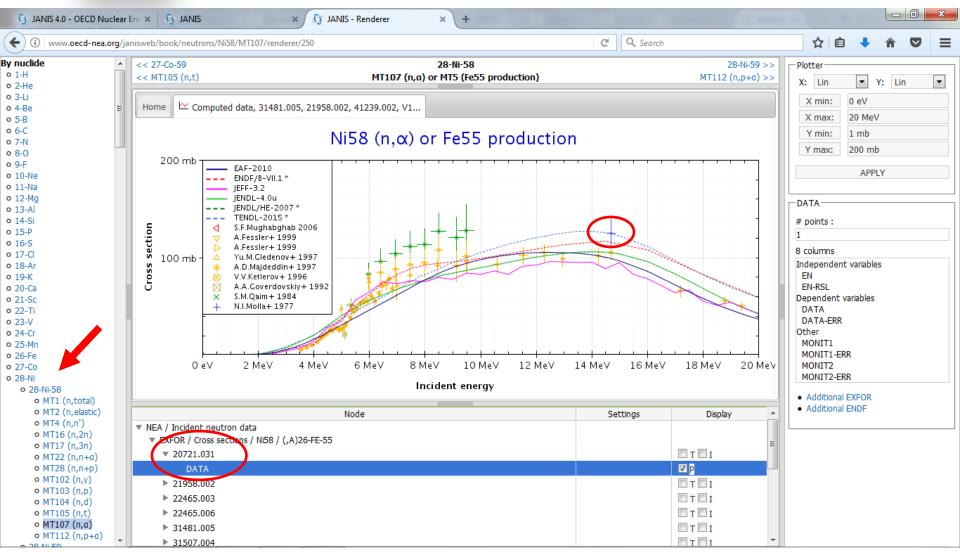
About Us Work Areas Publications Home Data Bank Delegate: NEA search engine ear Energy Agency Nuclear Data Services **NEA Nuclear Data High Priority Request List** New request template HPRL-Main Search New request guidelines Related references The NEA Nuclear Data High Priority Request List (HPRL), is a compilation of the most important nuclear data requirements. The purpose of the list is to provide a guide for those planning measurement, nuclear theory and evaluation programmes. See also the historical background to the present request list.

The list is maintained by the NEA Working Party on International Nuclear Data Evaluation Cooperation (WPEC).


The basic philosophy of the present list is [...] to stimulate nuclear research that will lead to improved quantitative knowledge of important nuclear processes based on requests received from the nuclear science community.


Requests for improved nuclear data may be submitted by any members of the broad nuclear science community who possess knowledge of the data issue that gives rise to the request, and who can provide the information required to complete the data request submission <u>template</u>. It is anticipated that most of the requests received by the NEA will be from the data user community, and that these requests will be associated with specific contemporary nuclear science and technology projects. [...]

Current knowledge? JANIS ...



www.oecd-n	iea.org	/janisweb/book/neut	rons/Ni58/MT107/renderer/250	C ^e Q Search		☆ 自	↓ ŵ	
	Â	<< 27-Co-59 << MT105 (n,t)	28-Ni-58 MT107 (n,a) or MT5 (Fe55 production)		28-Ni-59 >> MT112 (n,p+a) >>	20721.031 # points :		
	E	Home 🗠 Comp	puted data, 31481.005, 21958.002, 41239.002, V1			1 8 columns		
		20721			E	EN EN-RSL Dependent	nt variables t variables	
		TITLE	A systematic study of (n,p) reactions at 14.7 MeV			DATA DATA-ER	R	
		AUTHOR	- N.I.Molla - S.M.Qaim			Other MONIT1 MONIT1-6	ERR	
		INSTITUTE	2GERJUL - Forschungszentrum Juelich (GER) Institut fuer Chemie of the Kernforschungs- Anlage,Juelich.			MONIT2 MONIT2-1 • Addition	al EXFOR	
		REFERENCE	J,NP/A,283,269,197706 Nuclear Physics, Section A, volume 283, page 269, 1977/06 Final data set			• Addition	al ENDF	
			C,76GARMIS,,589,197606 9th Symp. on Fusion Technology, Garmisch 1976, page 589, 1976/06 - prelim. data at 14.7 MeV					
Ni-58 MT1 (n,total)		FACILITY	NGEN,2GERJUL - Neutron generator, Forschungszentrum Juelich (GER) Neutron generator DYNAGEN for the 14.7 MeV data.		-			
MT2 (n,elastic)			Node	Settings	Display	-		
MT4 (n,n')		NEA / Incident ne						
MT16 (n,2n) MT17 (n,3n)			s sections / Ni58 / (,A)26-FE-55		E			
MT22 (n,n+a)		▼ 20721.03						
MT28 (n,n+p)		DATA			✓ P	0		
MT102 (n,γ)		▶ 21958.002	2		T			
MT103 (n,p) MT104 (n,d)		▶ 22465.003	3		T			
MT105 (n,t)		▶ 22465.000	5		T			
MT107 (n,a)		▶ 31481.005	5		T			
MT112 (n,p+a)	-	▶ 31507.004	4		T I -			

