Applications of Nuclear Data: GEF ICTP-IAEA Workshop on the Evaluation of Nuclear Data for Applications

10 October 2017

Michael Fleming michael.fleming@ukaea.uk

UK Atomic Energy Authority

UK Atomic Energy Authority

The Abdus Salam International Centre for Theoretical Physics www.ictp.it

Agenda

Applications of Nuclear Data: GEF Michael Fleming

Introduction

Code practicalitie

Inputs

System options Parameter variation

Outputs

Standard outputs Additional outputs 'List mode'

EXERCISES

ENDF/applications ENDF format Application: FISPACT-II

'Bayesian' files

Uncertainty calculations

EXERCISES

Joint ICTP-IAEA Workshop on the Evaluation of Nuclear Reaction Data for Applications

24

Introduction Code practicalities

Inputs

System options Parameter variation

Outputs

Standard outputs Additional outputs 'List mode'

EXERCISES

ENDF/applications ENDF format Application: FISPACT-II 'Bayesian' files Uncertainty calculations Introduction

Applications of Nuclear Data: GEF Michael Fleming

Introduction

Code practicalities

Inputs

System options Parameter variatio

Outputs

Standard outputs Additional output 'List mode'

EXERCISES

ENDF/applications ENDF format Application: FISPACT-II 'Bayesian' files Uncertainty calculations

EXERCISES

Joint ICTP-IAEA Workshop on the Evaluation of Nuclear Reaction Data for Applications

24

A wealth of theoretical and practical information is available from the main publications and references therein:

General Description of Fission Observables K-H Schmidt, B. Jurado NEA/DB/DOC(2014)1 JEFF Report 24 www.khs-erzhausen.de/Preprints/db-doc2014-1.pdf

General Description of Fission Observables: GEF Model Code K-H Schmidt, B. Jurado, C. Amouroux, C. Schmitt Nuclear Data Sheets 131 (2016) 107-221 www.khs-erzhausen.de/Preprints/HAL-GEF-NDS.pdf

Introduction Reminders

Applications of Nuclear Data: GEF Michael Fleming

Introduction

Code practicalities

Inputs

System options Parameter variation

Outputs

Standard outputs Additional output 'List mode'

EXERCISES

ENDF/applications ENDF format Application: FISPACT-II 'Bayesian' files Uncertainty calculations

EXERCISES

Joint ICTP-IAEA Workshop on the Evaluation of Nuclear Reaction Data for Applications

24

You will remember from the previous week that:

 Fission is a complex process and accurate prediction of most post-fission quantities requires empirical modeling

Introduction Beminders

Applications of Nuclear Data: GEF Michael Fleming

Introduction

Code practicalities

Inputs

System options Parameter variation

Outputs

Standard outputs Additional outputs 'List mode'

EXERCISES

ENDF/applications ENDF format Application: FISPACT-II 'Bayesian' files Uncertainty calculations

EXERCISES

Joint ICTP-IAEA Workshop on the Evaluation of Nuclear Reaction Data for Applications

24

You will remember from the previous week that:

- Fission is a complex process and accurate prediction of most post-fission quantities requires empirical modeling
- GEF is a nuclear fission simulation code that models a variety of important fission observables

Introduction Reminders

Applications of Nuclear Data: GEF Michael Fleming

Introduction

Code practicalities

Inputs

System options

Outputs

Standard outputs Additional outputs 'List mode'

EXERCISES

ENDF/applications ENDF format

Application: FISPACT-

Dayesian mes

EXERCISES

Joint ICTP-IAEA Workshop on the Evaluation of Nuclear Reaction Data for Applications

24

You will remember from the previous week that:

- Fission is a complex process and accurate prediction of most post-fission quantities requires empirical modeling
- GEF is a nuclear fission simulation code that models a variety of important fission observables
- GEF takes a 'general approach' that applies a selection of semi-empirical parameters and is valid for a wide range of targets and fissioning conditions

Introduction Beminders

Applications of Nuclear Data: GEF Michael Fleming

Introduction

Code practicalities

Inputs

System options

Outputs

Standard outputs Additional outputs 'List mode'

EXERCISES

ENDF/applications ENDF format Application: FISPACT-I

'Bayesian' files

Uncertainty calculations

EXERCISES

Joint ICTP-IAEA Workshop on the Evaluation of Nuclear Reaction Data for Applications

