Applications of Nuclear Data: Introduction to FISPACT-II

ICTP-IAEA Workshop on the Evaluation of Nuclear Data for Applications

10 October 2017

Michael Fleming, Mark Gilbert, Jean-Christophe Sublet michael.fleming@ukaea.uk mark.gilbert@ukaea.uk jean-christophe.sublet@ukaea.uk

UK Atomic Energy Authority

Michael Fleming

Start-up

Start-up

Introduction

Background

Basic code functionality

Code practicalities

Overview

Basic execution

Input files

Nuclear data handling

Keywords

Michael Fleming

Start-up

Background

Basic code functionality

Basic code functionalit

Code practicalities

Basic execu

Input files
Nuclear data handli

Nuclear data nand Keywords

EXERCISE

We will be using the Linux Mint 18 operating system installed on these machines. If you are not familiar with non-Windows machines don't worry

Log into the machine now using your username/password on your badge

Michael Fleming

Start-up

Background

Basic code functiona

Code practicalities

Overview

Input files

Nuclear data hand Keywords

EXERCISES

We will be using the FISPACT-II code in this workshop, which is located on a shared space

/home/nfs1/smr3151/FISPACT-II-3-20

The nuclear data must be transferred to your local machine so please do the following:

► Check that your scratch space is not full:

machine: user\$ df -h /* | grep scratch

▶ If the scratch space has less than 50 GB remaining *let me know* and we'll clear some space

Michael Fleming

Start-up

Introduction
Background
Basic code functional

Code practicalities

Overview

Basic execution

Nuclear data hand

Keyword

EVEDOICE

To move the essential FISPACT-II code components onto your local scratch space, run the custom installation script provided in:

```
source /home/nfs1/smr3151/scripts/install_fispact.sh
Copying getting_started directory to: /scratch/
...DONE
Copying nuclear data to: /scratch/
...DONE
Unpacking nuclear data
```

This will install the nuclear data onto your local /scratch/smr3151/FISPACT-II-3-20/
It will also add the fispact executable to your PATH and the getting_started directory to your scratch space

Michael Fleming

Start-up

Introductio

Background

Basic code functional

Code practicalities

Overview

Basic execu

Innut files

Nuclear data ha

Keywords

► The UK Atomic Energy Authority (UKAEA) includes the Culham Centre for Fusion Energy (CCFE), which hosts (amongst other things) the Joint European Torus (JET):

Michael Fleming

Start-up

Introductio

Background

Basic code functiona

Code practicalities

Overview

010111011

Dasic exec

input illes

Nucleal data flaffu

Keywords

EXERCISE:

 The UK Atomic Energy Authority (UKAEA) includes the Culham Centre for Fusion Energy (CCFE), which hosts (amongst other things) the Joint European Torus (JET):

 Fusion utilises the D-T plasma which, as was described in a previous lecture, is an excellent source of 14 MeV neutrons

Michael Fleming

Start-up

Introduction Background

Dania anda functiona

Basic code functionali

Overview

_

Mindre details

Konnuorde

EXERCISE

► The UKAEA developed FISPIN as an inventory code for fission fuel modelling

Michael Fleming

Start-u

Introduction

Background

Basic code functional

Code practicalities

Overview

Davis

Input mes

Nuclear data handl

Reywords

- The UKAEA developed FISPIN as an inventory code for fission fuel modelling
- ► In the 80s and 90s it was appreciated that more sophisticated nuclear simulation codes and nuclear data was required
 - ► Birth of FISPACT code + EAF data = EASY

Michael Fleming

Start-u

Background

Basic code functiona

Code practicalities

Overview

Basic exe

Input illes

Keywords

rtoywords

- The UKAEA developed FISPIN as an inventory code for fission fuel modelling
- ► In the 80s and 90s it was appreciated that more sophisticated nuclear simulation codes and nuclear data was required
 - Birth of FISPACT code + EAF data = EASY
- Unsupportable growth of 'physicist' code and need to accommodate next-generation TENDL data led to re-development as FISPACT-II in 2009

