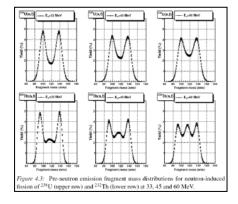
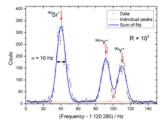
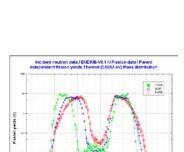
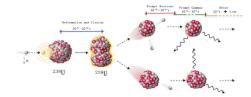


Fission yields






Stephan Pomp stephan.pomp@physics.uu.se Department of physics and astronomy


Uppsala University

- Some literature sources
- Introduction:
 - Phenomenology, time scale, obserables, challenges, data needs, ...
- Fission yields (FY):
 - Definitions, trends,
- Overview on model codes
- Overview on experimental methods
- Examples of experimental efforts
 - 2E with FGIC, 2E-2v (VERDI and FALSTAFF), IGISOL and more ...

UPPSALA UNIVERSITET

Literature: some suggestions

Fission in general:

- N. Bohr and J.A. Wheeler, *The mechanism of nuclear fission*, Phys. Rev. **56** (1939) 426.
- R. Vandenbosch and J. Huizenga, *Nuclear fission*, Academic Press, 1973.
- C. Wagemans, The nuclear fission process, CRC Press, 1991.
- A.N. Andreyev et al., *Nuclear fission: a review of Experimental Advances and Phenomenology*, Rep. Prog. Phys, 2017 (in press).

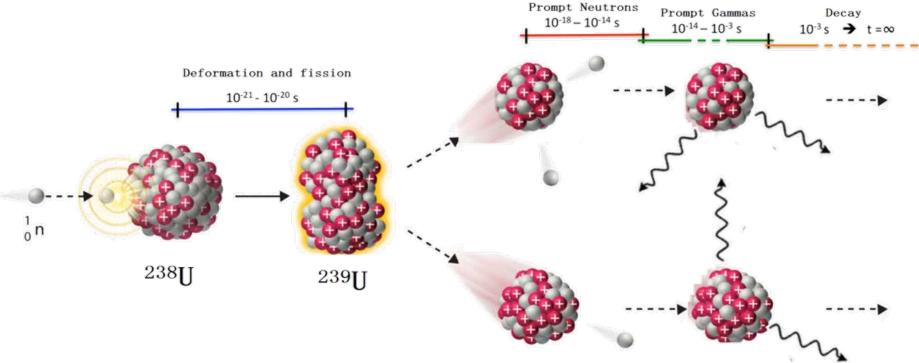
On measurement techniques etc.:

e.g. PhD theses available for free on the web:

- Ali Al-Adili, PhD thesis, Uppsala, 2013.
- Andrea Mattera, PhD thesis, Uppsala 2017.
- Kaj Jansson, PhD thesis, Uppsala 2017.

... and of course many other papers and theses from many other universities and labs $\textcircled{\odot}$

http://urn.kb.se/resolve?urn=urn%3Anbn%3Ase%3Auu%3Adiva-328484


- Some literature sources
- Introduction:

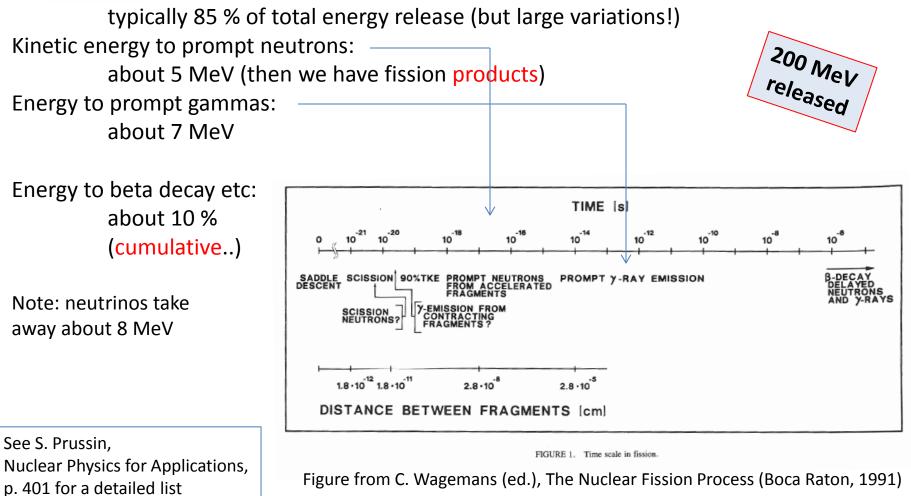
UPPSALA UNIVERSITET

- Phenomenology, time scale, obserables, challenges, data needs, ...
- Fission yields (FY):
 - Definitions, trends,
- Overview on model codes
- Overview on experimental methods
- Examples of experimental efforts
 - 2E with FGIC, 2E-2v (VERDI and FALSTAFF), IGISOL and more ...

Fission: time line and observables

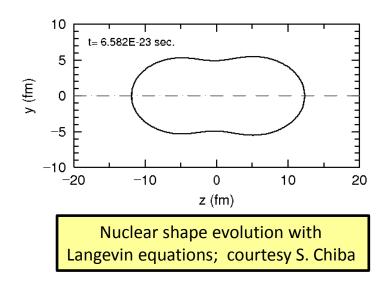
Cross section,

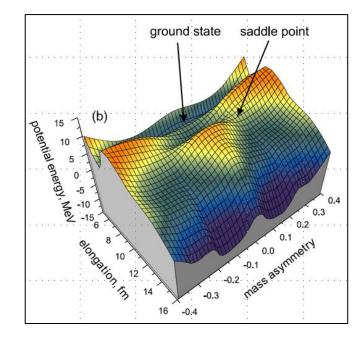
fission yields (at various stages),


prompt neutron multiplicity and energy spectra prompt gamma multiplicity and energy spectra

Energy release and time scale

Kinetic energy of fragments:

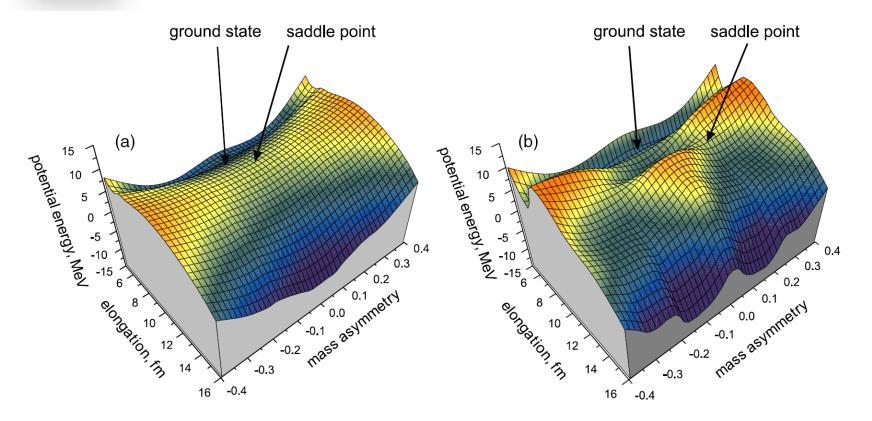




The complete nuclear physics lab (aka fission)

Fission is a slow, dynamic process which can be viewed as nuclear shape evolution.

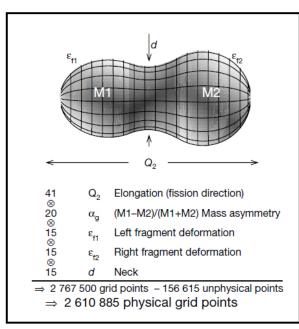
Fission comprises many aspects of nuclear physics. E.g. structure of very deformed nuclei far from stability

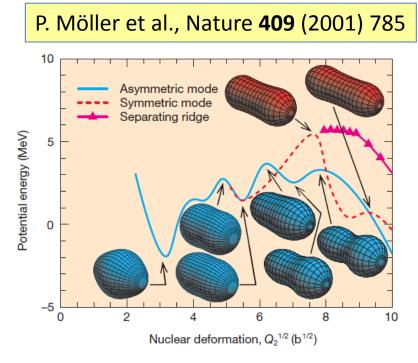


A.V. Karpov et al., J. Phys. G: Nucl. Part. Phys. 35 (2008) 035104

A 3-D view of a potential landscape

Figure 2. Macroscopic (a) and macro-microscopic (b) potential energy surface for the ²³⁸U nucleus in the coordinates (R, η) . The potential energy is obtained for $\delta = 0$ and $\varepsilon = 0.35$. The macroscopic part is normalized to zero for the spherical shape of the compound nucleus.


From: A.V. Karpov et al., J. Phys. G: Nucl. Part. Phys. 35 (2008) 035104



Computer power and random walk

Five-dimensional shape representation for potential energy calculation:

Potential energy valleys and nuclear shapes for ²³⁴U

These calculations can be used to calculate fission yields. J. Randrup and P. Möller, Phys. Rev. Lett. **106** (2011) 132503.

Other observables: e.g. angular distributions ...

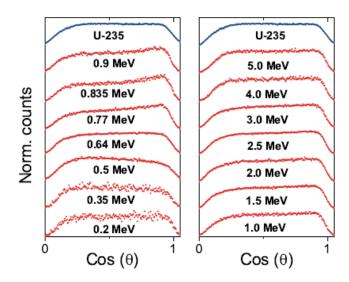


Figure 5.2. The angular distributions of 234 U(n, f) at all measured energies, E_n , together with the isotropic angular distribution of 235 U (n_{th}, f) . Note the strong difference between $E_n = 0.5$ and 0.835 MeV.

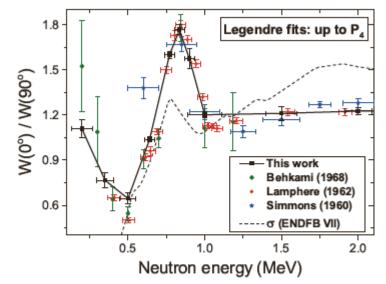
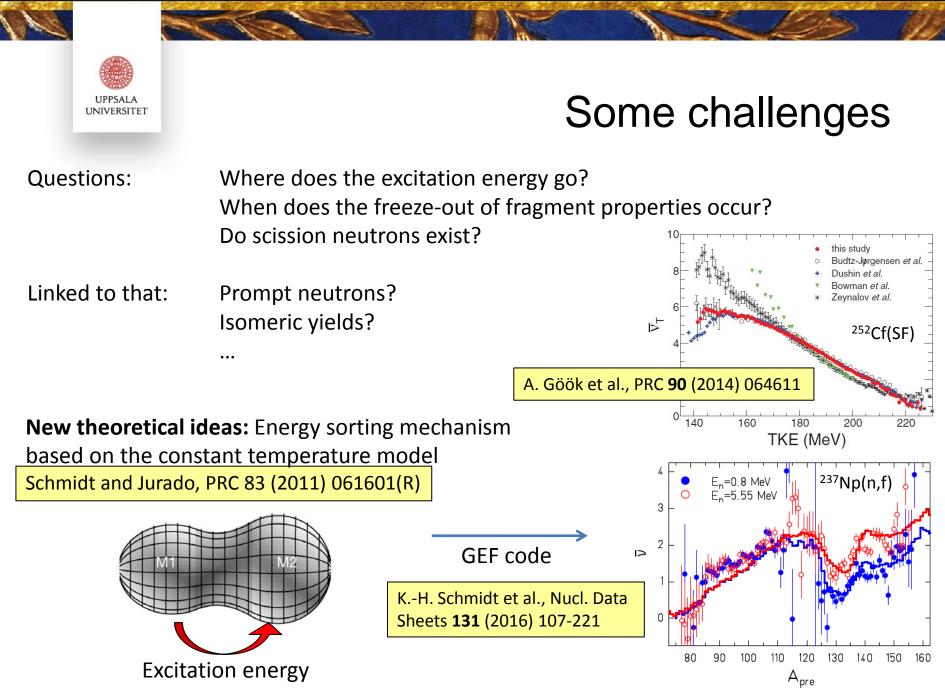



Figure 5.5. The angular anisotropy fitted with Legendre polynomials up to P_4 . Strong fluctuations in angular anisotropy as a function of incident neutron energy are seen. The results are compared to data from Refs. [3, 4, 5] where 1.0 correspond to the isotropic case of 235 U(n_{th} , f).