24

You will remember from the previous week that:

- Fission is a complex process and accurate prediction of most post-fission quantities requires empirical modeling
- GEF is a nuclear fission simulation code that models a variety of important fission observables
- GEF takes a 'general approach' that applies a selection of semi-empirical parameters and is valid for a wide range of targets and fissioning conditions
- GEF is specifically engineered to allow parameter variation to better fit the model results to experiment and, as a consequence, can be used for uncertainty quantification

Applications of Nuclear Data: GEF

Michael Fleming

Introduction

Code practicalities

Inputs

System options Parameter variation

Outputs

Standard outputs Additional output 'List mode'

EXERCISES

ENDF/applications ENDF format Application: FISPACT-II 'Bayesian' files Uncertainty calculations

EXERCISES

Joint ICTP-IAEA Workshop on the Evaluation of Nuclear Reaction Data for Applications

24

Open source and available from Karl-Heinz's website: http://www.khs-erzhausen.de/GEF.html

Applications of Nuclear Data: GEF

Michael Fleming

Introduction

Code practicalities

Inputs

System options Parameter variation

Outputs

Standard outputs Additional output 'List mode'

EXERCISES

ENDF/applications ENDF format Application: FISPACT-II 'Bayesian' files Uncertainty calculations

EXERCISES

Joint ICTP-IAEA Workshop on the Evaluation of Nuclear Reaction Data for Applications

- Open source and available from Karl-Heinz's website: http://www.khs-erzhausen.de/GEF.html
- GEF is a Monte-Carlo code running a series of simulations and treating these as samples of the true code predictions

Applications of Nuclear Data: GEF

Michael Fleming

Introduction

Code practicalities

Inputs

System options Parameter variation

Outputs

Standard outputs Additional output: 'List mode'

EXERCISES

ENDF/applications ENDF format Application: FISPACT-II

Uncertainty calculations

EXERCISES

Joint ICTP-IAEA Workshop on the Evaluation of Nuclear Reaction Data for Applications

24

- Open source and available from Karl-Heinz's website: http://www.khs-erzhausen.de/GEF.html
- GEF is a Monte-Carlo code running a series of simulations and treating these as samples of the true code predictions
- A set of 'reference' results are known as the GEFY (GEF Yields) in ENDF-6 format

(http://www.khs-erzhausen.de/GEFY.html)

Applications of Nuclear Data: GEF Michael Fleming

Wienderrienni

Introduction

Code practicalities

Inputs

System options Parameter variation

Outputs

Standard outputs Additional output: 'List mode'

EXERCISES

- ENDF/applications ENDF format Application: FISPACT-II
- 'Bayesian' files
- Uncertainty calculation

EXERCISES

Joint ICTP-IAEA Workshop on the Evaluation of Nuclear Reaction Data for Applications

24

- Open source and available from Karl-Heinz's website: http://www.khs-erzhausen.de/GEF.html
- GEF is a Monte-Carlo code running a series of simulations and treating these as samples of the true code predictions
- A set of 'reference' results are known as the GEFY (GEF Yields) in ENDF-6 format

(http://www.khs-erzhausen.de/GEFY.html)

 The code is written in FreeBASIC, requiring the fbc compiler (that is not available for OS X)

Introduction

Code practicalities

Inputs

System options Parameter variation

Outputs

Standard outputs Additional output 'List mode'

EXERCISES

ENDF/applications ENDF format Application: FISPACT-II 'Bayesian' files Uncertainty calculations

EXERCISES

Joint ICTP-IAEA Workshop on the Evaluation of Nuclear Reaction Data for Applications

24

 GEF can be run directly from the command line with ./GEF, which prompts a series of terminal queries for input information

\$./GEF	
Enter Z and A of fissioning nucleus:	92 236
Chose the input option: EN	
Energy input is the incident neutron	energy.
Enter energy value (MeV):	

Introduction

Code practicalities

Inputs

System options Parameter variation

Outputs

Standard outputs Additional output 'List mode'

EXERCISES

ENDF/application

Application: FISPACT-

'Bayesian' files

Uncertainty calculations

EXERCISES

Joint ICTP-IAEA Workshop on the Evaluation of Nuclear Reaction Data for Applications