Michael Fleming

Start-u

Introduction Background

Racio codo functiona

Code practicalities

Overview

Basic exe

Input files

Nuclear data handi

Keywords

- The UKAEA developed FISPIN as an inventory code for fission fuel modelling
- ► In the 80s and 90s it was appreciated that more sophisticated nuclear simulation codes and nuclear data was required
 - ▶ Birth of FISPACT code + EAF data = EASY
- ► Unsupportable growth of 'physicist' code and need to accommodate next-generation TENDL data led to re-development as FISPACT-II in 2009
- ► FISPACT-II now released through OECD-NEA Data Bank, ORNL RSICC and UKAEA - deprecated EASY not supported nor recommended

Michael Fleming

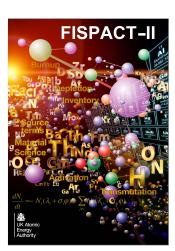
Start-up

Introductio

Background

Basic code functiona

Code practicalities


Overview

Basic exe

Input files

Nuclear data hand

Keywords

- multiphysics platform for predicting the inventory changes in materials under both neutron and charged-particle interactions
 - calculates activation, transmutation, burn-up, dpa,
 PKAs, gas production, etc.
- employs the most up-to-date international nuclear data libraries containing:
 - nuclear reaction data (reaction cross sections)
 - radioactive decay data (half-lives and decay schemes)
 - fission yield data (ratios)

Michael Fleming

Basic code functionality

Code practicalities

$$\frac{dN_i}{dt} = \underbrace{-N_i(\lambda_i + \sigma_i \phi)}_{\text{loss}} + \sum_{j \neq i} \underbrace{N_j(\lambda_{ji} + \sigma_{ji} \phi)}_{\text{creation}}$$

- coupled differential equations
 - one equation for each nuclide i at concentration N_i
 - solved numerically by FISPACT-II (using Livermore ODE solver, LSODE) and used to update material composition

Michael Fleming

Introduction

Basic code functionality

Code practicalities

Overview

Basic execu

Input files

Nuclear data hand

Keywords

$$\frac{dN_i}{dt} = \underbrace{-N_i(\lambda_i + \sigma_i \phi)}_{\text{loss}} + \sum_{j \neq i} \underbrace{N_j(\lambda_{ji} + \sigma_{ji} \phi)}_{\text{creation}}$$

- coupled differential equations
 - ▶ one equation for each nuclide i at concentration N_i
 - solved numerically by FISPACT-II (using Livermore ODE solver, LSODE) and used to update material composition
- σ_{ji} : energy-dependent reaction cross sections for $j \to i$ reactions (e.g. (n,γ) , (n,α) , (n,2n), etc.) from nuclear libraries collapsed with (normalised) neutron energy spectra from neutron transport; σ_i is sum over all $i \to j$ reactions

Michael Fleming

- tai t - p

Introduction

Basic code functionality

Dasic code idilicional

Code practicalities

Basic execu

Input files

Keywords

$$rac{dN_i}{dt} = \underbrace{-N_i(\lambda_i + \sigma_i \phi)}_{ ext{loss}} + \sum_{j
eq i} \underbrace{N_j(\lambda_{ji} + \sigma_{ji} \phi)}_{ ext{creation}}$$

- coupled differential equations
 - ▶ one equation for each nuclide i at concentration N_i
 - solved numerically by FISPACT-II (using Livermore ODE solver, LSODE) and used to update material composition
- σ_{ji} : energy-dependent reaction cross sections for $j \to i$ reactions (e.g. (n,γ) , (n,α) , (n,2n), etc.) from nuclear libraries collapsed with (normalised) neutron energy spectra from neutron transport; σ_i is sum over all $i \to j$ reactions
- ▶ decay constants λ_i, λ_{ji} (from decay library of measurements)

Michael Fleming

Introductio

Basic code functionality

Code practicalities

Overview

Rasin even

Input files

Keywords

EVERGISE

$$rac{dN_i}{dt} = \underbrace{-N_i(\lambda_i + \sigma_i \phi)}_{ ext{loss}} + \sum_{j
eq i} \underbrace{N_j(\lambda_{ji} + \sigma_{ji} \phi)}_{ ext{creation}}$$

- coupled differential equations
 - ▶ one equation for each nuclide i at concentration N_i
 - solved numerically by FISPACT-II (using Livermore ODE solver, LSODE) and used to update material composition
- σ_{ji} : energy-dependent reaction cross sections for $j \to i$ reactions (e.g. (n,γ) , (n,α) , (n,2n), etc.) from nuclear libraries collapsed with (normalised) neutron energy spectra from neutron transport; σ_i is sum over all $i \to j$ reactions
- decay constants λ_i , λ_{ji} (from decay library of measurements)
- total fluxes ϕ from radiation transport simulations, experiments, operational scenarios, etc.