Strong fluctuations in the angular distributions in ²³⁴U(n,f) close to vibrational resonance. Resonances connected to the so-called *transition states* at the saddle. Also changes in mass and energy distributions where observed.

May be connected to structure in potential energy landscape (fission barrier heights).

UPPSALA

UNIVERSITET

Needs: e.g., knowledge of fission yields for various fuel cycle or nucleosynthesis scenarios.

Examples for reactor applications:

- Other fuels and high burn-up ...
- Precursors for delayed-neutron emission
- Long-lived fission products (final storage)
- Neutron poisons (neutron absorbers)

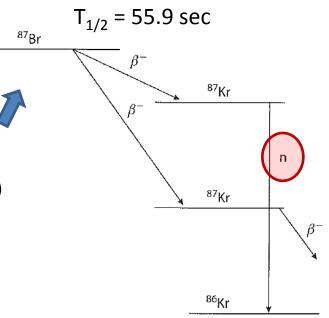
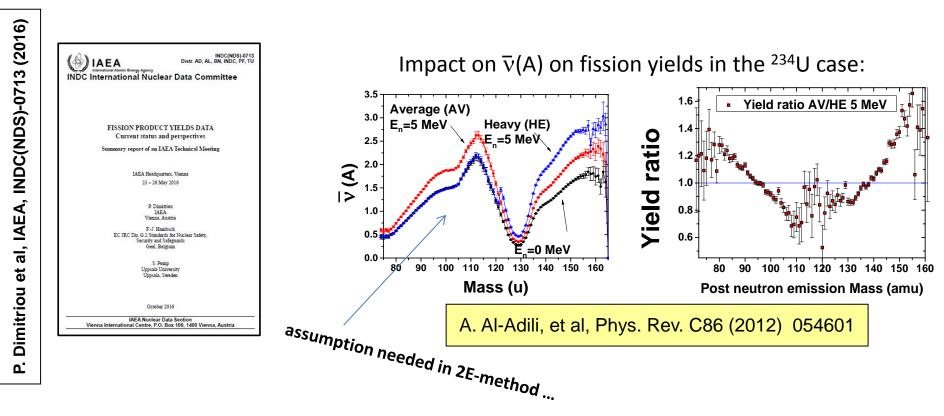
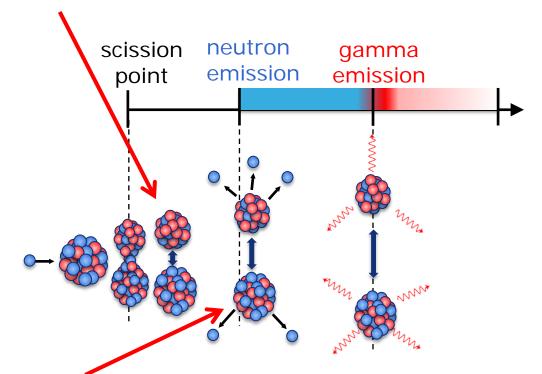


Figure 11.14 Emission of a delayed neutron in ⁸⁷Br decay.


Figure from Bertulani, Nuclear physics in a nutshell.

Needs II

Needs can only be fulfilled by direct measurements combined with theoretical developments that need guidance from other experimental input (e.g. $\bar{v}(A)$).


Outline

- Some literature sources
- Introduction:
 - Phenomenology, time scale, obserables, challenges, data needs, ...
- Fission yields (FY):
 - Definitions, trends,
- Overview on model codes
- Overview on experimental methods
- Examples of experimental efforts
 - 2E with FGIC, 2E-2v (VERDI and FALSTAFF), IGISOL and more ...

Yields: Definitions I

• Fragment yields: Yields prior to prompt neutron emission.

Product yields: Yields posterior to prompt neutron emission.

Yields: Definitions II

• Independent fission yields: number of atoms of a specific nuclide produced directly in the fission process (*i.e.*, not via radioactive decay of precursors).

z	111In	112In	113In	114In	115In	116In	117In	118In	119In	120In	121In	122In	123In	124In	125In	126In	127In
	110Cd	111Cd	112Cd	113Cd	114Cd	115Cd	116Cd	117Cd	118Cd	119Cd	120Cd	121Cd	122Cd	123Cd	124Cd	125Cd	126Cd
47	109Ag	110Ag	111Ag	112Ag	113Ag	114Ag	115Ag	116Ag	117Ag	118Ag	119Ag	120Ag	121Ag	122Ag	123Ag	124Ag	125Ag
	108Pd	109Pd	110Pd	111Pd	112Pd	113Pd	114Pd	115Pd	116Pd	117Pd	118Pd	119Pd	120Pd	121Pd	122Pd	123Pd	124Pd
45	107Rh	108Rh	109Rh	110Rh	111Rh	112Rh	113Rh	114Rh	115Rh	116Rh	1175	118Rh	119Rh	120Rh	121Rh	122Rh	123Rh
	106Ru	107Ru	108Ru	109Ru	110Ru	111Ru	112Ru	113Ru	114Ru	115Ru	116Ru	117Ru	118Ru	119Ru	120Ru	121Ru	122Ru
43	105Tc	106Tc	107Tc	108Tc	109Tc	110Tc	111Tc	112Tc	113Tc	114Tc	115Tc	116Tc	117Tc	118Tc	119Tc	120Tc	
	104Mo	105Mo	106Mo	107Mo	108Mo	109Mo	110Mo	111Mo	112Mo	113Mo	114Mo	115Mo	116Mo	117Mo			
41	103Nb	104Nb	105Nb	106Nb	107Nb	108Nb	109Nb	110Nb	111Nb	112Nb	113Nb	114Nb	115Nb				
	62		64		66		68		70		72		74		76		N

Source: IAEA-TECDOC-1168 (2000)

Yields: Definitions III

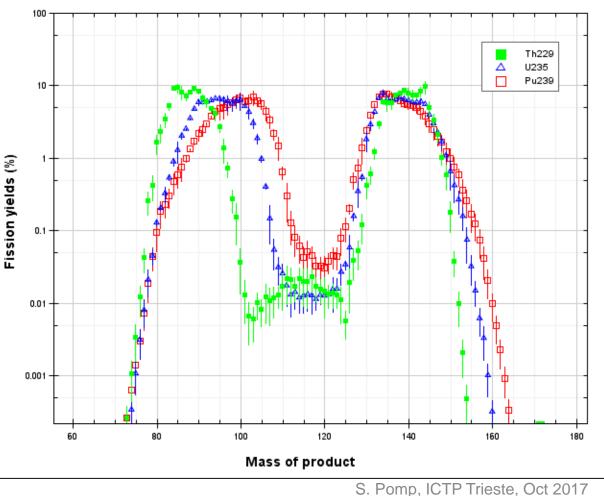
• **Cumulative fission yields**: total number of atoms of a specific nuclide produced (directly and via decay of precursors).

z	111In	112In	113In	114In	115In	116In	117In	118In	119In	120In	121In	122In	123In	124In	125In	126In	127In
	110Cd	111Cd	112Cd	113Cd	114Cđ	115Cd	116Cd	117Cd	118Cd	119Cd	120Cd	121Cd	122Cd	123Cd	124Cd	125Cd	126Cd
47	109Ag	110Ag	111Ag	112Ag	113Ag	114Ag	115Ag	116Ag	117Ag	118Ag	119Ag	120Ag	121Ag	122Ag	123Ag	124Ag	125Ag
	108Pd	109Pd	110Pd	111Pd	112Pd	113Pd	114Pd	115Pd	116Pd		118Pd	119Pd	120Pd	121Pd	122Pd	123Pd	124Pd
45	107Rh	108Rh	109Rh	110Rh	111Rh	112Rh	113Rh	114 <i>X</i> h	115Rh	11.Rh	1177	118Rh	119Rh	120Rh	121Rh	122Rh	123Rh
	106Ru	107Ru	108Ru	109Ru	110Ru	111Ru	112Ru	113Ru	114RU	115Ru	116Ru	1177	118Ru	119Ru	120Ru	121Ru	122Ru
43	105Tc	106Tc	107Tc	108Tc	109Tc	110Tc	111Tc	112Tc	113Tc	114Tc	115Tc	116Tc	^{H7}	118Tc	119Tc	120Tc	
	104Mo	105Mo	106Mo	107Mo	108Mo	109Mo	110Mo	111Mo	112Mo	113Mo	114Mo	115Mo	116Mo	117Mo			
41	103Nb	104Nb	105Nb	106Nb	107Nb	108Nb	109Nb	110Nb	111Nb	112Nb	113Nb	114Nb	115Nb				
	62		64		66		68		70		72		74		76		N

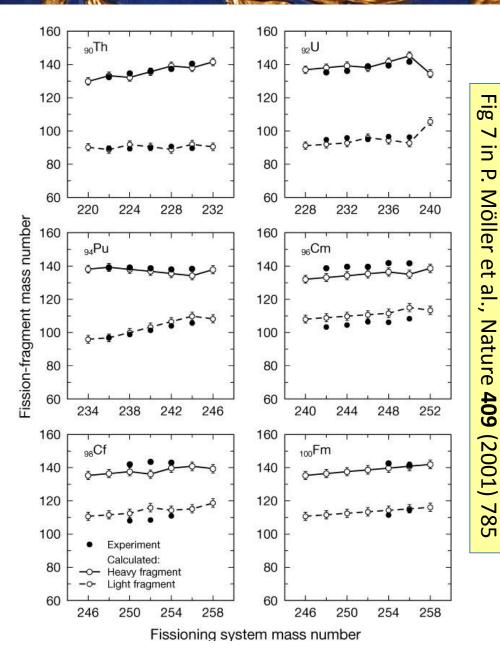
Source: IAEA-TECDOC-1168 (2000) S. Pomp, ICTP Trieste, Oct 2017

Yields: Definitions III

- **Total chain yields:** defined as the sum of cumulative yield(s) of the last (stable or long-lived) chain member(s).
- Mass number yields: defined as the sum of all independent yields of a particular mass chain and are in this way distinguished from chain yields.
- Some of the most modern methods to measure fission yields provide sets of truly independent yields which - at summation - will produce mass number yields rather than chain yields.