24

► GEF can be run directly from the command line with ./GEF, which prompts a series of terminal queries for input information

\$./GEF	
Enter Z and A of fissioning nucleus:	92 236
Chose the input option: EN	
Energy input is the incident neutron	energy.
Enter energy value (MeV):	

 Alternatively, provide an input file with the required information (omitted data is taken to be default)

Introduction

Code practicalities

Inputs

System options Parameter variation

Outputs

Standard outputs Additional output 'List mode'

EXERCISES

ENDF/applications

- Application: FISPA
- 'Bavesian' files

Uncertainty calculations

EXERCISES

Joint ICTP-IAEA Workshop on the Evaluation of Nuclear Reaction Data for Applications

24

► GEF can be run directly from the command line with ./GEF, which prompts a series of terminal queries for input information

\$./GEF	
Enter Z and A of fissioning nucleus:	92 236
Chose the input option: EN	
Energy input is the incident neutron	energy.
Enter energy value (MeV):	

- Alternatively, provide an input file with the required information (omitted data is taken to be default)
- This requires a file file.in that contains a list of files with input data

Introduction

Code practicalitie:

Inputs

System options

Parameter variatio

Outputs

Standard output: Additional output 'List mode'

EXERCISES

ENDF/applications

Application: FISPACT-II 'Bayesian' files Uncertainty calculations

EXERCISES

Joint ICTP-IAEA Workshop on the Evaluation of Nuclear Reaction Data for Applications

24

The directory content could be: file.in and U235_2.0MeV:

\$ head file.in
U235_2.0MeV
\$ head U235_2.0MeV
1
2.0
Options(err,cor)
92, 236, "EN"

Each of the lines in the input files must follow a specific format

 The file.in file has one file name per line (comments with ' are ignored)

Introduction

Code practicalitie:

Inputs

System options

Parameter variatio

Outputs

Standard output: Additional output 'List mode'

EXERCISES

ENDF/applications

ENDF format Application: FISPACT-I 'Bayesian' files

EXERCISES

Joint ICTP-IAEA Workshop on the Evaluation of Nuclear Reaction Data for Applications

24

The directory content could be: file.in and U235_2.OMeV:

\$ head file.in
U235_2.0MeV
\$ head U235_2.0MeV
1
2.0
Options(err,cor)
92, 236, "EN"

Each of the lines in the input files must follow a specific format

- The file.in file has one file name per line (comments with ' are ignored)
- Each file defines a (set of) simulation(s) and requires a precisely defined type of input for each line

Applications of Nuclear Data: GEF

Michael Fleming

Introduction

Code practicalities

Inputs

System options

Parameter variation

Outputs

Standard outputs Additional outputs 'List mode'

EXERCISES

ENDF/applications

ENDF format

'Revealer' files

Lincertainty calcula

EXERCISES

Joint ICTP-IAEA Workshop on the Evaluation of Nuclear Reaction Data for Applications

1				
2.0				
Opti	ons	(ei	rr,	cor)
92,	236	,	"EN	"

- First line controls the number of events sampled and must be a number N
- The number of simulated events is $100,000 \times N$
- ▶ *N* = 1 takes <10 seconds, but options will multiply this!
- Second line is the energy (multiple types) in MeV, can also be a list, e.g.:

```
-
1.0, 2.0, 3.0, 4.0, 5.0
Options(err,cor)
92, 236, "EN"
```


8

Applications of Nuclear Data: GEF

Michael Fleming

Introduction

Code practicalities

Inputs

System options

Parameter variatio

Outputs

Standard outputs Additional output: 'List mode'

EXERCISES

ENDF/applications ENDF format Application: FISPACT-II 'Bayesian' files Uncertainty calculations EXERCISES

Joint ICTP-IAEA Workshop on the Evaluation of Nuclear Reaction Data for Applications

24

1	
2.0	
Options(err,cor)	
92, 236, "EN"	

Applications of Nuclear Data: GEF

Michael Fleming

Introduction

Code practicalities

Inputs

System options

Parameter variatio

Outputs

Standard outputs Additional outputs 'List mode'

EXERCISES

ENDF/applications ENDF format Application: FISPACT-II 'Bayesian' files Uncertainty calculations