EXFOR

j JANIS 4.0 - OECD Nuclear Ene 🗙 🔓 JANIS	× 🕥 JANIS - Renderer	× EXFOR: Experimental Nuclear × +			
) (i) 🔒 https://www-nds.iaea.org/exfor/exfor.htm			☆自	• *	
p » Manual PDF Lexfor NNDC-Help Output Plot+ R3	3 Databases » ENDF CINDA IB	ANDL CD-ROM » EXFOR-CINDA CD-Catalog			
DC NRDC	Databa	uclear Reaction Data (EXFOR) ase Version of 2017-07-03			
2016/11 2016/11	Plotting without grouping by reaction-cod Plotting cross section coded with SF8=DA Recalculation of angular distributions to i	News X hations (PS/EPS) [how-to], distortion picture using 2D-calibration [how-to] des (+ calculating CS ratios between diff. datasets on the fly) [example] AM (CS divided by atomic mass of target) [example] #Adv.plot using C5 inverse kinematics (when converting EXFOR-R33) [example]			
	ice the discovery of the neutron, while cl The library contains data from 2179	xperimental nuclear reaction data. Neutron reactions have been compiled harged particle and photon reactions have been covered less extensively. 8 experiments (see statistics and recent updates). ata Sheets 120(2014)272 EXFOR Mirror-sites ⊕			
	Options Exclude superseded data No reaction combinations (ratios,) Exclude evaluated data Enhanced search of Products Retrieve listing only Disable Prompt-Help Sort by: reaction publication View: basic extended	[♥] Plotting. See also: [video-guide]			60 ?
Submit Reset c: c: c: c: c: c: c: c: c: c:					

EXFOR

ເງິງ JANIS 4.0 - OECD Nuclear Enc 🛪 🛛 ເງິງ JANIS	🗙 🔓 JANIS - Renderer 🗙 🤮 EXFOR: Experimental Nuclear 🗙 🕂		
(→ ① ▲ https://www-nds.iaea.org/exfor/exfor.htm	Ċ	🔍 Search 🔂 自 🤳	
Help » Manual PDF Lexfor NNDC-Help Output Plot+ R33	Databases » ENDF CINDA IBANDL CD-ROM » EXFOR-CINDA CD-Ca	alog	×
2016/11 Plottin 2016/11 Plottin	Experimental Nuclear Reaction Data (E) Database Version of 2017-07-03 © Software Version of 2017-07-03 News Veb-ZVView plots: affine transformations (PS/EPS) [how-to], distortion picture us g without grouping by reaction-codes (+ calculating CS ratios between diff. datas g cross section coded with SF8=DAM (CS divided by atomic mass of target) [exa sulation of angular distributions to inverse kinematics (when converting EXFOR—R	x ing 2D-calibration [how-to] ets on the fly) [example] mple] #Adv.plot using C5	
systematically since th T	ains an extensive compilation of experimental nuclear reaction data. Neutron rea e discovery of the neutron, while charged particle and photon reactions have bee he library contains data from 21798 experiments (see statistics and recent upda EXFOR Reference Paper: Nucl. Data Sheets 120(2014)272 EXFOR Mirror-sites Go to: [upload your data]	n covered less extensively. tes).	Go ?
Request Submit Reset Help Target Ni-58 ? Reaction n,a ? Quantity CS ? Product ? ? Energy from to eV ? Author(s) ? ?	Plotting. See also: [video-guide] Exclude valuated data Enderse (Z, A) Plotting. See also: [video-guide] Sort by: @ reaction @ publication View: @ basic @ extended Plotting. See also: [video-guide] Sort by: @ reaction @ publication View: @ basic @ extended Plotting. See also: [video-guide] Plotting. See also: [video-guide] Sort by: @ reaction @ publication View: @ basic @ extended Plotting. See also: [video-guide] Plotting. See also: [video-guide] Sort by: @ reaction @ publication View: @ basic @ extended Plotting. See also: [video-guide] Plotting. See also: [video-guide] Sort by: @ reaction @ publication View: @ basic @ extended Plotting. See also: [video-guide] Plotting. See also: [video-guide] Plotting. See also: [video-guide] Sort by: @ reaction @ publication View: @ basic @ extended Plotting. See also: [video-guide]		

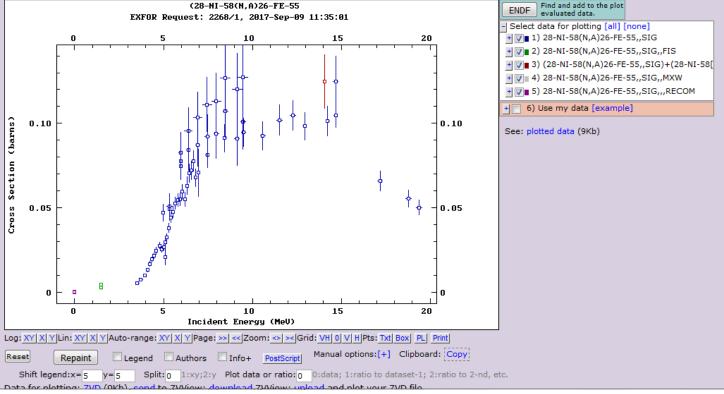
Note:

- all criteria are optional (selected by checking 🗹)

- selected criteria are combined for search with logical AND

- criteria separated in a field by ";" are combined with logical OR

								-
ເງິງ JANIS 4.0 - OECD Nuclear En∈ 🗙 ເງິງ JANIS	× 🗘 JANIS	- Renderer	X4/Servlet: Select	× +	-			x
(a https://www-nds.iaea.org/exfor/servlet/X4sSearch5				C Q Search	☆自	↓ ∩̂	◙	≡
▲Request #2268								-
Results: Reactions: 5 Datasets: 14								
Data Selection								
Retrieve OSelected OUnselected OAll Reset								
Output: VX4+ VEXFOR VBibliography TAB C4	PlotC4							
Plot: Quick-plot (cross-sections) ungroup Advanced plot [ho		C5 and 📃 co	nvert ratios to σ					
	ax: 🔲							
□Apply(4A) × Data re-normalization (for advanced users, r	results in: C4	4, TAB and	Plots)					
n Display Year Author-1 Energy	/ range,eV 1	Points	Reference	Subentry#P NSR-Key Info+				
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)								E
Quantity: [CS] Cross section	-							
1 🗌 + i X4 X4+ X4± T4 Cov 1999 A.Fessler+	7.48e6 1	1.94e7 11	+ J,RCA,84,(1),1,1999	22465003 1999FE07 #2:1998fe07:web				
2 🗌 + <u>i X4 X4+ X4±</u> T4 Cov	5.36e6 9	9.49e6 9		22465006 1999FE07 #2:1998fe07:web				
3 🗌 🕂 i X4 X4+ X4± T4 Cov 1997 A.D.Majdeddin+	1.47e7	1	[pdf]+ R, INDC (HUN) -031, 1997	31481005				
4 🗌 + i X4 X4+ X4± T4 Cov 1997 Yu.M.Gledenov+	5.00e6 7	7.00e6 3	+ C,97TRIEST,1,514,199705	31507004 1997GLZX				
5 🗌 A + i X4 X4+ X4± T4 Cov 1996 V.V.Ketlerov+	3.55e6 6	6.83e6 29	+ J,YK,1996,(1),121,1996	41239002				
6 🔲 A + i X4 X4+ X4± T4 Cov 1992 A.A.Goverdovskiy+	5.12e6	1	+ R,FEI-2242,199203	41152003				
7 📉 + i X4 X4+ X4± T4 Cov 1984 S.M.Qaim+	5.36e6 9	9.49e6 9	+ J,NSE,88,(2),143,198410	21958002 1984QA04				
8 🔲 + i X4 X4+ X4± T4 Cov 1977 N.I.Molla+	1.47e7	1	+ J,NP/A,283,269,197706	20721031 1977M005				
	73 MT107 <mark>[R</mark>	Recommende	ed data at the time the entry was prepared	. It is not original experimental data.	Doing advanced plot via C5: 🥅 inver	t data to rea	action 26-F	FE-55
Quantity: [CS] Cross section				\smile				
9 - + <u>i</u> X4 X4+ X4± T4 Cov 2006 S hab	2.53e-2	1	+ B,NEUT.RES,,2006	V10012233				
(3) (1) (CS) Cross section MF=3	MT=?							
10 - + <u>i</u> X4 X4+ X4± T4 Cov 1980 R.Woelfle+	1.50e6	1	+ J.RCA, 27, 65, 1980	21648002 1980W010				
10 + 1 X4 X4+ X4± T4 Cov 1980 R.WOEIIIE+	1.50e6	1		20739008				
11 1 + 1 ×4 ×4± ×4± 14 Cov 1968 n. braun+ (→ 4) 1 28-NI-58 (N, A) 26-FE-55, SIG, MXW C4: MF=3		1	+ J,RCA,10,15,68	20735000				
Quantity: [CS] Cross section								
12 A + i X4 X4+ X4± T4 Cov 1977 M.Asghar+	2.53e-2	1	+ J,ZP/A,282,375,1977	22596004 1977AS02				
13 A + i X4 X4+ X4± T4 Cov 1958 F.Muennich	2.53e-2	1	+ J,ZP,153,106,195810	21340005				
□ 5) 1 P (28-NI-58 (N, A) 26-FE-55, , SIG) + (28-NI-58 (N, A)								
Quantity: [CS] Cross section								
14 🗌 + i X4 X4+ X4± T4 Cov 1965 U.Seebeck+	1.41e7	1	+ J,NP,68,387,196506	20837013 1965SE04				
•								•