Source: IAEA-TECDOC-1168 (2000)

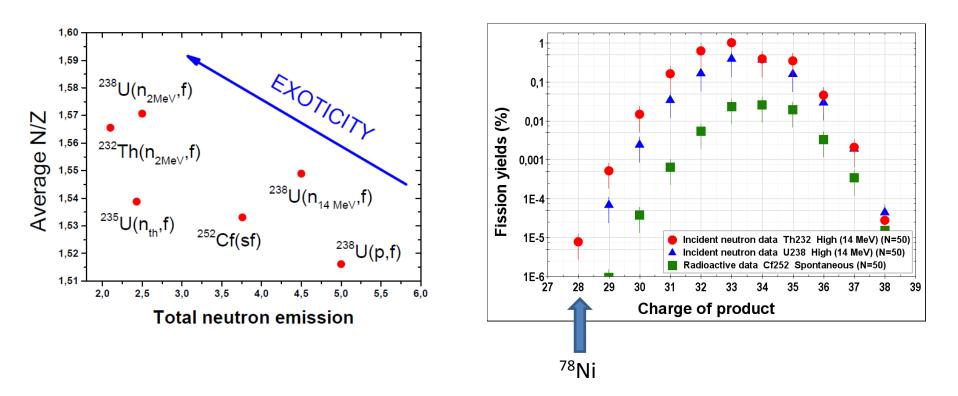
Trends I



- Light mass peak shifts as compound mass increases
- Heavy mass peak remains centered around A≈140.
- Effect of closed shells (132=50+82)

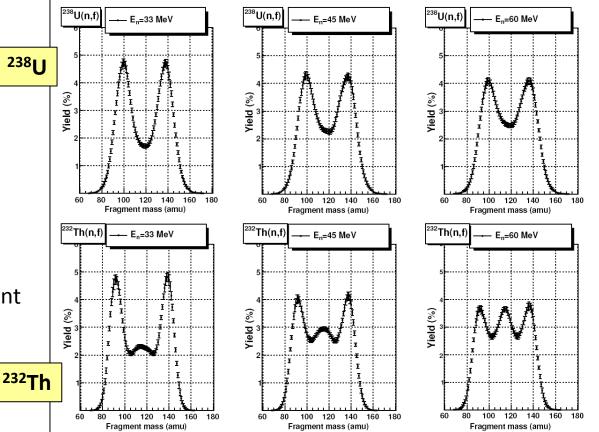
The model by P. Möller et al. manages to describe the experimental fact that the average mass of the heavy fragment remains roughly stable around A=140.

> Open circles: calculation Filled circles: exp. data



Trends II

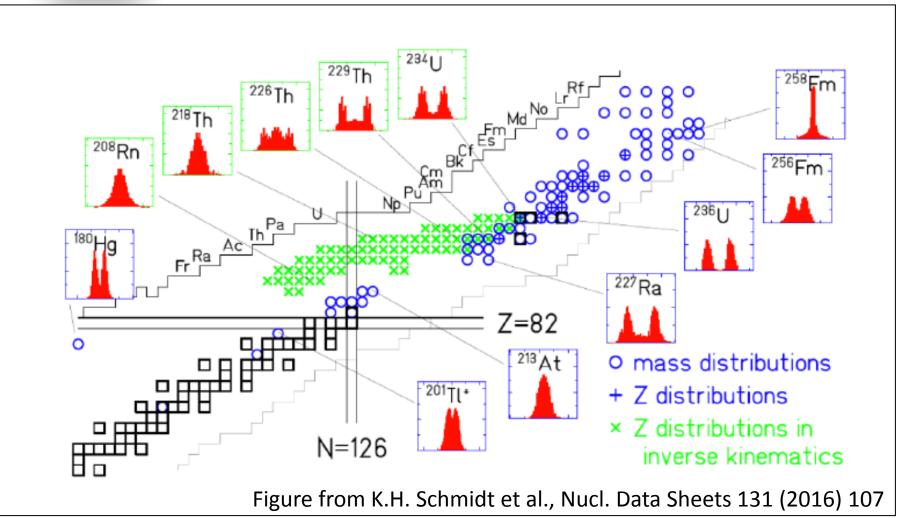
Lighter compound system and fewer prompt neutrons


 \rightarrow better production rates for exotic, neutron-rich nuclei

Trends III

higher energy of incident neutron

Yields generally asymmetric


But towards higher energies the symmetric component Increases (and gets wider).

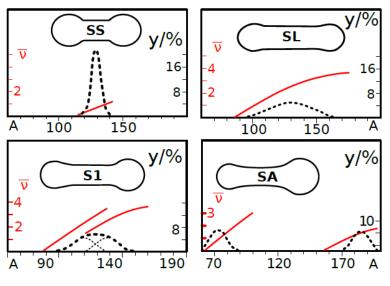
I.e. shell effects less important at high excitation energies.

Figure 4.3: Pre-neutron emission fragment mass distributions for neutron-induced fission of 238 U (upper row) and 232 Th (lower row) at 33, 45 and 60 MeV.

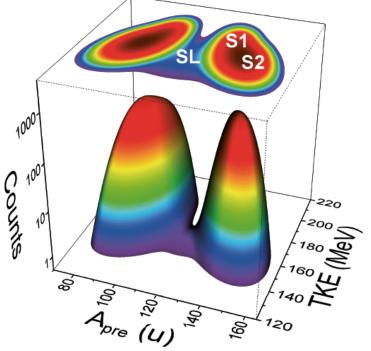
Outline

- Some literature sources
- Introduction:
 - Phenomenology, time scale, obserables, challenges, data needs, ...
- Fission yields (FY):
 - Definitions, trends,
- Overview on model codes
- Overview on experimental methods
- Examples of experimental efforts
 - 2E with FGIC, 2E-2v (VERDI and FALSTAFF), IGISOL and more ...

Models I

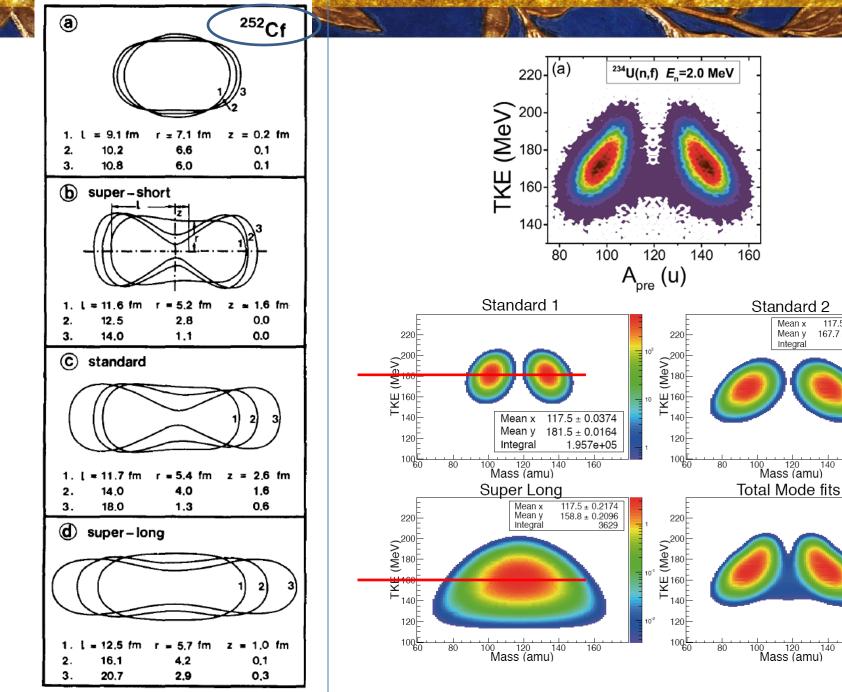

234U(n,f) at ~

2 MeV


Multi-Modal Random-Neck Rupture Model (Brosa model)

(1) multi-channel fission ("fission modes"); different paths on potential energy landscape, defines shape of fissioning nucleus; plus
 (2) readers break up of the pack

(2) random break-up of the neck.



U. Brosa et al., "Nuclear scission", Phys. Rep 197 (1980) 167.

A. Al-Adili, PhD thesis, Uppsala 2013

S. Pomp, ICTP Trieste, Oct 2017

From: Brosa et al., Phys. Rep. 197 (1990) 167

S. Pomp, ICTP Frome, AlitAbAdili, PhD thesis, Uppsala, 2013

117.5 ± 0.02738

167.7 ± 0.009747

7.36e+05

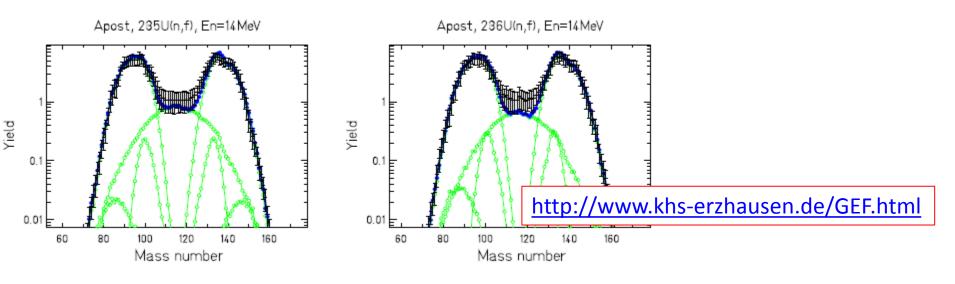
160

140

160

108

10



Models II

GEF (General Fission) model

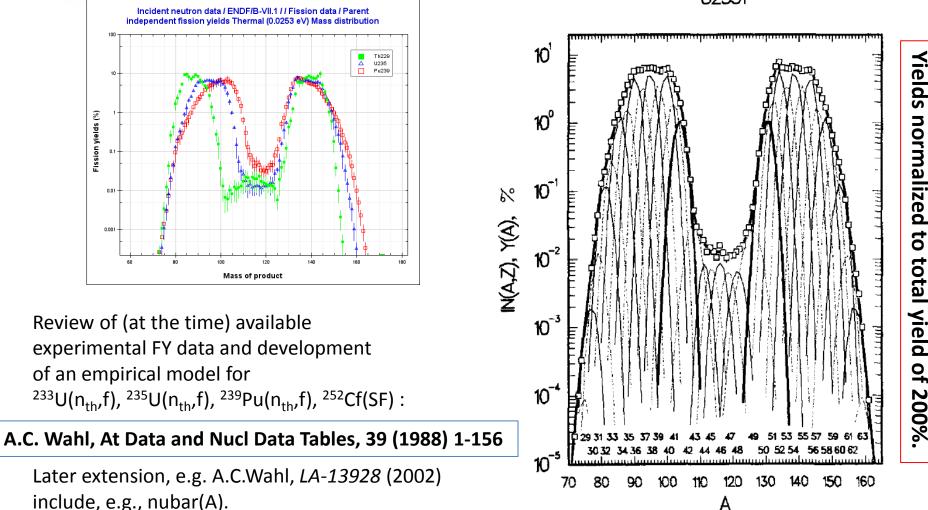
(K.H. Schmidt et al., "General Description of Fission Observables: GEF Model Code", Nucl. Data Sheets 131 (2016) 107)

