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LEVEL DENSITIES 

(Why do we need them ?) 

? 



LEVEL DENSITIES 

(Where do we need them ?) 

 partial or p-h level densities for pre-equilibrium model
 

 



THE PRE-EQUILIBRIUM MODEL 

(Master equation exciton model) 

Disparition 

Apparition 

P(n,E,t) = Probabilité   to find for a given time t the composite 

system with an energy E and an exciton number n. 

] [ l 
n, n+2 

(E) + l 
n, emiss 

(E) + l 
n, n-2 

(E) P(n, E, t) - 

dP(n,E,t) 

dt 
=  

l 
a, b

 (E) = Transition rate from an initial state a  towards a state b for a 

given energy  E. 

Evolution equation 

Emission cross section in channel c 

P(n, E, t) l 
n, c 

(E) dt  de
c 

ds
c 
(E, e

c
) 

 
= s

R  
0 

∞ 

S 
n, Dn=2 

P(n-2, E, t) l 
n-2, n 

(E) + P(n+2, E, t) l 
n+2, n 

(E)  

Probability 



THE PRE-EQUILIBRIUM MODEL 

(Initialisation & transition rates) 

P(n,E,0) = n,n0
 with n0=3 for nucleon induced reactions 

Initialisation 

Transition rates 

l 
n, c 

(E) =  
2sc+1 

2 ℏ3 
µc ec sc,inv (ec)  

ω(p-pb,h,E- ec- Bc) 

ω(p,h,E) 
Qc(n) Fc 

l 
n, n+2 

(E) = 

l 
n, n-2 

(E) = 
2  

ℏ 
M2 ω(p,h,E) with p+h=n-2 

2  

ℏ 
M2 ω(p,h,E) with p+h=n+2 

State densities 

ω(p,h,E) = number of ways of distributing p particles  

and h holes on among accessible single particle levels 

with the available excitation energy E 

Original 

formulation 

Corrections for 

 proton-neutron 

 distinguishability 

& 

 complex particle 

 emission 



 partial or p-h level densities for pre-equilibrium model
 

 

 total level densities for compound-nucleus model 
 

 Light particle emission in continuum bins 

 Gamma decay 

 Fission cross section 

LEVEL DENSITIES 

(Where do we need them ?) 



THE COMPOUND NUCLEUS MODEL 

(multiple emission) 
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THE COMPOUND NUCLEUS MODEL 

(compact expression) 

and         Tb(b)        = transmission coefficient for outgoing channel b  

          associated with the outgoing particle b 

<    > 
J = l + s + IA = j + IA 

  

 

and   = (-1)    A 

 

                 

with 
l 

=      sab    where b =  , n, p, d, t, …, fission   
b 

<    > 
sab = 

 

k a 

2 
 
J, 

(2J+1) 

(2s+1)(2I+1) 

 
 

Tlj () 
J 

 
,b 

Wb 

Tb (b) 
J 

Td () 
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sNC 



LDs needed
 

THE COMPOUND NUCLEUS MODEL 

(various decay channels) 

Possible decays 

• Emission to a discrete level with energy Ed 

 

 

 

 

 

• Emission in the level continuum 

 

 

 

 

 

 

  

 

• Emission of photons, fission 

      Tb(b)        =                given by the O.M.P.  <   > 
J 

Tlj(b) 

      Tb(b)        =  <   > 
E 
 

J 

Tlj(b) r(E,J,) dE 

E +DE 

r(E,J,) density of residual nucleus’ levels (J,) with excitation energy E  

Specific treatment 



THE COMPOUND NUCLEUS MODEL 

(the  GOE triple integral) 

T < 1 
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• Běták and Doběs 1976 : account for finite number of holes’ states 

 

• Obložinský 1986 : account for finite number of particles’ states (MSC) 

 

• Anzaldo-Meneses 1995 : first order corrections for increasing number of p-h 

 

• Hilaire and Koning 1998 : generalized expression in ESM 

 

LEVEL DENSITIES 

(particule-hole level densities) 