🕠 JANIS 4.0 - OECD Nuclear Ent 🗙 🔓 JANIS 🛛 🗙 🖓 JANIS - Renderer	× 🧐 X4/Servlet: Select × +	+	0 X
← → ① A https://www-nds.iaea.org/exfor/servlet/X4sMakeX4	⊽ 6'	Q. Search ★ 自 ↓ ★	◙ ≡
≪ ≤ EXFOR Request #2268/1661			A
Output Data			

Format		<u>Data</u> (Size)
EXFOR Interpreted	Generate: X4±	XML:: v1: X4.xml X4.html v2: X4.xml X4.html
EXFOR Output	X4Out X4Out.xml	X4Comp Test: C5 C5M:see:[doc]

See: [selected] datasets

Conclusion

Good starting point:

Do not only look at the data points but read up on **how** and **where** previous measurements for the reaction w

how and *where* previous measurements for the reaction you want to study were performed.

You may also want to take a look at similar reactions.

What challenges did the experimentalists face? What worked well? How well? What did not work?

Outline

• Nuclear data measurements is about fulfilling needs ...

• Which data?

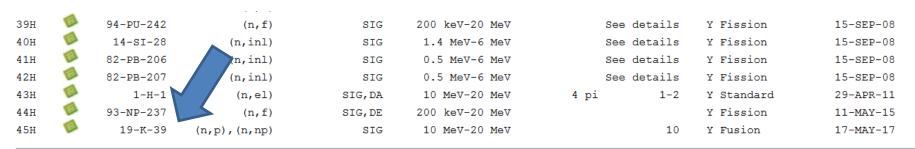
How to select? And where to start?
User needs, HPRL, JANIS, EXFOR

• An example

A test case

Let's walk through a possible experiment

Starting point: some data needs, e.g., from the HPRL:


🚯 OECD NEA - HPRL Sear	rch ×	Cj JANIS	- Renderer	× 🧕	X4/Servlet: Select	× +									۰	x
(i) 🔒 https://www.oe	ecd-nea.org/	dbdata/hj	prl/search.pl?vh	p=on&vsec=on&v	spq=on&targetz=&ta	rgeta=8itargetr=8itargetc	=&sortv=id&se	C C	Q Search		☆	Ê	+	Â		≡
	Hon	ne	About	Us	News	Work Areas	Data	Bank	Publications	Delegates' Are	ea					*
				AGENCY		[Search BETTE	POLICIES FOR BETTER LI) ves					
	Data Bank » Nuclear Data Services															
	NEA Nuclear Data High Priority Request List															E
	HPI	RL Main	High Pric Reques (HPR	sts Requests		Now Poo	uest	SGC/HPRL I	Documents							
					Requests	your search in are shown from the High Priority (General (G) cial Purpose Quant	following list H)									
	reques	st ID.				ids. To view the det request, and click o			-	bol after the						
	ID 1G	View	Target 14-SI-28	Reaction (n,np)	Quantity SIG	Energy range Threshold-20 MeV	Sec.E/Angle 4 pi	Accuracy 20	Cov Field Y Fusion	Date 21-SEP-05						
	2H		8-0-16	(n,a), (n,abs)	SIG	2 MeV-20 MeV		See details	Y Fission	21-SEP-05						
	38		94-PU-239	(n,f)	prompt g	Thermal-Fast	Eg=0-10MeV	7.5	Y Fission	28-APR-06						
	4H		92-0-235	(n, f)	prompt g	Thermal-Fast	Eg=0-10MeV	7.5	Y Fission	10-MAY-06						
	5H		72-HF-0	(n, g)	SIG	0.5-5.0 keV	-	4	Y Fission	28-APR-06						
	6G		92-0-233	(n, g)	SIG	10 keV-1.0 MeV		9	Y Fission	28-APR-06						
	7G		26-FE-56	(n, xn)	SIG, DDX	7 MeV-20 MeV	1MeV-20MeV	30	Fission, ADS	13-JUL-06						
	8H		1-H-2	(n,el)	DA/DE	0.1 MeV-1 MeV	0-180 Deg	5	Y Fission	25-JUL-06						
	9G		92-0-233	(n,g)	nubar,SIG	Thermal-10 keV		.5	Y Fission	19-APR-07						
	10G		79-AU-197	(n,tot)	SIG	5 keV-200 keV		5	Science, Fusior	18-MAY-07						-

LCP from ³⁹K for fusion app.

The latest request is from May 2017 and concerns measurement of

³⁹K(n,p) and ³⁹K(n,np) in the energy range between 10 and 20 MeV.

Number of requests found: 38 (out of a total of 38 requests).

Download consolidated output report

Request ID 45			Status of the request	High Priority reque	ority request		
Target	Reaction and process	Incident Energy	Secondary energy or angle	Target uncertainty	Covariance		
19-K-39	(n,p),(n,np) SIG	10 MeV-20 MeV		10	Υ		
Field	Subfield	Date Request created	Date Request accepted	Ongoing action			
Fusion		17-MAY-17	11-JUL-17				

Send a comment on this request to NEA.