"The GEF code aims to provide a complete description including the entrance channel and the de-excitation of the fragments"

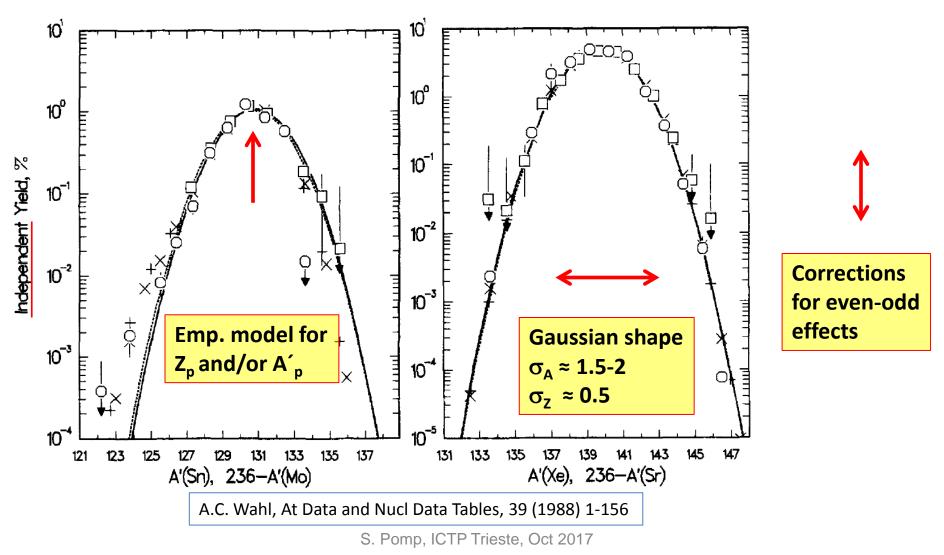
Models III

Versions of the Brosa and GEF models are part of TALYS 1.8

Other models often focus on de-excitation (prompt n and γ), e.g.:


- **FREYA** by R. Vogt et al., <u>https://nuclear.llnl.gov/simulation/main.html</u> YouTube video: <u>https://www.youtube.com/watch?v=x__MNOqdLpl</u>
- FIFRELIN by O. Litaize et al., Eur. Phys. J. A 51 (2015) 1.
- **CGMF** by P. Talou et al., Phys. Rev. C 83 (2011)
- **Point-by-point model** (PbP) by A. Tudora et al., e.g. Ann. Nucl. Energy 33 (2006) 1030.

U235T



UNIVERSITET

Wahl systematics II

U235T Z = 50,42

U235T Z = 54,38

Outline

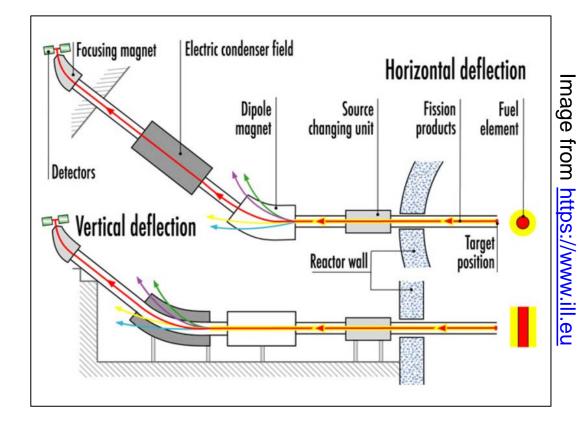
- Some literature sources
- Introduction:
 - Phenomenology, time scale, obserables, challenges, data needs, ...
- Fission yields (FY):
 - Definitions, trends,
- Overview on model codes
- Overview on experimental methods
- Examples of experimental efforts
 - 2E with FGIC, 2E-2v (VERDI and FALSTAFF), IGISOL and more ...

UNIVERSITET

Experimental methods I

Stopped fragments:

- Radiochemical separation
 - earliest method; only long-lived products; activity measured from β -decay or γ -decay (with low resolution)
- Mass spectrometry
 - long-lived products only; sample evaporated and mass analyzed; precise technique but difficult to normalize
- γ-ray spectroscopy
 - isotope specific; also short-lived nuclides accessible; can be used with activation technique or fast on-line mass separation
- ISOL method
 - can be combined with Penning trap or γ-ray spectroscopy; can be difficult to normalize



Experimental methods II

Unstopped fragments:

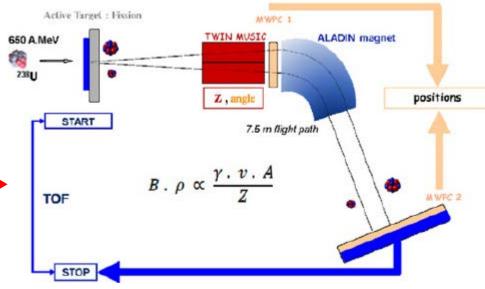
- LOHENGRIN@ILL
 - reactor based
 - mass, charge, and energy are measured
 - only one fragment
 - combined with, e.g.,
 γ-spectroscopy

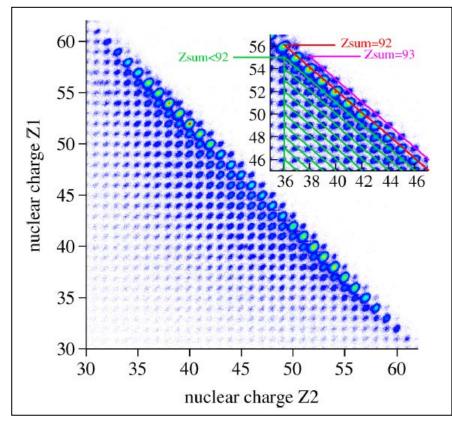
UPPSALA UNIVERSITET

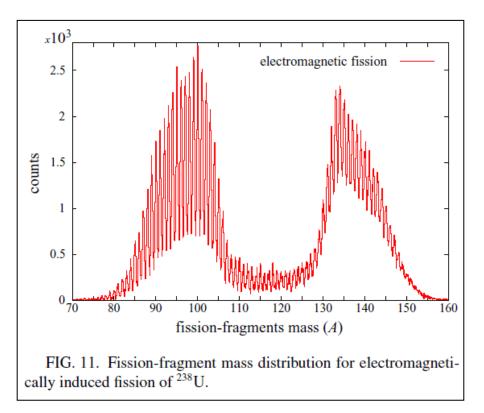
Experimental methods III

Unstopped fragments:

- Inverse kinematics
 - accelerator based (charged particle induced fission or Coulomb excitation)
 - can access fission of exotic, very short-lived nuclei
 - e.g. SOFIA@GSI (both FF) → and VAMOS@GANIL (one FF)
 - high mass resolution (isotopic yields)




Figure: E. Pellereau et al., EPJ Web of Conf. 62, 06005 (2013)



Latest results from GSI

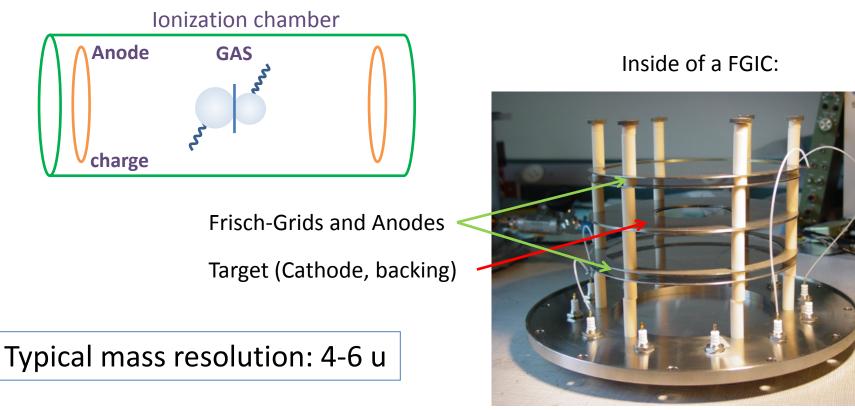
E. Pellereau et al. Phys. Rev. C 2017

Charges of correlated fission products from ²³⁸U

Experimental methods IV

Unstopped fragments:

Experiments with (high-energy) neutron beams


- More "small scale", flexible experiments
 - 2E method and 2v method
 - 2E-2v method
- Need for suitable targets (sizeable amounts)

2E-method

Measurement: e.g. with Frisch-Grid Ionization Chamber: (see, e.g., PhD thesis Ali Al-Adili, Uppsala 2013)

S. Pomp, ICTP Trieste, Oct 2017

2E-method

• If the kinetic energies E_1^{pre} and E_2^{pre} of the *two* fission fragments are measured, the fragment masses can be obtained from momentum conservation (in the c.m. system).

$$m_{1,2}^{pre} = m_{CN} \cdot \frac{E_{2,1}^{pre}}{E_1^{pre} + E_2^{pre}}$$

Problem:

Measured: $E^{post} \rightarrow need$ to make an assumption on the energy change due to neutron emission.

2E-method

Use iterative procedure assuming kinetic energy scales with mass of fragment/product to get better value for the fragments energy:

neutron multiplicity as function of fragment mass (input from some model)

$$m_{1,2}^{post}(i+1) = m_{1,2}^{pre}(i) - v_{1,2}(m_{1,2}^{pre})$$

$$E_{1,2}^{pre}(i+1) = E_{1,2}^{post} \cdot \left(\frac{m_{1,2}^{pre}(i)}{m_{1,2}^{post}(i+1)}\right)$$

$$m_{1,2}^{pre}(i+1) = m_{CN} \cdot \frac{E_{2,1}^{pre}(i+1)}{E_1^{pre}(i+1) + E_2^{pre}(i+1)}$$

S. Pomp, ICTP Trieste, Oct 2017

2v-method

- Similar to the previous method but instead of the energies, velocities are measured.
- Assuming we have the fragment (pre neutron-emission) velocities, momentum conservation gives:

$$m_{1,2}^{pre} = m_{CN} \cdot rac{\mathbf{v}_{2,1}^{pre}}{\mathbf{v}_1^{pre} + \mathbf{v}_2^{pre}}$$

How to? Use, e.g. PPACs (Parallel Plate Avalanche Chambers) as start and stop detectors.

And same problem again:

Measured: $v^{post} \rightarrow need$ to assume that velocity is unchanged by neutron emission and use an iterative procedure ...

2E-2v-method I

Measurement of energy and velocity of both products.