State densities in ESM 

• Ericson 1960 : no Pauli principle 

 

• Griffin 1966 : no distinction between particles and holes 

 

• Williams 1971 : distinction between particles and holes as well as between 

neutrons and protons but infinite number of accessible states for both  

     particle and holes 



Refinement to the ESM 

• Fu 1984 : advanced pairing correction 

 

• Akkermans and Gruppelaar 1985 : ensure consistency between ph and total 

level densities 

 

• Fu 1985 : advanced spin cut-off factor 

 

• Kalbach 1995 : Inclusion and treatment of a gap in the ESM 

 

• Harangozo 1998 : Energy dependent single particle state density g(e) 
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LEVEL DENSITIES 

(Qualitative aspects from experimental data) 

•   Exponential increase of the cumulated number of discrete levels N(E) with energy 

   
 r(E)= 
  

 odd-even effects 

 

•   Mean spacings of s-wave neutron resonances at Bn of the order of few eV 

 

 r(Bn) of the order of 10
4
 – 10

6
 levels / MeV
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LEVEL DENSITIES 

(Qualitative aspects from D0 vs A) 

 

 Mass dependency 

 Odd-even effects 

 Shell effects
 

 

 

Iljinov et al., NPA 543 (1992) 517.
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 Mass dependency 

 Odd-even effects 

 Shell effects
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LEVEL DENSITIES 

(Qualitative aspects from D0 vs N) 



LEVEL DENSITIES 

(Quantitative analysis) 

Odd-even effects 

accounted for 
  

U → U*=U - D 

1 

2 

  

12 

(        ) exp   2   aU  

a
1/4

U
5/4 

 r (U, J, ) = 
 2s 

2 
2   2  s 

3 

2J+1 
 2 

J+½ (      ) 
exp -  

 +  s 
2 = Irig  a 

U 

 odd-even effects 

 D 
 = 

 odd-odd 
   

odd-even 
  

 even-even 

0 
  

12/   A 
  

24/   A 

Shell effects Masse 



LEVEL DENSITIES 

(Ignatyuk formula) 

~ 
a (A) a (N, Z, U*) = 

1 - exp ( -  U* ) 

U* 
1 + W(N,Z) 



1 

10 - 

10 
3 - 

10 
4 - 

10 
5 - 

10 
6 - 

10 
2 - 

N
(E

) 

E (MeV) 

1         2        3        4        5        6        7         8        9 

Discrete levels 

(spectroscopy) 

Temperature law 

 

N(E)=exp  
E – E0 

T 

(     )  

Fermi gaz (adjusted at Bn) 

 (        ) exp   2   aU*  

a
1/4

U*
5/4 

 r (E)     = 

LEVEL DENSITIES 

(Summary of most simple analytical description) 

Matching conditions : continuity of r and of its derivative (sometimes difficult) 



LEVEL DENSITIES 

(More sophisticated analytical approaches) 

•   Superfluid model & Generalized superfluid model 
Ignatyuk et al., PRC 47 (1993) 1504 & RIPL3 paper (IAEA) 

 

 More correct treatment of pairing for low energies 

 Fermi Gas + Ignatyuk beyond critical energy 

 Explicit treatment of collective effects 

 

r(U) = Kvib(U) * Krot(U) * rint(U) 
 

 

 

 

 

 

 

 Collective enhancement only if rint(U)  0 not correct for vibrational  

states  
 

a  A/13 aeff  A/8 Several analytical 

or numerical options 



LEVEL DENSITIES 

(Collective levels) 

 vibrational level sequence for a spherical even-even nucleus 

0+ 

2+ 

0+, 2+, 4+ 

 

0+, 2+, 3+, 4+, 6+ 

E2+ 

E2+ 

E2+ 

3 coupled phonons 

2 coupled phonons 

1 phonon 

other levels 



 General level sequence for a deformed even-even nucleus : Erot(J,K) =  

0+ 

2+ 

4+ 
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(Collective levels) 



LEVEL DENSITIES 

(Explicit treatment of collective levels) 

r(U) = Kvib(U) x Krot(U,b) x rint(U) 
 



LEVEL DENSITIES 

(Shell Model Monte Carlo approach) 

•   Shell Model Monte Carlo approach  
Agrawal et al., PRC 59 (1999) 3109 + Koonin et al, Phys. Rep. 278 (1997) 1. 