Joint ICTP-IAEA Workshop on the Evaluation of Nuclear Reaction Data for Applications

Michael Fleming

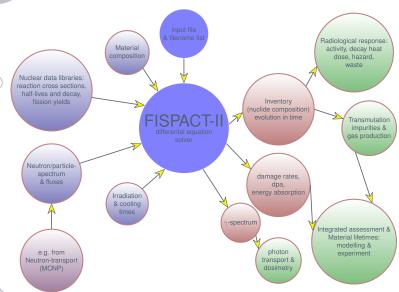
Start-up

Introduction

Background

Basic code functionality

Code practicalit


Overview

Basic execu

Input files

Konnord

EXERCISES

Joint ICTP-IAEA Workshop on the Evaluation of Nuclear Reaction Data for Applications

Michael Fleming

Basic code functionality

Code practicalities

- ► Activity measured in becquerels (Bg) number of disintegrations (decays) per second – the primary measure
 - can be separated by decay type $-\alpha$, β , γ in FISPACT-II output
- decay heat, measured in kilowatts (kw)
 - can be separated by decay type α , β , γ
 - how much heat will be generated in a material even when not exposed to irradiation
 - critical to determine whether cooling is needed to prevent melting
- \triangleright (contact) γ dose rate, measured in sieverts (Sv) per hour
 - ► J kg⁻¹ deposition rate of radiation energy in biological tissue
 - there are also ingestion and inhalation hazard versions
- clearance index
 - IAEA based measure
 - a nuclide can be disposed of as if it were non radioactive when the index is less than 1

Joint ICTP-IAFA Workshop Reaction Data for Applications

Michael Fleming

Start-up

Introductio

Background

Basic code functionality

Code practicalit

Overview

Input files

Nuclear data hand

Kevword

EXERCISE

Tungsten irradiation in fusion reactor environment

Michael Fleming

Start-up

Introductio

Background

Basic code functionality

basic code functionality

Code practical

Overview

Input files

Nuclear data handlii

Keywords

EXERCISE

Tungsten irradiation in fusion reactor environment

Michael Fleming

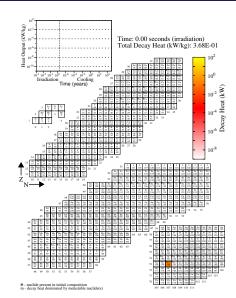
Start-up

Introduction

Background

Basic code functionality

Code practicali


Overview

Basic exect

IIIput IIIoo

Keywords

EXERCISES

Michael Fleming

Start-up

Basic code functionality

Joint ICTP-IAEA Workshop on the Evaluation of Nuclear Reaction Data for Applications

Michael Fleming

Start-up

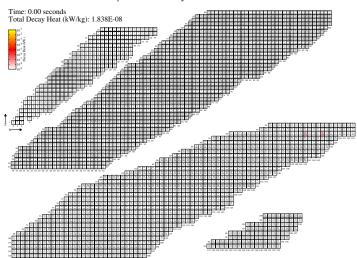
Introductio

Background

Basic code functionality

Code practicalities

Occupiacioni


Basic exec

Input files

Kowwords

EXERCISE:

U235 thermal fission pulse decay heat

Joint ICTP-IAEA Workshop on the Evaluation of Nuclear Reaction Data for Applications

Michael Fleming

Start-up

Introductio

Background

Basic code functionality

Codo practicalitios

Overview

David and and

Input files

Nuclear data handlin

Keywords

EXERCISE

U235 thermal fission pulse decay heat

Code practicalities I/O overview

Applications of Nuclear Data: FISPACT-II Michael Fleming

-

Introduction

Basic code functional

Basic code functiona

Code practicalities

Overview

Basic execi

Nuclear data handling

Keywords

,

EXERCISE:

- FISPACT-II is run through terminal commands, using input files and generating output files with simulation results
 - ► Recommended use of Linux or OS X systems
 - Windows users have options (Cygwin, VirtualBox, etc.) and we have developed a new container solution for next release

Code practicalities I/O overview

Applications of Nuclear Data: FISPACT-II Michael Fleming

introduction

Basic code functional

Code practicalities

Overview

Basic execution

Nuclear data handlin

Keywords

EXERCISE:

- FISPACT-II is run through terminal commands, using input files and generating output files with simulation results
 - ► Recommended use of Linux or OS X systems
 - Windows users have options (Cygwin, VirtualBox, etc.) and we have developed a new container solution for next release
- ► The input files are precisely curated sets of keywords with keyword options

Code practicalities I/O overview

Applications of Nuclear Data: FISPACT-II Michael Fleming

Code practicalities

Overview

- FISPACT-II is run through terminal commands, using input files and generating output files with simulation results
 - Recommended use of Linux or OS X systems
 - ► Windows users have options (Cygwin, VirtualBox, etc.) and we have developed a new container solution for next release
- ► The input files are precisely curated sets of keywords with keyword options
- Use of different keyword and option combinations may result in various types of simulations

Michael Fleming

Start-up

Introduction

Dackground

Basic code functional

Code prac

Overview (

18

31

Innut files

Nuclear data handlin

Keywords

EXERCISE

► FISPACT-II may be run in many ways, but the most common execution process takes four stages:

Michael Fleming

Background

Basic code functionali

Code practicalities

Overview

Basic execu

Input files

Konwarda

Keywords

- ► FISPACT-II may be run in many ways, but the most common execution process takes four stages:
- Handling the nuclear data libraries and incident spectra
 - Condense fission yields and decay data
 - Collapse (fold) cross-sections with incident spectra
 - Print summary of library data (optional, but often useful)

Michael Fleming

-

Background

Basic code functionali

Code practicalities

Overview Basic evecu

Input files

Nuclear data handlin

rtoywords

► FISPACT-II may be run in many ways, but the most common execution process takes four stages:

- Handling the nuclear data libraries and incident spectra
 - Condense fission yields and decay data
 - ► Collapse (fold) cross-sections with incident spectra
 - Print summary of library data (optional, but often useful)
- ► Setting initial conditions (material composition, etc.) & select options (output format, uncertainty quantification)

Michael Fleming

Code practicalities Overview

- FISPACT-II may be run in many ways, but the most common execution process takes four stages:
- Handling the nuclear data libraries and incident spectra
 - Condense fission yields and decay data
 - Collapse (fold) cross-sections with incident spectra
 - Print summary of library data (optional, but often useful)
- Setting initial conditions (material composition, etc.) & select options (output format, uncertainty quantification)
- Simulate irradiation phases, subsidiary calculations and output data

Applications of Nuclear Data: FISPACT-II Michael Fleming

Otal t-up

Introduction

Basic code functional

Code practicalities

Overview

Basic execu

Innut files

Nuclear data handlin

Keywords

EXERCISE

- FISPACT-II may be run in many ways, but the most common execution process takes four stages:
- Handling the nuclear data libraries and incident spectra
 - Condense fission yields and decay data
 - ► Collapse (fold) cross-sections with incident spectra
 - Print summary of library data (optional, but often useful)
- Setting initial conditions (material composition, etc.) & select options (output format, uncertainty quantification)
- Simulate irradiation phases, subsidiary calculations and output data
- Simulate cooling phases and output summary data

Michael Fleming

Start-up

Basic execution

► FISPACT-II is run through terminal commands:

machine: " user\$ fispact input files

Michael Fleming

Introduction

Basic code function

Code practicalities

Overview

Basic execution (

Nuclear data handlin

► FISPACT-II is run through terminal commands:

machine: " user\$ fispact input files

If you are not familiar with using a terminal, don't worry, but please let me know so you can get the most out of this workshop