Product masses are readily obtained:

$$m_{1,2}^{post} = \frac{2 \cdot E_{1,2}^{post}}{\left(v_{1,2}^{post}\right)^2}$$

Like in 2v-method: assuming that, on average, velocities are unchanged by neutron emission, pre neutron-emission masses are obtained (momentum conservation):

$$m_{1,2}^{pre} = m_{CN} \cdot rac{\mathbf{v}_{2,1}^{pre}}{\mathbf{v}_1^{pre} + \mathbf{v}_2^{pre}}$$

2E-2v-method II

Now comes *the thing*:

 $\overline{v}(m^{pre})$ can be obtained:

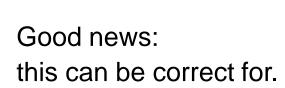
$$v_{1,2} = \frac{m_{1,2}^{pre} - m_{1,2}^{post}}{m_{n}}$$

(event-by-event)

and also:

$$E_{1,2}^{pre} = \frac{1}{2} m_{1,2}^{pre} \left(\mathbf{v}_{1,2}^{post} \right)^2$$

This works rather well but ...



2E-2v-method III

252**Cf**

However:

the "unchanged velocity" assumption leads to a width of the *m*^{pre} uncertainty of about 0.8 u and a bias

Simulation with "perfect" experimental resolution (pseudo-data from GEF code)

M* / u

120

130

140

Mass yield / %

170

90

Truth

2E-2v

Mass yield

3.5

2.5

0.5

2E-2v-method IV

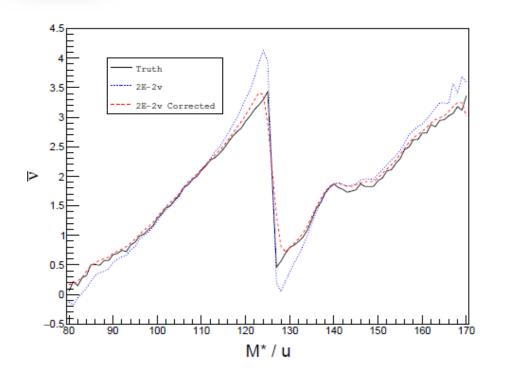


FIG. 4. (Color online) The corrected $\bar{\nu}(M^{\rm pre})$ from 252 Cf(sf) shows signs of smearing, but reproduces the synthetic data well apart from that. The 'true' $\bar{\nu}(M^{\rm pre})$ and the uncorrected $\bar{\nu}(M^{\rm pre})$ are shown as references.

Conclusion:

The 2E-2v method is well-suited to measure m^{post} and m^{pre} with good resolution (about 1u).

Hence:

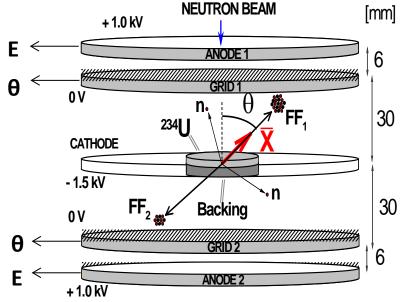
very good way to obtain neutron multiplicity as function of fragment mass.

Outline

- Some literature sources
- Introduction:
 - Phenomenology, time scale, obserables, challenges, data needs, ...
- Fission yields (FY):
 - Definitions, trends,
- Overview on model codes
- Overview on experimental methods
- Examples of experimental efforts
 - 2E with FGIC, 2E-2v (VERDI and FALSTAFF), IGISOL and more ...

Outline

- Some literature sources
- Introduction:
 - Phenomenology, time scale, obserables, challenges, data needs, ...
- Fission yields (FY):
 - Definitions, trends,
- Overview on model codes
- Overview on experimental methods
- Examples of experimental efforts
 - 2E with FGIC, 2E-2v (VERDI and FALSTAFF), IGISOL

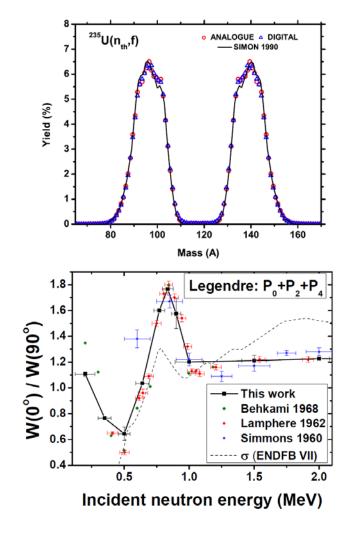


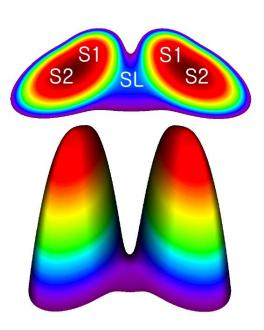
FY using the 2-E method

FGIC (Frisch-Grid Ionization Chamber)

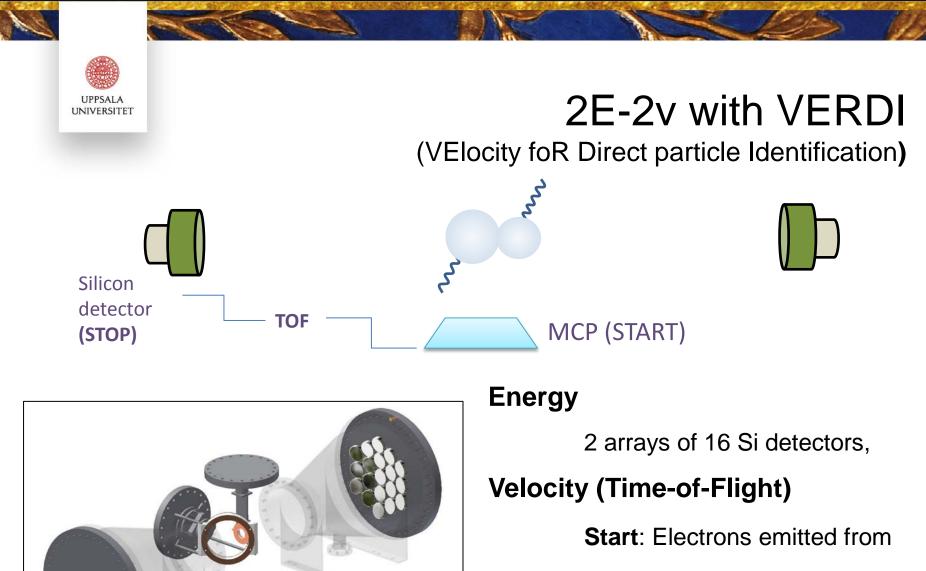
- \odot ~4 π geometrical efficiency.
- Very simple operation/analysis based on conservation of momentum and mass.
- © Poor mass resolution (4-6 u).
- O Assumption on neutron emission needed.

S. Pomp, ICTP Trieste, Oct 2017





FY using the 2-E method


Selected results

- O Angular distributions
- Mass yields
- O TKE distributions
- Sission mode parameterizations

A. Al-Adili et al., Phys. Rev. C **93**, 034603, (2016)

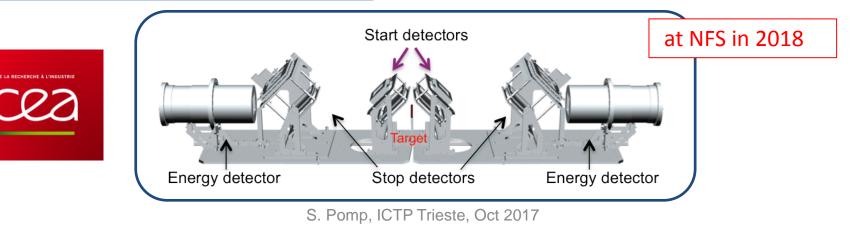
target detected by Micro

Channel Plate (MCP)

Stop: Si detector

2E-2v with VERDI

- © Good mass resolution (1-2 u)
- O No assumption on neutron emission needed. -> v(A) as bonus!
- © Rather complicated/folded analysis.
- \odot <1% geometrical efficiency.

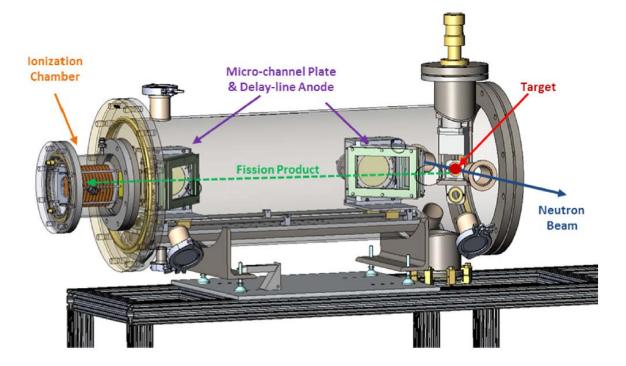


FALSTAFF

(Four arm cLover for the Study of Actinide Fission Fragments)

Slide courtesy Diane Doré

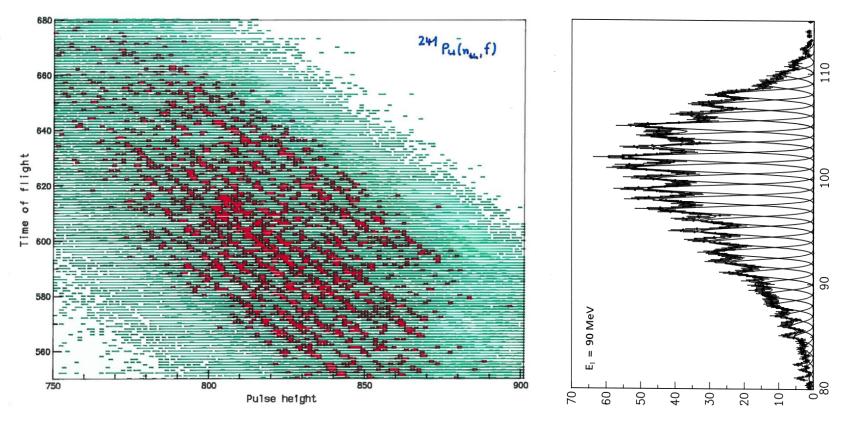
- Spectrometer for fission fragment detection in coincidence
 - o Kinetic energy
 - Masses BEFORE and AFTER evaporation (-> $\overline{v}(A)$)
 - o Charge
- Mass before evaporation → 2V method <u>TOF</u> : Good time resolution (σ) <150 ps</p>
 - Large solid angle (~1% of 4π)
 Good position resolution (1.2 mm)
- Mass after evaporation → EV method Energy & TOF
 - Good energy resolution (~1%)
 - Charge identification (dE profile)



UPPSALA UNIVERSITET

Similar efforts

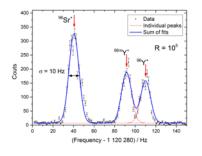
• SPIDER (LANL); Meierbachtol et al., NIM A 788 (2015) 59


 STEFF (Univ. Manchester); <u>http://t2.lanl.gov/fiesta2014/presentations/Smith.pdf</u>

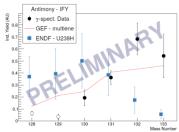
S. Pomp, ICTP Trieste, Oct 2017

COSI VAN TUTTE A. Oed et al. NIM **219** (1984) 569

E-v method, i.e. one fragment measured \longrightarrow post-masses only (n_{th},f); time resolution : 100 ps; masses resolved: $\Delta m/m = 0.6\%$

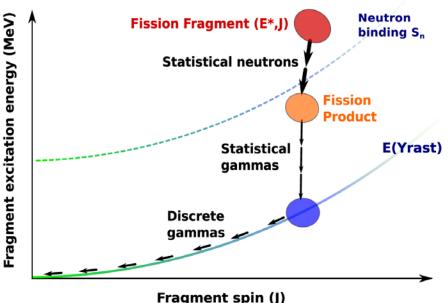


S. Pomp, ICTP Trieste, Oct 2017



IGISOL

- Basic idea and motivations
- IGISOL and JYFLTRAP
- Proton data
- The neutron source
- First experimental results
- Extraction of FF angular momenta
- Summary and outlook



UPPSALA UNIVERSITET

FY and IYR at IGISOL

- Combine **Isotope Separation OnLine technique** with mass-resolving power of a **Penning trap** to obtain FY and even IYR.
- Data on *isotopic yields* and *independent yields* are scarce (and hard to obtain)
- Isomeric yields ratios (IYR) can provide knowledge on *spin distributions* in various fissioning systems and can probe, e.g., *dependence on fission modes, fissioning system, excitation energy.*

Further motivation and goals

• IYR are relevant for anti-neutrino spectra from reactors ...