Requester: Dr Stanislav SIMAKOV at KARLSRUHE, GER Email: stanislav.simakov@kit.edu

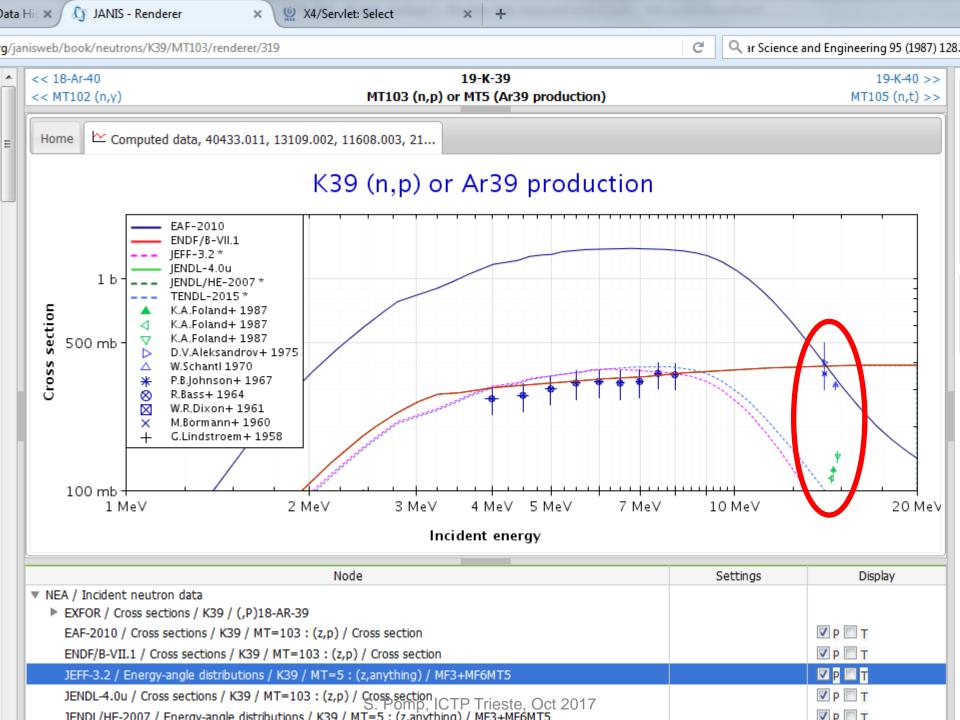
Project (context): IFMIF and DONES material test facilities, and fusion power plants

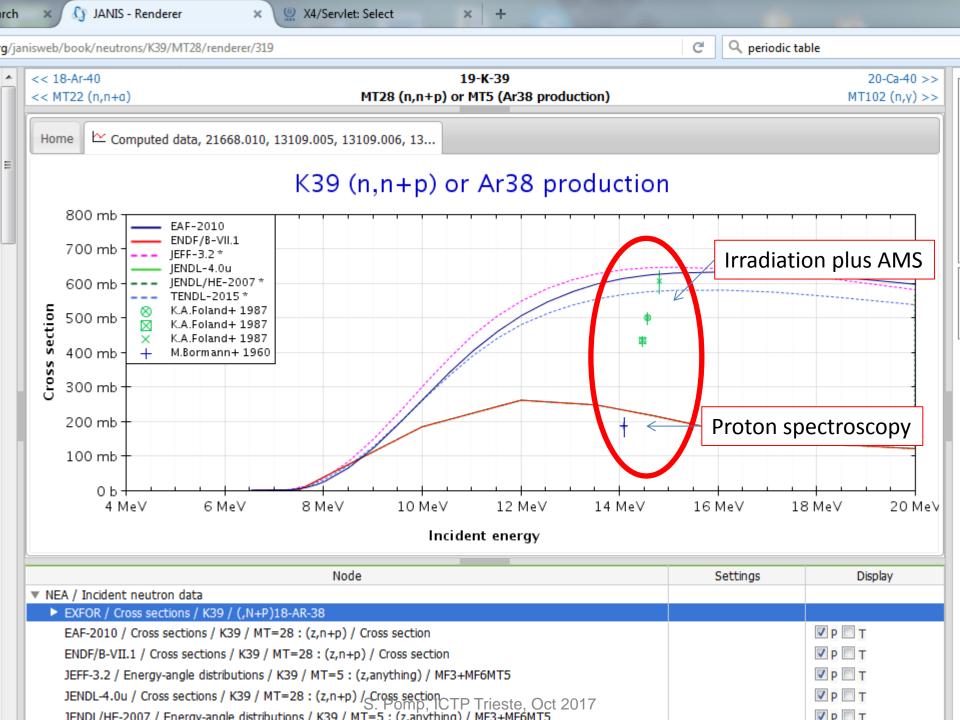
Impact:

The 39K(n,p) reaction produces 39Ar with decay half-life of 269 years and makes the dominant contribution to the long-lived radioactive inventories in NaK. The latter is considered as a coolant of specimens in the accelerator driven irradiation facilities that are designed now for the fusion material testing (IFMIF [1], DONES [2] ...). Together with the competing reaction 39K(n,np)38Ar they also determine the total amount of Argon gas which impact on the thermal and mechanical properties of sealed specimens containers [3]. The current poor knowledge of these two reactions questions whether NaK could be used in the IFMIF and DONES design. Additionally, since potassium is present in cement and concrete, the 39K(n,p)39Ar reaction impacts on the long-term radioprotection and shielding issues in IFMIF/DONES testing vaults and future fusion power plants.

Accuracy:

The continuous Argon gas leakage through cracks in the welding of sealed containers or their accidental rupture is a complex process. Because of this complexity, the sensitivity analyses quantifying the required accuracy of the cross sections have never been done. However, considering the potentially high impact and the poor knowledge of these cross sections, a request for 10% accuracy is a reasonable requirement that will be practically achievable by utilizing the current techniques. This requirement is supported by the fusion and general nuclear data users.

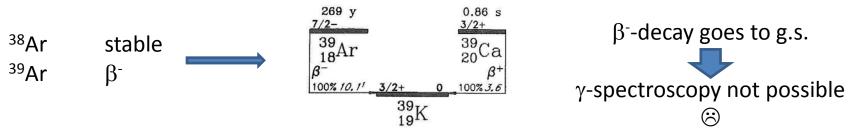

Justification document:


At 14 MeV neutron energy 3 measurements by proton spectroscopy and activation [4-6] reported 3 times larger value for 39K(n,p)39Ar reaction cross section than measurement by AMS [7]. For competing reaction 39K(n,np)38Ar the situation is vice versa. See Ref. [3] for more information.

The main evaluated libraries are similarly discrepant depending on which experiment they follow.

The new measurement is needed first at 14 MeV to resolve this contradiction.

References


Look at some basics first

	Ca 38 439 ms	Ca 39 860 ms	Ca 40 96,941	Ca 41 1,03 · 10 ⁵ a	Ca 42 0,647	Ca 43 0,135	
	β ⁺ 5,6 γ 1568 m	β ⁺ 5,5 γ (2522)	σ 0,41 σ _{π. α} 0,0025	ε no γ	or 0,65	σ6	
	K 37 1,22 s	K 38 924,6 ms 7,6 m	K 39 93,2581	K 40 0,0117 1,28 · 10 ⁹ a	K 41 6,7302	K 42 12,36 h	
	β ⁺ 5,1 γ2796	β [*] 5,0 β [*] 2,7 γ 2168	σ 2,1 σ _{n, α} 0,0043	β^{-} 1,3; ϵ ; β^{+} γ 1461; $\sigma_{n, p}$ 4,4 σ 30; $\sigma_{n, \alpha}$ 0,39	or 1,46	β 3,5 γ 1525	1
	Ar 36 0,337	Ar 37 35,0 d	Ar 38 0,063	Ar 39 269 a	Ar 40 99,600	Ar 41 1,83 h	
)	α 5,6 σ _{n, α} 0,0055	ε πογ σ _{n, p} 69 σ _{n, α} 1970	or 0,8	β 0,6 no γ σ 600	or 0,64	β 1,2; 2,5 γ 1294 σ 0,5	
	CI 35 75,77	Cl 36 3,0 · 10⁵ a	Cl 37 24,23	CI 38 37,18 m	CI 39 56 m	CI 40 1,35 m	
	σ 43,7 σ _{n, p} 0,4 σ _{n, α} 0,00008	$\beta^{-} 0.7$ $\epsilon; \beta^{+}$ $no \gamma$ $\sigma < 10$	or 0,42	β 4,9 γ2168; 1642	β 1,9; 3,4 γ 1267; 250; 1517	β 3,2; 7,5 γ 1461; 2840; 2622	E
	0.04	0.05	0.00	0.07	0.00	0.00	T

Isotopic compostion of ^{nat}K:

³⁹ K	93.26%
⁴⁰ K	0.01%
⁴⁰ K	6.73%

Reaction products:

(Note: for ${}^{41}K(n,p)$, γ -spectroscopy would be an option)

Options?