 

 Realistic Hamiltonians but not global 

 Coherent and incoherent excitations treated on the same footing 

 Time consuming and thus not yet systematically applied 
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(SMMC results) 
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(SMMC results) 
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LEVEL DENSITIES 

(SMMC  results) 

b < 0.1 b = 0.15 b = 0.20 

b = 0.30 b = 0.35 



LEVEL DENSITIES 

(HFB+BCS Statistical approach) 
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(HFB+BCS Statistical approach) 
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(HFB+BCS Statistical approach) 
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(HFB+BCS Statistical approach) 
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LEVEL DENSITIES 

(HFB+BCS Statistical approach) 

    Courtesy S. Goriely     
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(HFB+BCS Statistical approach) 
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•   Combinatorial approach 
S. Hilaire & S. Goriely, NPA 779 (2006) 63 & PRC 78 (2008) 064307. 

 

 Direct level counting 

 Total (compound nucleus) and partial (pre-equilibrium) level densities 

 Non statistical effects (spin and parity in particular) 

 Global (tables) 
 

LEVEL DENSITIES 

(Combinatorial approach) 



LEVEL DENSITIES 

(The combinatorial method) 

- HFB + effective nucleon-nucleon interaction     single particle level schemes 

- Combinatorial calculation     intrinsic p-h and total state densities wph (U, K, ) 

See PRC 78 (2008) 064307 for details 
Level density estimate is a counting problem:    r(U)=dN(U)/dU 

N(U) is the number of ways to distribute the nucleons among the available levels for a 

fixed excitation energy U  



E 

LEVEL DENSITIES 

(The combinatorial method) 

- Combinatorial calculation     intrinsic p-h and total state densities wph (U, K, ) 

- Phenomenological mixing of spherical and deformed densities for small deformations 

See PRC 78 (2008) 064307 and PRC 86 (2012) 064317 for details 

Predicted within the 

same theoretical 

framework (coherence) 

- Collective effects     from state to level densities r(U, J, ) 

      2) construction of rotational bands for deformed nuclei   

                                : 1) folding of intrinsic states and vibrational states : w= wph  * wvib  

r(U, J, ) = S 
K 

w (U-Erot, K, ) 
JK 

         trivial relation for spherical nuclei  

r(U, J, ) = w (U, K=J, ) - w (U, K=J+1, ) 

- TDHFB + effective nucleon-nucleon interaction    

   temperature (energy) dependent single particle level schemes 
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(The combinatorial method) 
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(The combinatorial method) 



LEVEL DENSITIES 

(The combinatorial method) 



LEVEL DENSITIES 

(The combinatorial method) 

Quadrupole phonons’ energies calculated from D1M+5DCH approach  

D1M+5DCH predictions overestimate experimental data on average               

renormalisation by 1,52 (resp. 1,22) for 0+ (resp, 2+) levels 



Construction of NLD=f(T) 

Level density for 238U 



LEVEL DENSITIES 

(The combinatorial method) 

Structures typical of non-statistical feature 



LEVEL DENSITIES 

(The combinatorial method) 

f rms = 1.79                          f rms = 2.14                                 f rms = 2.30 

D0  values  ( s-waves  & p-waves) 

Back-Shifted Fermi Gas HF+BCS+Statistical HFB + Combinatorial 

Description similar to that obtained with other 

global approaches 



LEVEL DENSITIES 

(The combinatorial method) 