[A. A. Sonzogni, et al. Phys. Rev. Lett. 116:132502 (2016)]

• ... and are relevant in the *r-process*

(in cases where the isomer is not in thermal equilibrium with the ground state)

And on the "fission side":

- Can we gain insight in the *energy dependence* on IYR?
- Possibility/goal to study *various entrance channels*:
 - > (p,f), (n,f) and (SF)

Why Penning traps

- Possibility to measure isotopic yields and isomeric ratios for various systems, entrance channels, excitation energies
- The method is *fast* (order of 100 ms) and based on *direct ion counting* (no need for γ-decay schemes)
- Routinely a *mass resolution <1 MeV* is achieved
- The *Phase-Imaging Ion-Cyclotron-Resonance* technique will allow for *resolving mass difference of about 50 keV* and a precision in mass measurements on the 10 keV scale

[S. Eliseev et al., Phys. Rev. Lett. **110**, 082501 (2013)]

• Thus *a large range of isomers*, covering, e.g., various fission modes, may be studied

Examples of possibilities ...

Below is part of a tentative list of isomers that can with PI-ICR technique at JYFLTRAP.

Technique was recently successfully tested.

JYFL Accelerator News, Vol. 25, No 2. (2017) http://users.jyu.fi/~pheikkin/Newsletter/Newsletter.pdf

Isotope	Isomer	GS	GS	Isomer	Isomer
	excitation energy	spin	half-life	spin	half-life
	(keV)			_	
⁸² As	132.1(2)	2-	19.1(5) s	5-	13.6 s
⁸³ Se	228.92(7)	9/2+	22.25(4) min	1/2-	22.3 min
⁸⁴ Br	310(100)	2-	31.76(8) min	6-	6.0 min
⁹⁰ Rb	106.90(3)	0-	158(5) s	3-	258 s
⁹⁷ Y	667.52(23)	1/2-	3.75(3) s	9/2+	1.17 s
99Nb	365.27(8)	9/2+	15.0(2) s	1/2-	2.5 min
¹⁰² Tc	20(10)	1+	5.28(15) s	(4,5)	4.35 min
¹⁰⁸ Rh	115(18)	1+	16.8(5) s	5+	6.0 min

S. Pomp, ICTP Trieste, Oct 2017

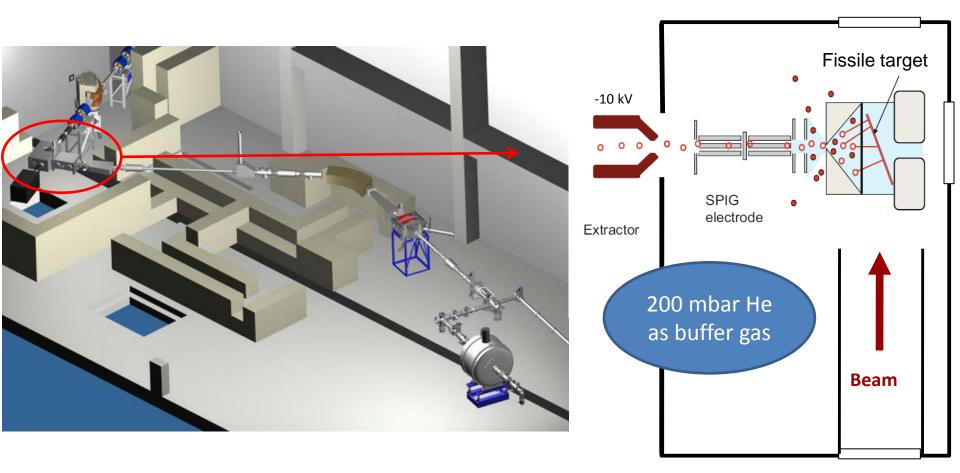
IGISOL and JYFLTRAP @JYFL

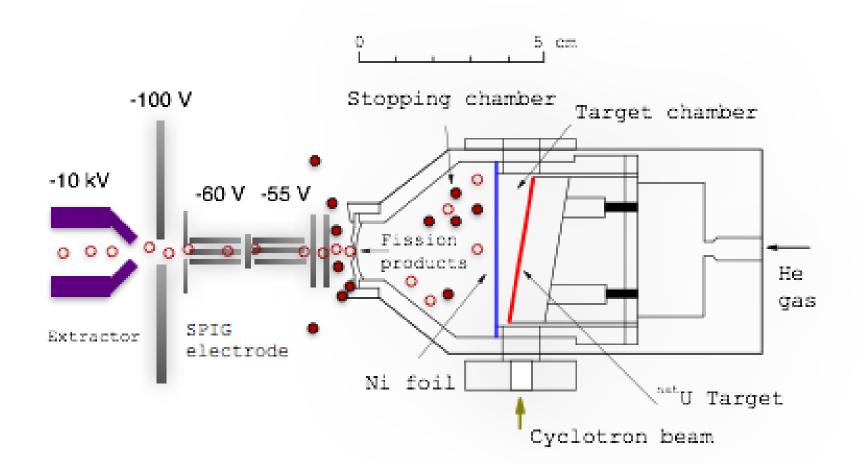
MCC30/15 Cyclotron

p: 18 – 30 MeV @ 100 μA D: 9 – 15 MeV @ 50 μA

Also possible to use K-130 cyclotron, Could give ~ 4000 hrs/

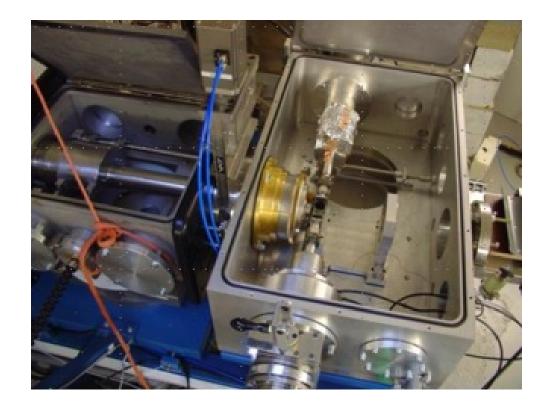
IGISOL = Ion Guide Isotope Separation OnLine


JYFLTRAP = JYväskylä physics Laboratory penning TRAP


UPPSALA UNIVERSITET

Fission chamber and ion guide

S. Pomp, ICTP Trieste, Oct 2017

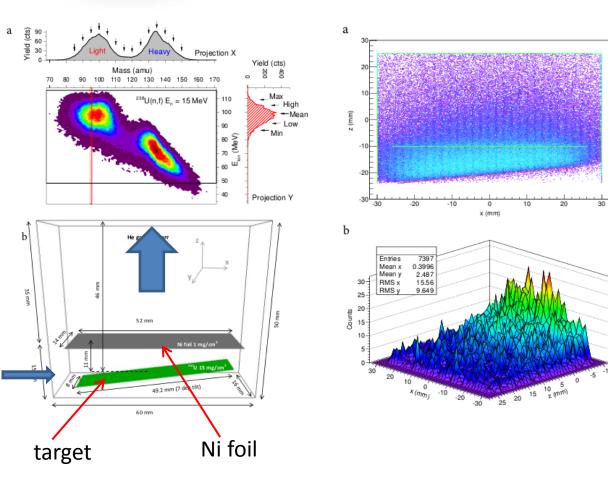


UPPSALA UNIVERSITET

More on the fission chamber

Chemistry can matter
 probability of
 1⁺ charge state?

1+/2+	¹³² Sn	1.19	±	0.17
	¹³² Sb	2.78	±	0.42



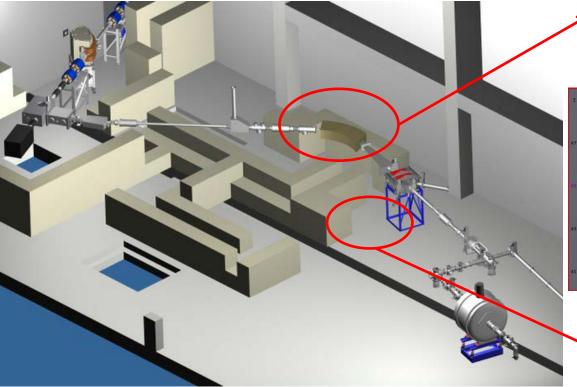
Simulations ...

10

Simulations of mass- and energy dependence 10² of fission product extraction efficiencies.

As input to the simulations realistic fission data were used (GEF code).

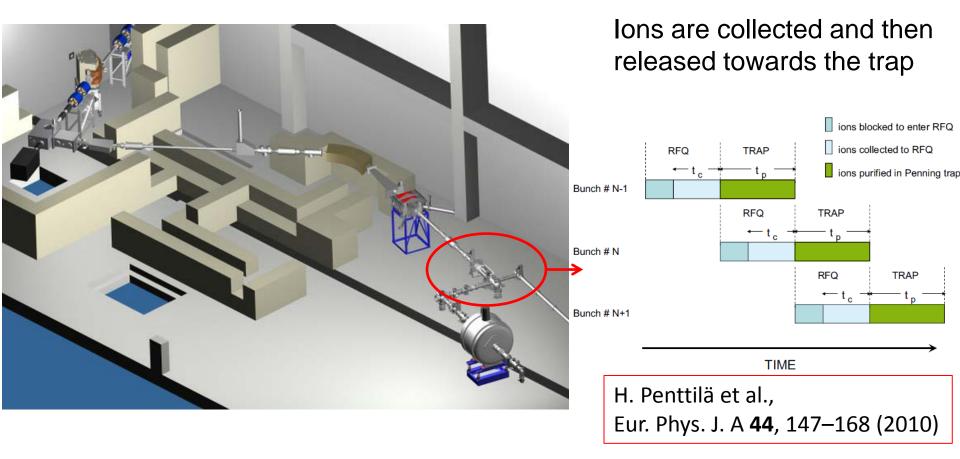
Dependence of stopping efficiency on mass and energy is found to be small compared to other systematic uncertainties.