Michael Fleming

Background

Code practicalities

Overview

Basic execution

Input files

Nuclear data handling

Keywords

EXERCISES

► FISPACT-II is run through terminal commands:

machine: user\$ fispact input files

- ► If you are not familiar with using a terminal, don't worry, but please let me know so you can get the most out of this workshop
- ► The code requires two files:
 - a simulation specification file input.i,

Michael Fleming

Code practicalities

Basic execution

► FISPACT-II is run through terminal commands:

machine: " user\$ fispact input files

- ▶ If you are not familiar with using a terminal, **don't worry**, but please let me know so you can get the most out of this workshop
- ► The code requires two files:
 - a simulation specification file input.i,
 - an amusing named files file that lists all input/output files

Michael Fleming

Introduction

Basic code functi

Code practicalities

. .

Input files

Nuclear data handling

Keywords

.,

► The files file contains the mapping of all library files that FISPACT-II will use in the calculation. Every required data must be listed – otherwise a fatal error will be issued.

Michael Fleming

Introduction

Rasic code functionalit

Dasic code iuricionali

Code practicalities

Overview

Basic exect

Input files

Nuclear data handling

Keywords

EXERCISE:

- ► The files file contains the mapping of all library files that FISPACT-II will use in the calculation. Every required data must be listed otherwise a fatal error will be issued.
- ► These are listed in Tables 1-3 of the User Manual Section 3.1 pages 23-24

Applications of Nuclear Data: FISPACT-II Michael Fleming

Code practicalities

Input files

The files file contains the mapping of all library files that FISPACT-II will use in the calculation. Every required data must be listed – otherwise a fatal error will be issued.

- ▶ These are listed in Tables 1-3 of the User Manual Section. 3.1 pages 23-24
- Comments are given by #, an example:

```
# Cross section data from TENDL-2015
xs_endf /path/to/tendl-2015/neutron/709-data
# My input spectra
fluxes /my/working/directory/my_spectra
# Decay data from ENDF/B-VII.1
dk_endf /path/to/endfb7.1/decay
```


Michael Fleming

Designation

Basic code functional

Code practicalities

Overview

Input files

Nuclear data handling

Keywords

EXERCISES

- ► The files file contains the mapping of all library files that FISPACT-II will use in the calculation. Every required data must be listed otherwise a fatal error will be issued.
- ➤ These are listed in Tables 1-3 of the User Manual Section 3.1 pages 23-24
- ► Comments are given by #, an example:

```
# Cross section data from TENDL-2015
xs_endf /path/to/tendl-2015/neutron/709-data
# My input spectra
fluxes /my/working/directory/my_spectra
# Decay data from ENDF/B-VII.1
dk_endf /path/to/endfb7.1/decay
```

► There are up to 20 unique types of data, use the example inputs as guidance and/or the User Manual

Michael Fleming

Start-up

Introduction

Basic code functionali

Dasic code iuricionali

Code practicalities

Overview

Input files

input illes

Konnorde

Keywords

EXERCISES

$$\frac{dN_i}{dt} = \underbrace{-N_i(\lambda_i + \sigma_i \phi)}_{\text{loss}} + \sum_{j \neq i} \underbrace{N_j(\lambda_{ji} + \sigma_{ji} \phi)}_{\text{creation}}$$

Michael Fleming

.

Introduction

Basic code functions

Code practicalities

Overview

Basic execu

Input files

Nuclear data handling

Keywords

EXERCISES

$$\frac{dN_i}{dt} = -N_i(\lambda_i) + \sum_{j \neq i} N_j(\lambda_{ji})$$

- ▶ decay constants λ_i, λ_{ii} (s⁻¹)
- ► GETDECAY to read-in from pre-prepared ARRAYX file
 - ► or to create ARRAYX

Michael Fleming

Otart up

Introduction

Basic code functionali

Daoio codo idilolioridi

Code practicalities

Overview

Input files

Nuclear data hand

Keywords

EXERCISES

$$\frac{dN_i}{dt} = \underbrace{-N_i(\sigma_i\phi)}_{\text{loss}} + \sum_{j \neq i} \underbrace{N_j(\sigma_{ji}\phi)}_{\text{creation}}$$

- (neutron) fluxes ϕ and energy dependent spectra in neutrons cm⁻²s⁻¹
- ► GETXS to collapse (fold) FLUXES file with reaction data to produce COLLAPX file of σ_i , σ_{ii} values (or read from it)
- ► FLUX to specify total flux φ

Michael Fleming

.