LEVEL DENSITIES 

(spin distribution : combinatorial method vs Gaussian law) 

       significant deviations at low energy and high momentum 



1 

2 12 

  (          ) exp   2   aU  

a
1/4

U
5/4 

 r (U, J, ) = 
 2s 

2 
2   2  s 

3 

2J+1 
 2 

J+½ (      ) 
exp  -  

      with s 
2 =  I rig  

a 

U 

LEVEL DENSITIES 

(spin distribution : combinatorial spin cut-off) 

       s 
4  globally linear  

       K lower than rigid body 

              depends on energy  

{  



LEVEL DENSITIES 

(saturated spin cut-off) 

               s 
2 =  I rig  

a 

U 

       rotational bands required for a smooth K   

{  
       asymptotic value of K   



LEVEL DENSITIES 

(parity distributions) 
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(parity non equipartition) 



LEVEL DENSITIES 

(parity non equipartition) 



Non-statistical feature imply significant deviations from the usual gaussian 

spin dependence 

LEVEL DENSITIES 

(non-Gaussian spin distribution) 



Non-statistical feature imply significant deviations from the usual gaussian 

spin dependence which have significant impact on isomeric production 
See PRL 96 (2006) 192501 for details 

Gaussian 

distribution 

Combinatorial 

distribution 

Isomer 9- (1015 y) 

Isomer 

LEVEL DENSITIES 

(non-Gaussian spin distribution) 



LEVEL DENSITIES 

(govern competition : fission vs inelastic) 



LEVEL DENSITIES 

(govern competition : fission vs inelatic) 
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LEVEL DENSITIES 

(tabulated data adjustment) 



Nuclear level densities (formulae, tables, codes) 
• spin-, parity- dependent level densities fitted to D0   
• single particle level schemes 
• p-h level density tables 
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GAMMA-RAY STRENGTHS 

- Qualitative features 

• HFBCS-RPA 

• HFB+QRPA 

• Shell Model 

- Analytical approaches 

- Microscopic approaches 
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• Exotic nuclei 

• Hot topics 

- Impacts on cross sections 



GAMMA-RAY STENGTH 

(qualitative aspects from photoabsorption) 

       photoabsorption cross section peaks around 10-20 MeV 

       peak energy decreases with mass 

       peak height increases with mass 

       two peaks usually appear for deformed nuclei 



GAMMA-RAY STRENGTH 

(upward and downward strength) 

(Brink-Axel hypothesis) 

Two types of strength functions : 

 - the « upward » related to photoabsorption 

 

 

 

 

 - the « downward » related to -decay 

 

  

2

2 2 2 2
~ 0

( )

r

r r

E Г
f f

E E E Г



 

= 
- 

0E 

Standard Lorentzian (SLO) 
[D.Brink. PhD Thesis(1955); P. Axel. PR 126(1962)] 

 

Spacing of states from 

which the decay occurs  

BUT 



GAMMA-RAY STRENGTH 

(transmission coefficient and selection rules) 

Tkl(E,e) = 

= 2 f(k,l,e) e
2l+1 

k : transition type (E or M) 

l : transition multipolarity 

e : outgoing gamma energy 

f(k,l, e) : gamma strength function (several models) 

Decay selection rules S(k,l,Ji
i,Jf

f ) from a level Ji
i to a level Jf

f: 

   For El: 

   For Ml: 
|Ji-l| ≤ Jf ≤ Ji+l 

f=(-1)l i 

f=(-1)l1 i 

2  Gkl (e) r(E) dE  
E 

E+DE 

Renormalisation method for thermal neutrons 

<T>= 2 <G> r(Bn) 
D0 

1 

experiment 

C S S S    Tkl(e) r(Bn-e,Jf,f) S(k,l,Ji,i, Ji,f) de =   
0 

Bn 

Ji,i kl Jf,f 

C 

(E1  10 - 100 M1) 

(XL  10-3 XL-1) 
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Improved analytical expressions : 

      - 2 Lorentzians for deformed nuclei 

 

      - Account for low energy deviations from standard Lorentzians for E1 

 . Kadmenskij-Markushef-Furman model (1983) 

   Enhanced Generalized Lorentzian model of Kopecky-Uhl (1990) 

   Hybrid model of Goriely (1998) 