A. Al-Adili et al., EPJ A (2015) 51:59, K. Jansson et al., submitted to EPJ A

S. Pomp, ICTP Trieste, Oct 2017

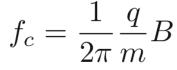
First mass separation

Dipole magnet


Mass resolving power M/ΔM=500

 $\begin{array}{l} \gamma \text{ spectroscopy station} \\ (missing in figure) \\ Ge detector in coincidence \\ with β counter \\ \end{array}$

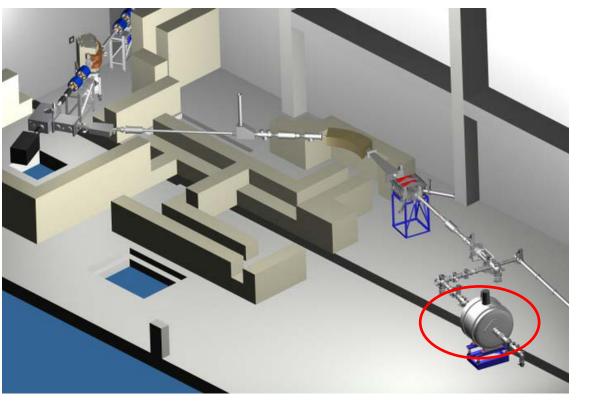
RFQ-cooler and buncher



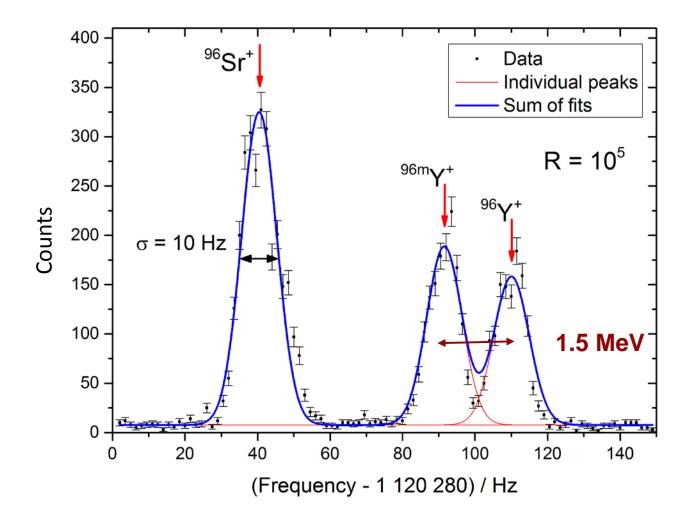
Two stage Penning trap

Mass resolv. power M/ Δ M > 10⁵ Resolve isomers 0.5 MeV apart (and better ...)

Cyclotron frequency

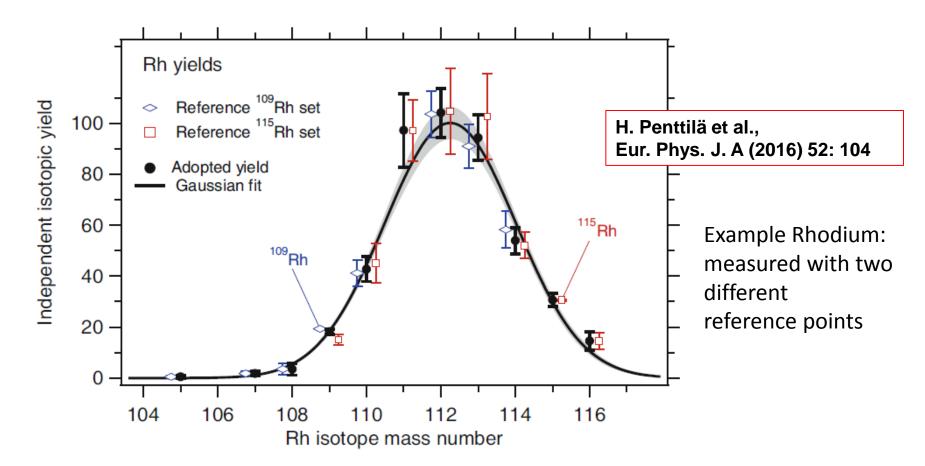

Each nuclide/isomer is Identified by its unique frequency in the Penning trap

Detector chamber

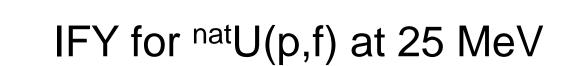

Multi-channel plate (MCP) counts all ions at given cyclotron frequency

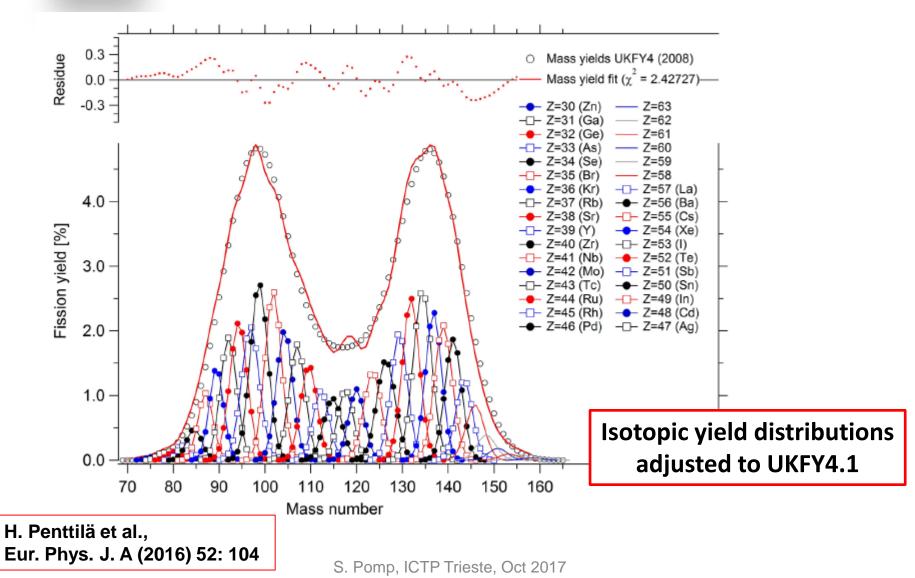
Total time from production to detection ~300 ms

How it then can look ...



S. Pomp, ICTP Trieste, Oct 2017




Done: IFY from (p,f) at 25 and 50 MeV

A number of measurements for $p+^{nat}U$ and $p+^{232}Th$ have been performed

S. Pomp, ICTP Trieste, Oct 2017

UPPSALA UNIVERSITET

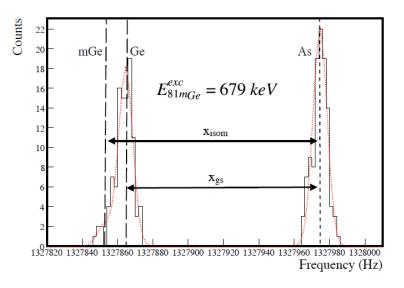
IYR in (p,f)

Performed:

- First direct measurement of IYR by direct ion counting.in (p,f)
- Several isomeric pairs in ²³⁸U(p,f) and Th(p,f) measured for the first time.

V. Rakopoulos et al., ND2016 proceedings

V. Rakopoulos et al., manuscript with new data from 2016 in preparation



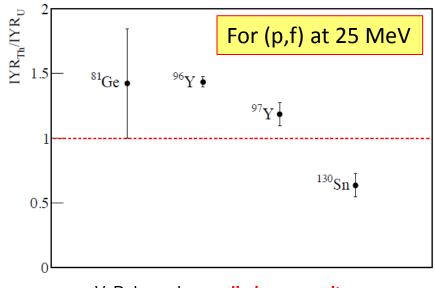
Six isomers studied

TABLE I. Information for the nuclides presented in this work. All data are retrieved from [47].

	Grou	nd State		Is	someric State	
Nuclide	Spin	$\tau_{1/2}$ (s)	E_{exc} (keV)	Spin	$\tau_{1/2}$ (s)	Decay Mode
81 Ge	$9/2^+$	7.6	679	$1/2^+$	7.6	$\beta^{-}=100\%\%$
⁹⁶ Y	0-	5.34	1140	8+	9.6	$\beta^{-}=100\%$
⁹⁷ Y	$1/2^{-}$	3.75	667	$9/2^{+}$	1.17	$\beta^->99.3\%$, IT<0.7%
¹²⁸ Sn	0+	3544	2091	7	6.5	IT=100%
^{129}Sb	$7/2^{+}$	15840	1851	$19/2^{-}$	1062	$\beta^{-}=85\%$, IT=15%
130 Sn	0^{+}	223.2	1946	7-	102	$\beta^{-}=100\%$

Example: the toughest case, ⁸¹Ge

Counts



Isomeric yield ratios

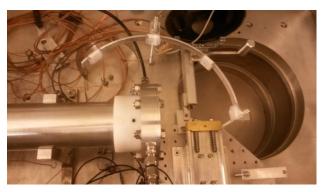
400 ⁹⁶Sr⁺ Data Individual peaks 350 Sum of fits 300 $R = 10^{5}$ 96m 250 96 200 σ = 10 Hz 150 100 1.5 MeV 50 0 60 120 140 40 80 100 0 20 (Frequency - 1 120 280) / Hz $Ratio = \frac{Yield(^{96m}Y)}{Yield(^{96}Y) + Yield(^{96m}Y)}$

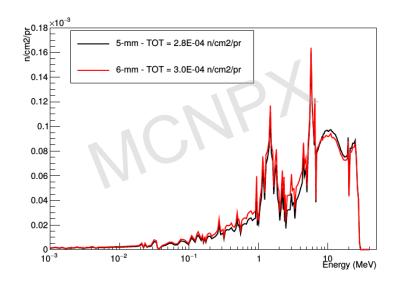
Question:

Is there a dependence on the *initial system* or the *fission mode* for some isomeric yield ratios?

V. Rakopoulos, preliminary results

Now let's go to (n,f)

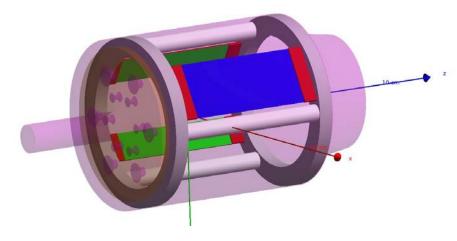

S. Pomp, ICTP Trieste, Oct 2017

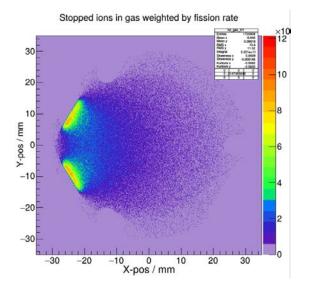

First we need a neutron source

Use Be(p,xn). Thick target. "White" neutron spectrum

Characterization of Be(p,xn) neutron field with activation plates.