Introduction

Background

Basic code functional

Code practicalities

Overview

Basic exect

Nuclear data handling

Keywords

EXERCISES

► Users provide an incident particle spectrum that is used to generate '1-group' or effective cross sections

$$\overline{\sigma}_r = \sum_i \phi_i \sigma_{i,r}$$

Michael Fleming

Otal Cap

Introduction

Basis and functions

Basic code functional

Code practicalities

Overview

Basic execi

Input files

Nuclear data handling

Keywords

EXERCISES

► Users provide an incident particle spectrum that is used to generate '1-group' or effective cross sections

$$\overline{\sigma}_r = \sum_i \phi_i \sigma_{i,r}$$

► Requires fluxes input and data files: ind_nuc (nuclide indices), xs_endf (ENDF reaction data) and prob_tab probability tables (for self-shielding)

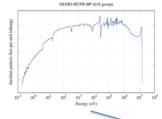
Michael Fleming

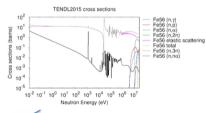
Start-up

Introduction

Basic code functional

Code practi


Overview


Basic execi

Input files

Nuclear data handling

EXERCISES

'e	56	(n,a)	Cr	53	9.30007E-03+-	1.87183E+02
e	56	(n, 2p)	Cr	55	1.89736E-12+-	0.00000E+00
'e	56	(n,np)	Mn	55	1.09412E-02+-	1.71659E+01
'e	56	(n,p)	Mn	56	3.09369E-02+-	6.14934E+00
e	56	(n,E)	Fe	56	3.39432E+00+-	8.08801E-01
'e	56	(n,g)	Fe	57	1.11989E-02+-	3.18853E+00

-						
Fe	56	(n,h)	Cr	54	1.43520E-11+-	5.52180E+02
Fe	56	(n,t)	Mn	54	2.71346E-08+-	4.06438E+02
Fe	56	(n,d)	Mn	55	9.78951E-04+-	2.52961E+02
Fe	56	(n,2n)	Fe	55	1.10279E-01+-	1.43515E+01
Fe	56	(n,n)	Fe	56	3.59211E-01+-	1.13654E+01

Michael Fleming

.

introduction

Basic code functional

Code practicalities

Overview

Basic execu

Input files

Nuclear data handling

Keywords

EXERCISES 5

▶ The 'condense' of the decay data is the reading of all ENDF-6 data files into a set of data for inventory simulations (λ for each nuclide with branching ratios and spectral information)

Applications of Nuclear Data: FISPACT-II Michael Fleming

-

Introduction

Basic code functional

Code practicalities

Overview

Basic exec

Input files

Nuclear data handling

Keywords

EXERCISE

The 'condense' of the decay data is the reading of all ENDF-6 data files into a set of data for inventory simulations (λ for each nuclide with branching ratios and spectral information)

➤ The fission yield reading also weights the energy-dependent yields:

$$Y(Z, A, I) = \frac{\sum_{i} Y_{i}(Z, A, I) \phi_{i} \sigma_{mt=18, i}}{\sum_{i} \phi_{i} \sigma_{mt=18, i}}$$

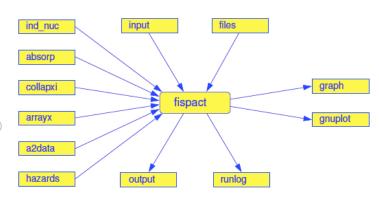
Michael Fleming

Start-up

Introduction Background

Basic code functional

Code practicalities


Overview

Basic exec

Nuclear data handling

Keywords

EXERCISES

► The inventory simulation requires the transcribed cross section, decay and yield data along with user-supplied irradiation/cooling/response information

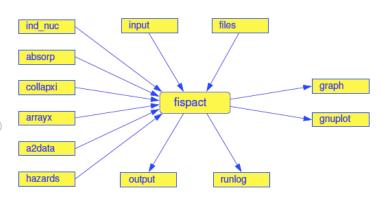
Michael Fleming

Otal t-up

Background

Basic code functional

Code practicalities


Rasin even

Input files

Nuclear data handling

Keyword:

EXERCISES

- The inventory simulation requires the transcribed cross section, decay and yield data along with user-supplied irradiation/cooling/response information
- Variety of outputs, graph data, tabulated, etc.