   Generalized Fermi liquid model of Plujko-Kavatsyuk (2003) 

 

      - Reconciliation with electromagnetic nuclear response theory 

   Modified Lorentzian model of Plujko et al. (2002) 

   Simplified Modified Lorentzian model of Plujko et al. (2008) 

 

 

  

GAMMA-RAY STENGTH 

(Analytical expressions) 



GAMMA-RAY STENGTH 

(Brink-Axel and Kopecky-Uhl models) 

with 

Brink-Axel (option 2 in TALYS) 

Kopecky-Uhl (for E1) (option 1 in TALYS) 

with                                                   and 

 Deformed nuclei : incoherent sum of two Lorentzians 

 Parameters taken from experimental fit of data (RIPL-III) for measured nuclei 

 From global systematics otherwise 

 

 

 

  

 

 

  



GAMMA-RAY STENGTH 

(Brink-Axel model) 

90Zr (spherical)                                  238U (deformed) 

 Deformed nuclei : two Lorentzians = two peaks 

 Lorentzian centroid energy decreasing with A 

 M1 much weaker than E1 log scale 
 

  



GAMMA-RAY STENGTH 

(Brink-Axel model) 

90Zr (spherical)                                  238U (deformed) 

 Deformed nuclei : two Lorentzians = two peaks 

 Lorentzian centroid energy decreasing with A 

 Strength  0 for E  0 (ok for gamma absorption but not for gamma decay) 
 

  



GAMMA-RAY STENGTH 

(Brink-Axel, Kopecky-Uhl, Hybrid model) 

 Deformed nuclei : two Lorentzians = two peaks 

 Lorentzian centroid energy decreasing 

  E1 = (10 – 100) M1 « where it counts » 

 Kopecky-Uhl or Hybrid model correct low energy behavior of Brink-Axel when 

considering gamma decay rather than gamma absorption 

90Zr (spherical)                      238U (deformed) 



GAMMA-RAY STENGTH 

(Brink-Axel=SLO, Kopecky-Uhl=EGLO, GFL, MLO) 



Improved analytical expressions : 

      - 2 Lorentzians for deformed nuclei 

 

      - Account for low energy deviations from standard Lorentzians for E1 

 . Kadmenskij-Markushef-Furman model (1983) 

   Enhanced Generalized Lorentzian model of Kopecky-Uhl (1990) 

   Hybrid model of Goriely (1998) 

   Generalized Fermi liquid model of Plujko-Kavatsyuk (2003) 

 

      - Reconciliation with electromagnetic nuclear response theory 

   Modified Lorentzian model of Plujko et al. (2002) 

   Simplified Modified Lorentzian model of Plujko et al. (2008) 

 

 

  

GAMMA-RAY STENGTH 

(Analytical expressions) 

 Many choices and parameters : extrapolation at your 

own risks ! 
 

  



GAMMA-RAY STENGTH 

(Analytical expressions summary) 

• Standard Lorentzian (E0, G0, s0) 

• Lorentzian with E-dependent width (e.g McCullagh et al. 1981) 

• Generalized Lorentzian with T- and E-dep. width (e.g Kopecky & Uhl 1990) 

Lorentzian 

G(E,T) 

144Nd 

G(E) 

The E- and T-dependent width is essentially 

derived from the theory of Fermi liquids 

(e.g Kadmenski et al. 1983) and also 

suggested by experimental ARC data  

Kopecky & Uhl (1990) 

collisions between 

quasi-particles 

G=
G0

E0

2
E2 + 4p 2T2( )

decay of p-h states into 

more complex states 

At the basis of GLO, EGLO, MLO, SMLO, Hybrid, … models 
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 « Those who know what is (Q)RPA don’t care about details,  

     those who don’t know don’t care either », private communication 

 

   Systematic QRPA with Skm force for 3317 nuclei performed  

  by Goriely-Khan (2002,2004) 

 

   Systematic QRPA with Gogny force under work (300 Mh!!!) 