A. Solders et al., NDS **119** (2014) 338. A. Mattera et al., EPJ A **53** (2017) 173. The results show that a total neutron flux between 2 and 5×10^{12} n/sr/s at an incoming proton current of 100 µA can be achieved with this setup. Of these, between 2 and 3×10^{12} n/sr/s are fast neutrons ($E_n > 1$ MeV) [14]. Both these numbers fulfil the design goal in terms of total and fast neutron flux and allow neutron-induced fission studies at IGISOL-JYFLTRAP.




Challenge: efficiency and normalization

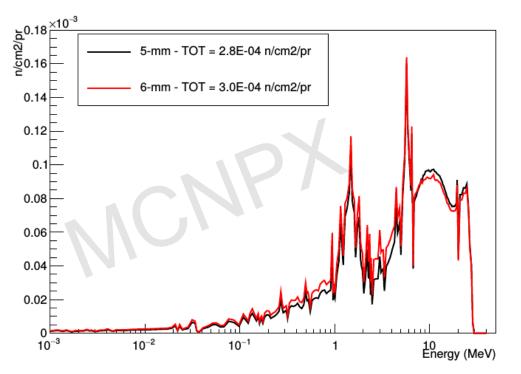
(need for simulations and measurements)

Up to six normal targets (one in each

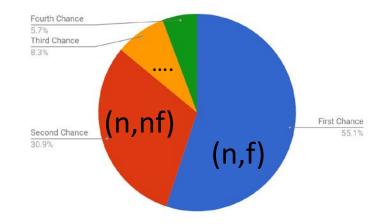
hexagon side holder), or one big (5x2 cm) foil pressed against the chamber wall.

Extensive simulations of stopping efficiency:

- Neutron field from MCNPX
- Ions sampled from GEF
- Transport with Geant4


The "only" thing missing: *charge state distributions*.

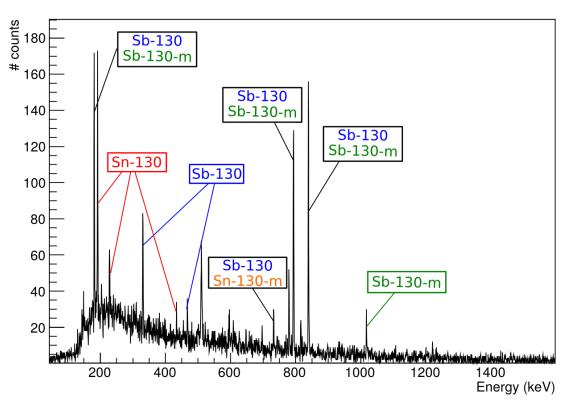
Measurements with implantation foils currently under analysis. Use of **Cf-252 source** planned.



Energy distribution and multi-chance

^{nat}U target:

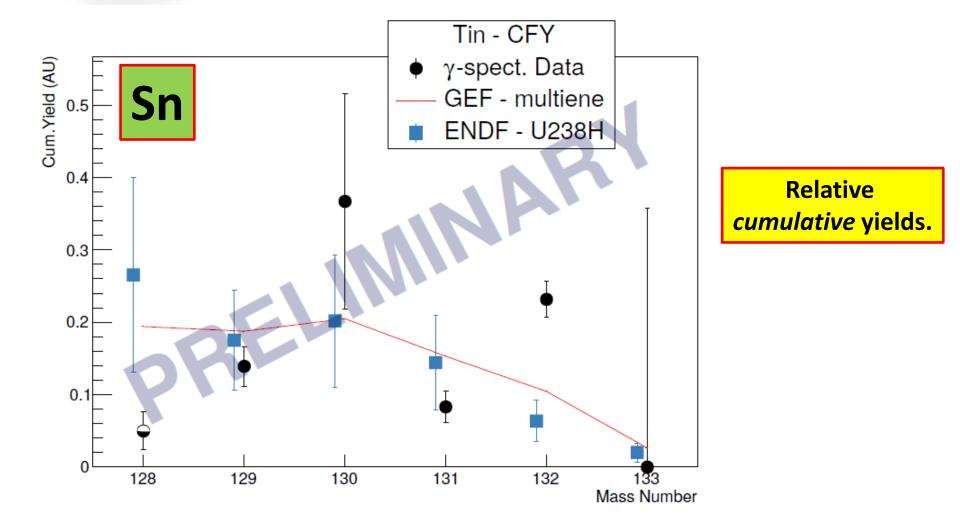
average energy (weighed with XS): ~ 12.4±8.8 MeV (97 ± 1) % of fissions from ²³⁸U Multi-chance fission open


(based on GEF)

In the (n,f) case we could not yet go ...

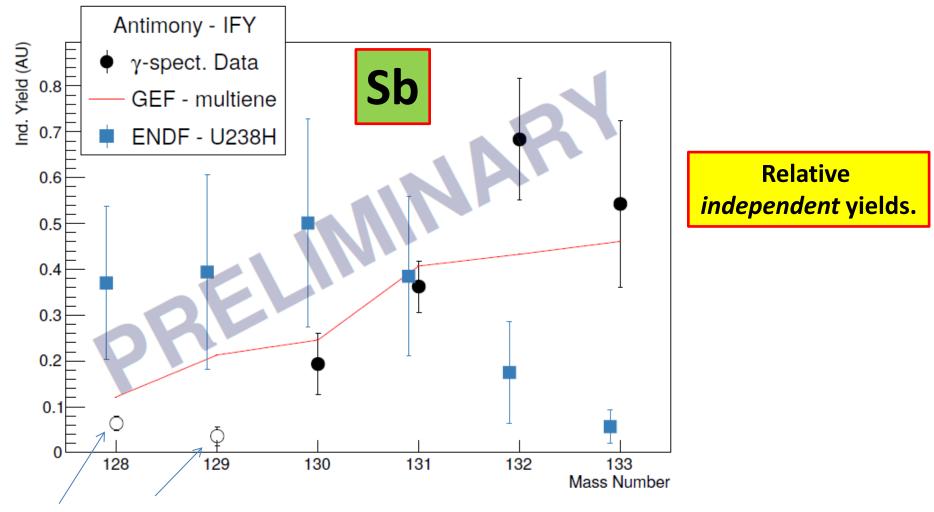
A = 130

... all the way to the trap in this run (too low proton current).


Results presented here are based on γ -**spectroscopy** (with β coincidence) after the analyzing magnet.

Six magnet settings: masses **128 – 133** studied. Data were collected during 2h each.

Sn isotopes - CFY



S. Pomp, ICTP Trieste, Oct 2017

Sb isotopes - IFY

Only the isomer

S. Pomp, ICTP Trieste, Oct 2017

Measured IYR

There are 5 nuclides where we see both isom & GS \rightarrow we can extract the IYR

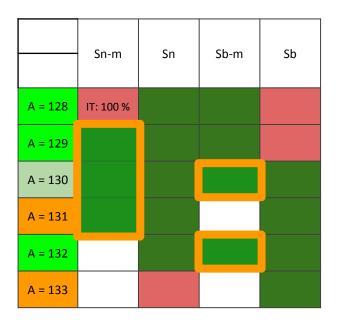
	Sn-m	Sn	Sb-m	Sb
A = 128	IT: 100 %			
A = 129				
A = 130				
A = 131				
A = 132				
A = 133				

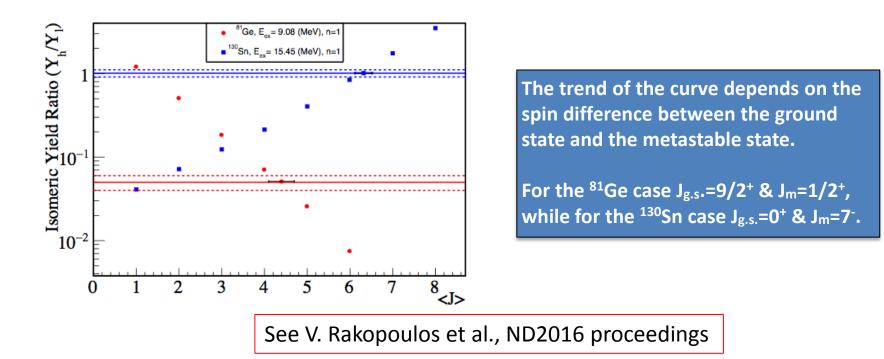
	\mathbf{J}_{is}^{\varPi}	\mathbf{J}_{GS}^{\varPi}	${f E_{is}^{*}}\ (keV)$
$ \xrightarrow{129} \text{Sn} \\ ^{130} \text{Sn} \\ \xrightarrow{131} \text{Sn} $	${(11/2)^- \over 7^-} \ {(11/2)^-}$	$\binom{3/2}{0^+}^+$ $\binom{3/2}{+}^+$	$35.15(5) \\1946.88(10) \\65.1(3)$
$^{130}{ m Sb}$ $^{132}{ m Sb}$	$(4,5)^+_{8^-}$	$> \frac{8^{-}}{4^{+}}$	$4.80(20) \\ 200(30)$

UPPSALA UNIVERSITET

Results (also still preliminary)

There are 5 nuclides for which we can extract both isom & GS \rightarrow we can extract the IYR




Table 2: IYRs measured in this experiment, compared to evaluated data libraries for fission of ²³⁸U induced by 14 MeV neutrons (²³⁸U(n_H,f)) and to a GEF calculation with a realistic incoming neutron spectrum. IYRs are reported as $Y_{is}/(Y_{is}+Y_{GS})$. The values reported are cumulative IYRs and independent IYRs for Sn and Sb, respectively.

		This work		ENDF B-VII.1	JENDL
\rightarrow	$^{129}\mathrm{Sn}$	0.37 ± 0.13	0.63	0.15 ± 0.12	0.68 ± 0.43
	$^{130}\mathrm{Sn}$	0.64 ± 0.48	0.49	0.48 ± 0.49	0.70 ± 0.46
\rightarrow	$^{131}\mathrm{Sn}$	0.43 ± 0.19	0.69	0.48 ± 0.45	0.81 ± 0.51
·	$^{130}\mathrm{Sb}$	0.81 ± 0.43	0.68	0.43 ± 0.41	0.43 ± 0.28
	$^{132}\mathrm{Sb}$	0.25 ± 0.10	0.49	0.61 ± 0.41	0.61 ± 0.20

Deduce FF spin using TALYS for de-exciation

Based on an assumption of emitted neutrons, TALYS is used to predict the IYR for different initial FF spins. The obtained dependence can be compared with the experimental value.

Ackowledgements

Thanks to the nuclear reactions team in Uppsala, in particular

Ali Al-Adili, Kaj Jansson, Andrea Mattera, and Vasileios Rakopoulos for providing material for this lecture.