Joint ICTP-IAEA Workshop on the Evaluation of Nuclear Reaction Data for Applications

Michael Fleming

Background

Basic code functionali

Code practicalities

Basic execution

Input files

Nuclear data handling

Keywords

EXERCISES 5

► The FISPACT-II inputs use keywords in specific order - use the examples for direction (<...> are comments):

```
< -- Control phase -- >
GETXS option_1 option_2
GETDECAY option_3
FISPACT
* Description of calculation
< -- Initial phase -- >
< material definition, simulation options, etc. >
...
< -- Inventory phase -- >
< irradiation definitions, cooling, outputs >
```


Michael Fleming

Otal t up

Introduction

Basic code functiona

Code practicalities

Overview

input iiioo

Keywords

EXERCISES

► The most recent distribution (Dec 2016 v 3-20) that is available through the NEA Data Bank, RSICC, etc., has some 100 keywords - see the manual or wiki:

https://fispact.ukaea.uk/wiki/FISPACT-II_keywords

Michael Fleming

Code practicalities

Keywords

▶ The most recent distribution (Dec 2016 v 3-20) that is available through the NEA Data Bank, RSICC, etc., has some 100 keywords - see the manual or wiki:

https://fispact.ukaea.uk/wiki/FISPACT-II_keywords

 Options are also well documented, for example GETXS option_1 option_2:

Michael Fleming

Introduction

Basic code functional

Dasic code functional

Code practicalities

Overview

Basic exec

Input files

Nuclear data hand

Keywords

EXERCISES

► The most recent distribution (Dec 2016 v 3-20) that is available through the NEA Data Bank, RSICC, etc., has some 100 keywords - see the manual or wiki:

https://fispact.ukaea.uk/wiki/FISPACT-II_keywords

► Options are also well documented, for example

GETXS option_1 option_2:

- option_1 = -1 read binary group data
- option_1 = 0 read binary collapsed data
- ▶ option_1 = 1 read text group data with option_2 group

Michael Fleming

-

Introduction

Basis sada functions

Basic code functiona

Code practicalities

Basic execut

Input files

Nuclear data hand

Keywords

EXERCISES

FISPACT-II keywords

A run of IPSACT-II is controlled by a sequence of commands given in a user-supplied input file, the anatomy of which is described in the code securities page. This requires a series of the expression to be specified for control, inflating and inventory stages. Believe and of life the keywords available in the most recent release of IPSACT-II security being believe and with description. Pages for each of the keywords are linked from this table which provide details of how to use each. Please note that as the code develops new keywords are added to allow access to new features white the failing believers domained by the control of the control of

Previous release 3-00-00 Current supported release 3-20-00

FISPACT-II Keywords

Keyword ¢	Version ¢	Control ¢	Initial +	Invent. •	Description
ALLDISPEN	3-20-00	4			Sets the displacement energies (in eV) for all nuclides
ATDISPEN	3-20-00	1			Sets the displacement energies (in eV) for specified elements
ATOMS	3-00-00		1	1	Sets initial conditions and initiates output with inventories and observables. After the ZERO keyword will also output uncertainties
ATWO	3-00-00		1		Causes output of legal limits for activity in transport of radioactive material
BREMSSTRAHLUNG	3-00-00		4		Causes output of brehmsstrahlung contributions for specified nuclides
CLEAR	3-00-00		1		Causes clearance data of radionuclides to be output
CLOBBER	3-00-00	1			Allows FISPACT-II to overwrite existing output with same name
CNVTYPE	3-20-00	1			Allows the user to specify formalism for conversion of incident particle spectra
COVARIANCE	3-00-00	1			Causes cross-channel covariances to be calculated (if present in nuclear data)
CULTAB	3-00-00		1		Produces additional lines in tab files for specific post-processing tools
CUMFYLD	3-00-00	1			Allows the cumulative fission yields to be read, rather than the default independent yields