 

 

  

GAMMA-RAY STENGTH 

(Microscopic approaches expressions) 

   Shell Model approach  

Systematic approaches : all nuclei feasible  

Local approaches : regional study only 



MICROSCOPIC APPROACHES 

(QRPA) 

QRPA provides with emission probability between an excited state and the GS 

D1S 

D1M 

 Broadening necessary to account for damping of collective motion  



MICROSCOPIC APPROACHES 

(QRPA) 

QRPA provides with emission probability between an excited state and the GS 

 Shift to account for phonon couplings + beyond 1p-1h approximation 

 Peak normalization to improve experimental data fitting  
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MICROSCOPIC APPROACHES 

(QRPA + Skm force : peak normalization) 

See S. Goriely & E. Khan, NPA 706 (2002) 217. 

       S. Goriely et al., NPA739 (2004) 331. 



MICROSCOPIC APPROACHES 

(Skyrme+QRPA after fitting) 

See S. Goriely & E. Khan, NPA 706 (2002) 217. 

       S. Goriely et al., NPA739 (2004) 331. 



MICROSCOPIC APPROACHES 

(QRPA+Skm for deformed nuclei) 

See S. Goriely & E. Khan, NPA 706 (2002) 217. 

       S. Goriely et al., NPA739 (2004) 331. 



MICROSCOPIC APPROACHES 

(QRPA + Skm for exotic nuclei) 

See S. Goriely & E. Khan, NPA 706 (2002) 217. 

       S. Goriely et al., NPA739 (2004) 331. 



Can be removed within the QRPA+Gogny framework 

but high computational cost 

MICROSCOPIC APPROACHES 

(QRPA+Skm conclusions) 



MICROSCOPIC APPROACHES 

(QRPA + Gogny force) 

QRPA calculations performed to 

 

  
1) perform sensitivity analyses w.r.t : 

       effective interaction (D1S vs D1M) 

       nuclear deformation 

       quasiparticle energy cut-off ec 

       number of major shells Nsh         

 

 

 

 

 

2) compute QRPA strengths for all nuclei included in the IAEA RIPL-3 database 

3) compute low energy collective states 

 

 

 

 

 25 Mh allocated on the CURIE supercomputer in 2011-2012 

 2 Tb of data produced 

 111 nuclei considered 
 

 compromise accuracy vs computing time 

computing time for a given K with 1024 cpu 



folded strength      raw strength      

with      

where K, D and G can be adjusted      

MICROSCOPIC APPROACHES 

(QRPA+Gogny force : adjustment procedure) 



MICROSCOPIC APPROACHES 

(QRPA+Gogny force : broadening of 2 MeV only) 

 Shift to account for phonon couplings + beyond 1p-1h approximation 

 Peak normalization to improve experimental data fitting  



MICROSCOPIC APPROACHES 

(QRPA+Gogny force : all parameters being adjusted) 

 Good agreement with data 

 Systematic predictions can be performed  



GAMMA-RAY STENGTH 

(QRPA+Gogny force : comparison with Brink-Axel) 

90Zr (spherical)                      238U (deformed) 

 OK for photoabsorption 

 Significant structure for M1 transitions  



GAMMA-RAY STENGTH 

(QRPA+Gogny force : comparison with Kopecky-Uhl) 

90Zr (spherical)                      238U (deformed) 

 Missing low energy strength for gamma decay 

 Significant structure for M1 transitions  



•   Shell Model approach  
E. Caurier et al., Rev. Mod. Phys. 77 (2005) p410-427 

 

 Very precise 

 Even-even, odd-A, odd-odd nuclei treated on the same footing 

 Possibility to predict within the same framework  

- spectra 

- transitions between any excited state 

- weak decays (beta, double-beta, …) 

- pairing, deformation, … 
 

 

But 
 

 local (parameters adjusted on exp. data for each mass region) 

 Not applicable everywhere due to the dimension of the matrices  

to diagonalize when large valence spaces are required 
 

 

MICROSCOPIC APPROACHES 

(Shell Model) 
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MICROSCOPIC APPROACHES 

(Shell Model) 
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 Shell model : sole microscopic model up to now to agree with low energy  

experimental data related to gamma decay  



MICROSCOPIC APPROACHES 

(Shell Model) 
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 Shell model validates the non-vanishing of the strength at low energy as 

phenomenologically introduced in some analytical formulae 



MICROSCOPIC APPROACHES 

(Shell Model) 

 Shell model shows that both E1 and M1 non vanishing low energy strength 

stem from intra-band transitions.  