• Either use proton spectroscopy (e.g. with active detector),

200 M. BORMANN, H. JEREMIE, G. ANDERSSON-LINDSTRÖM, H. NEUERT UND H. POLLEHN

Über die Wirkungsquerschnitte einiger von 14 MeV-Neutronen in den Szintillationskristallen NaJ(TI), KJ(TI), CsJ(TI) und Li⁶J(Eu) ausgelösten Kernreaktionen*

Von M. BORMANN, H. JEREMIE **, G. ANDERSSON-LINDSTRÖM, H. NEUERT und H. POLLEHN

Aus dem Physikalischen Staatsinstitut, I. Institut für Experimentalphysik, Hamburg (Z. Naturforschg. 15 a, 200-210 [1960]; eingegangen am 20. Januar 1960)

http://zfn.mpdl.mpg.de/data/Reihe_A/15/ZNA-1960-15a-0200.pdf

or use mass measurement of products

The Production of ³⁸ Ar and ³⁹ Ar by 14-MeV Neutrons on ³⁹ K									
K. A. Foland, R. J. Borg, M. G. Mustat	a								
Nuclear Science and Engineering			February 1987	Pages 128-134					
Technical Paper / dx.doi.org/10.13	3182/NSE87-A2	20423							

Tricky:

- Potassium is a highly reactive metal
- Either treat under vacuum or inert gas or
- Use a composite (which needs background subtraction)

For the sake of this discussion: let's assume we found a way to handle thin K sheets (e.g., sealed between mylar foils) as a target ...

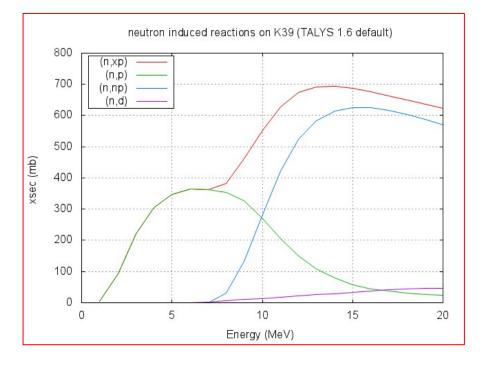
UNIVERSITET

Passive or active?

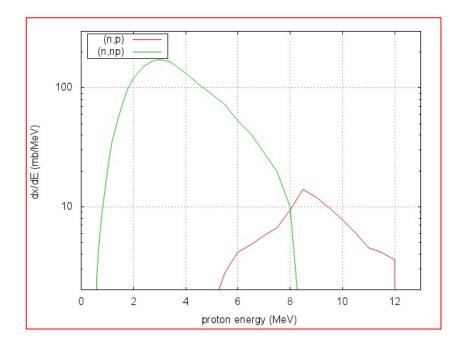
- Out-of-beam measurement
 - activation technique; e.g. irradiation plus AMS
 - needs either mono-energetic beam (e.g., DT), or QMN + unfolding/low-E-tail subtraction methods
 - Pro: Measures product (independent of reaction channel)
 - Con: Limited number of available beam energies

- In-beam measurement
 - neutron beam plus online detection
 - Pro: measurements at many incoming energies possible
 - Con: possible ambiguity on reaction product (e.g., (n,xp) measurement)

UPPSALA UNIVERSITET

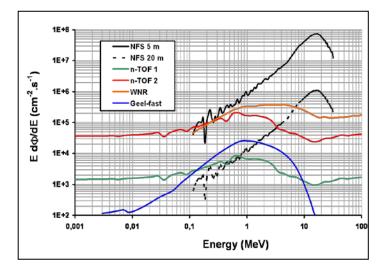

Let's say we opt for proton detection

- Method?
 - Active target (target = part of detector)
 - Pro: 4π coverage
 - Con: careful response analysis necessary
 - Target + Telescope (ΔE -E)
 - Pro: PID, energy spectra, angular distributions
 - Con: small $\Delta\Omega$ coverage
- Beam?
 - DT source: one mono-energetic beam
 - QMN beams (Li(p,n)): several beams but low-E tail
 - White beam: "all in one"



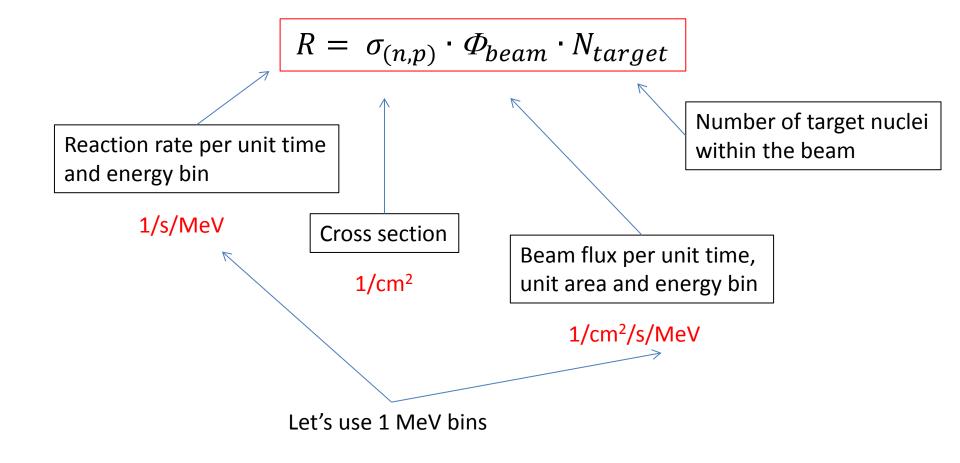
UPPSALA UNIVERSITET

One problem though ...