Michael Fleming

Background

Basic code functional

Code practicalities

Overview

Basic execution

Input files

Nuclear data hand

Keywords

EXERCISES

Keyword:GETXS

GETXS libxs <ebins>

This seyword has two integer parameters. If the first parameter fixes is set to 0, then the second parameter should be omitted, and cross section deals are read from the existing collapsed in the size is less if it is possible of the size is less if it is fixed in a fixed to the second parameter denergy who to be used in collapsed for cross section data from the ENDF data at fixed in the ENDF data at one and from the compressed briany version of the ENDF data stored in the fits specified by x_x andict in the fixed is less. Note that the value fixed -s I not value for less part is fixed in the fi

The number of energy groups ebins must be consistent with the number of groups in the supplied library file. The permitted numbers of groups for cross-section data are, for the most recent public distribution, the CCFE-709 for neutrons and CCFE-182 for charged particles. Legacy EAF libraries and their various group structures may also be used.

Example usage, where the cross sections are re-collapsed every 20 days during some irradiation simulation:

< -- Control phase -- >

GETXS 1 709 FISPACT

Michael Fleming

- tal. t - p

Introduction

Rasic code functionali

Basic code functional

Code practicalities

Overview

Input files

Nuclear data handli

Keywords

EVEDOICE

Some can be used multiple times, for example re-collapse data in burn- up with spectral shift or change the flux/power normalisation – See the wiki for all details or the User Manual

	FISPACT	Required to start simulation
	GETXS/GETDECAY	Required to process nuclear data
	END	Required to end input
	TIME	Used to specify time intervals
)	ATOMS/STEP	Used to instruct the code to solve
	HAZARD/DOSE	Used to request standard outputs
	MASS/FUEL	Used to specify input material
	USEFISSION	Used to turn on fission
	FLUX/POWER	Used to set flux normalisation
	PRINTLIB	Used to print nuclear data
	ZERO	Used to zero the clock for cooling
	SSFCHOOSE/	Used to for self-shielding
	SSFMASS/SSFFUEL	

Michael Fleming

Start-up

Introduction

Basis sada function

Dabio obdo idiloliolia

Code practica

Overview

Basic execution

iliput illes

Keywords

EXERCISE:

► FISPACT-II comes with a getting_started tutorial suite that we will use in this session

► Steps:

Michael Fleming

Introduction

Basis sada function

Overview

Overview

Dasic execui

Nuclear data handlin

Keywords

EXERCISES

► FISPACT-II comes with a getting_started tutorial suite that we will use in this session

- Steps:
 - Open a terminal in Linux Mint and navigate to /getting_started/FNS_Inconel

Michael Fleming

Introduction

Dackground

Code practicalitie

Overview

Input files

Nuclear data handlin

Keywords

EXERCISES

► FISPACT-II comes with a getting_started tutorial suite that we will use in this session

- Steps:
 - Open a terminal in Linux Mint and navigate to /getting_started/FNS_Inconel
 - ▶ Open the user manual (online at http://fispact.ukaea.uk) to section 3

Michael Fleming

Introduction

Basic code functio

Code practicalities

Overview

Basic execut

Input files

Keywords

EXERCISES

► FISPACT-II comes with a getting_started tutorial suite that we will use in this session

- ► Steps:
 - Open a terminal in Linux Mint and navigate to /getting_started/FNS_Inconel
 - ► Open the user manual (online at http://fispact.ukaea.uk) to section 3
 - Complete the first exercises and ensure that you perform the pulsed decay heat example

Michael Fleming

Introduction

Basic code function

Code practicalities

Overview

Basic execut

Input files

Keywords

EXERCISES

► FISPACT-II comes with a getting_started tutorial suite that we will use in this session

- ► Steps:
 - Open a terminal in Linux Mint and navigate to /getting_started/FNS_Inconel
 - ► Open the user manual (online at http://fispact.ukaea.uk) to section 3
 - Complete the first exercises and ensure that you perform the pulsed decay heat example
- If you have already attended the NEA training course let me know and I'll provide more challenging examples

Lecture break for exercises