  Courtesy K. Sieja 
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IMPACTS ON CROSS SECTIONS 

(Normalizations) 

Normalisation method for thermal neutrons 

<T>= 2 <G> r(Bn) 
D0 

1 
C S S S    Tkl(e) r(Bn-e,Jf,f) S(k,l,Ji,i, Ji,f) de =   

0 

Bn 

Ji,i kl Jf,f 

experiment 

C 

<G>exp. = 90 ± 13 meV  
S.F Mughabghab (1984) 



IMPACTS ON CROSS SECTIONS 

(Normalizations) 

Normalisation method for thermal neutrons 

<T>= 2 <G> r(Bn) 
D0 

1 
C S S S    Tkl(e) r(Bn-e,Jf,f) S(k,l,Ji,i, Ji,f) de =   

0 

Bn 

Ji,i kl Jf,f 

experiment 

C 

<G>exp. = 63 ± 14 meV  
S.F Mughabghab (2007) 

<G>exp. = 90 ± 13 meV  
S.F Mughabghab (1984) 

<G>exp. = 63 ± 14 meV  
S.F Mughabghab (2007) 



 Weak impact close to stability but large for exotic nuclei 

Capture cross section @ En=10 MeV for Sn isotopes 

IMPACTS ON CROSS SECTIONS 

(Exotic nuclei) 



IMPACTS ON CROSS SECTIONS 

(Exotic nuclei) 

 Weak impact close to stability but large for exotic nuclei 

Capture cross section @ En=10 MeV for Sn isotopes 



Low energy upbend of gamma-ray strength observed in several experiment 

HOT TOPICS 

(Low energy upbend ? M1 or E1 ?) 

Upbend interpreted by Shell model as transitions between 

excited states (intra-band) rather than between excited states 

and ground state. 

 

Could be calculated within QRPA framework provided a few 

more developments and “much more calculation” 



HOT TOPICS 

(Impact of low energy extra strength ?) 

Normalisation method for thermal neutrons 

<T>= 2 <G> r(Bn) 
D0 

1 
C S S S    Tkl(e) r(Bn-e,Jf,f) S(k,l,Ji,i, Ji,f) de =   

0 

Bn 

Ji,i kl Jf,f 

experiment 

C 

<G>exp. = 63 ± 14 meV  
S.F Mughabghab (2007) 



HOT TOPICS 

(Impact of low energy extra strength ?) 

Capture cross section OK but gamma spectra constrained by multiplicity not reproduced ! 



HOT TOPICS 

(Impact of low energy extra strength ?) 

Capture cross section OK but gamma spectra constrained by multiplicity not reproduced 

 Much better agreement introducing a new resonance at energies around 4 MeV 

(E1 or E2 pygmy resonance or M1 scissor  mode)  

Kopecky-Uhl 

SLO 

M1 mode « scissor » 



HOT TOPICS 

(Impact of low energy extra strength ?) 

Capture cross section OK + gamma spectra OK and no more arbitrary normalization 



HOT TOPICS 

(Impact of low energy extra strength) 

QRPA strengths for E1 and M1 

What about QRPA ? 



HOT TOPICS 

(Impact of low energy extra strength : what about QRPA ?) 

Capture cross section OK + gamma spectra OK and no more arbitrary normalization 

What about QRPA ? 



Gamma-ray strength (formulae, tables) 
• spin-, parity- dependent level densities fitted to D0   
• single particle level schemes 
• p-h level density tables 
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To be discussed tomorrow ! 