Possible way out? Study the energy of the emitted proton: What we would measure is (n,xp). According to TALYS this xs is, in the 10-20 MeV region, heavily dominated by (n,np).

Anyway, we go ahead and ...

... decide that we want to use a **white neutron beam** with good intensity in the interesting energy range (NFS) and that we use a setup like Medley:



The HRPL asks for an uncertainty for the measured cross section below 10%. Typically systematic uncertainties dominate (normally larger than 5%) so we need to go for a **statistical uncertainty** of, say, **better than 1%** (10,000 events).

Question: how much beam time would we need?

$$R = \sigma_{(n,p)} \cdot \varPhi_{beam} \cdot N_{target}$$

The cross section is roughly 200 mb:
200 mb = 200 \cdot 10^{-3} \cdot 10^{-24} cm^2 = **2** \cdot **10^{-25} cm^2**

100

$$R = \sigma_{(n,p)} \cdot \Phi_{beam} \cdot N_{target}$$

FS flux at	5 m according	to the figure:		1E+8 -				
E _n [MeV]	E d Φ/dE [cm ⁻² s ⁻¹]	dΦ/dE [cm ⁻² s ⁻¹ MeV ⁻¹]		1E+7 -				
5	1· 10 ⁷	2 · 10 ⁶	1-2 c-1	י. 1E+6 -	— n-TOF 2 — WNR — Geel-fast		كممريهم	
10	$4 \cdot 10^{7}$	$3 \cdot 10^{6}$	איזעב <i>וס</i>	2 1E+5		A	×/	X
15	7 · 10 ⁷	$5 \cdot 10^{6}$	÷7	→ → 1E+4 -			and wat	\mathbf{X}^{\sim}
20	$5 \cdot 10^{7}$	$2.5 \cdot 10^{6}$		1E+3 -		مر امبر المبر		
				1E+2	0,01	0,1	1	, 10
as use	an average of 3	3 • 10 ⁶ cm ⁻² s ⁻¹ MeV ⁻¹				-	ergy (MeV	/)

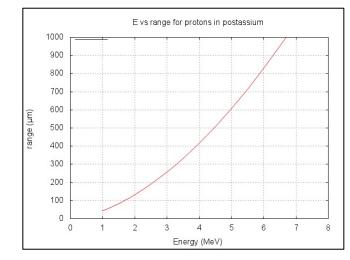
$$R = \sigma_{(n,p)} \cdot \Phi_{beam} \cdot N_{target}$$

Target:

assume a disc of metallic potassium (yes, it is tricky ...) with

- diameter 3 cm, i.e., A_{target} =
- thickness $t = 100 \,\mu\text{m}$, and
- density $\rho = 0.89 \text{ g/cm}^3$ (areal density is then 8.9 mg/cm²).

$$N_{target} = \rho \cdot t \cdot A_{target} \cdot \frac{N_A}{M_a} \approx 10^{21}$$


Using

$$\begin{aligned}
\mathcal{P}_{(n,p)} &= 2 \cdot 10^{-25} \text{ cm}^2 \\
\mathcal{P}_{beam} &= 3 \cdot 10^6 \text{ cm}^{-2} \text{ s}^{-1} \text{ MeV}^{-1} \\
\mathcal{N}_{target} &= 1 \cdot 10^{21}
\end{aligned}$$
we get $R = 600 \text{ s}^{-1} \text{ MeV}^{-1}$

Assuming further we have an arrangement of 10 detector telescopes with Si detectors (100% efficiency for protons) with an opening are of 450 mm² each and placed at a distance of 10 cm, we cover about 3.6% of 4π .

This finally gives that we register 20 events per second and would need (only) 500 seconds to collect 10,000 events.

What more ...

Calculated with SRIM; see srim.org

Furthermore: what we would measure with a setup of telescopes placed at different angles is in fact $d\sigma/d\Omega(\Theta)$.

To get σ we need to **integrate over the scattering angle**, probably needing proper interpolation/extrapolation, i.e.,

a theoretical description of the shape of the angular distribution.

But we stop this discussion here for now.

... do we need to consider?

We need to correct for energy and particle losses

in the target. But 100 μ m thickness seems quite ok:

UNIVERSITET

In sum

We looked at the case of measuring the cross sections for ³⁹K(n,p) and ³⁹K(n,np) in the 10 to 20 MeV range.

Using a white neutron beam as in the future NFS facility and an arrangement of detector telescopes, we estimated that enough statistics could be collected within far less than one hour of beam time.

Main problems that one needs to solve:

- How to get a suitable target (potassium is chemically highly reactive). Maybe one can use a compound. But these would need advance background subtraction.
- How to distinguish between (n,p) and (n,np)? Following the present discussion we would measure (n,xp). However, with input from model calculations this might be good enough.
- Probably something else that we did not think of yet ...