Joint ICTP-IAEA Workshop on the Evaluation of Nuclear Reaction Data for Applications

1		
2.0		
Options(err,cor)		
92, 236, "EN"		

- Third line switches on various options:
 - err: calculation with perturbed parameters (taken from internal distributions with pre-defined variances)

Applications of Nuclear Data: GEF

Michael Fleming

Introduction

Code practicalities

Inputs

System options

Parameter variation

Outputs

Standard outputs Additional outputs 'List mode'

EXERCISES

ENDF/applications

ENDF format

Аррисацон, гюгаст

'Bayesian' files

Joint ICTP-IAEA Workshop on the Evaluation of Nuclear Reaction Data for Applications

24

1	
2.0	
Options(err,cor)	
92, 236, "EN"	

- err: calculation with perturbed parameters (taken from internal distributions with pre-defined variances)
- > ptb: prints outputs of perturbed parameter calculations

Applications of Nuclear Data: GEF

Michael Fleming

Introduction

Code practicalities

Inputs

System options

Parameter variation

Outputs

Standard outputs Additional outputs 'List mode'

EXERCISES

ENDF/applications

ENDF format

Application: FISPACT

'Bayesian' files

Uncertainty calculations

EXERCISES

Joint ICTP-IAEA Workshop on the Evaluation of Nuclear Reaction Data for Applications

24

1		
2.0		
Options(err,cor)	
92, 236,	"EN"	

- err: calculation with perturbed parameters (taken from internal distributions with pre-defined variances)
- > ptb: prints outputs of perturbed parameter calculations
- random: (for random ENDF file generation, not in this version)

System options

Inputs

Applications of Nuclear Data: GEF

Michael Fleming

Introduction

Code practicalities

Inputs

System options

Parameter variation

Outputs

Standard outputs Additional outputs 'List mode'

EXERCISES

ENDF/applications

ENDF format

Application: FISPACT-I

'Bayesian' files

Uncertainty calculations

EXERCISES

Joint ICTP-IAEA Workshop on the Evaluation of Nuclear Reaction Data for Applications

24

1	
2.0	
Options(err,cor)	
92, 236, "EN"	

- err: calculation with perturbed parameters (taken from internal distributions with pre-defined variances)
- > ptb: prints outputs of perturbed parameter calculations
- random: (for random ENDF file generation, not in this version)
- cov: print out covariance matrices

Applications of Nuclear Data: GEF

Michael Fleming

Introduction

Code practicalities

Inputs

System options

Parameter variation

Outputs

Standard outputs Additional outputs 'List mode'

EXERCISES

ENDF/applications

ENDF format

Application: FISPACT

'Bayesian' files

Uncertainty calculations

EXERCISES

Joint ICTP-IAEA Workshop on the Evaluation of Nuclear Reaction Data for Applications

24

1			
2.0			
Opt	ions (err	,cor)
92,	236,	" EN	1"

Inputs System options

- err: calculation with perturbed parameters (taken from internal distributions with pre-defined variances)
- > ptb: prints outputs of perturbed parameter calculations
- random: (for random ENDF file generation, not in this version)
- cov: print out covariance matrices
- cor: print out correlation matrices

Applications of Nuclear Data: GEF

Michael Fleming

Introduction

Code practicalities

Inputs

System options

Parameter variation

Outputs

Standard outputs Additional outputs 'List mode'

EXERCISES

ENDF/applications

ENDF format

Application: FISPACT

'Bayesian' files

Uncertainty calculations

EXERCISES

Joint ICTP-IAEA Workshop on the Evaluation of Nuclear Reaction Data for Applications

24

1	
2.0	
Options(err,cor)	
92, 236, "EN"	

- err: calculation with perturbed parameters (taken from internal distributions with pre-defined variances)
- > ptb: prints outputs of perturbed parameter calculations
- random: (for random ENDF file generation, not in this version)
- cov: print out covariance matrices
- cor: print out correlation matrices
- Imd: print a 'list-mode' output with summary of all simulated events
 - Not all quantities are output in the 'list-mode' file. You will run examples and parse them

Applications of Nuclear Data: GEF

Michael Fleming

Introduction

Code practicalities

Inputs

System options

Parameter variatio

Outputs

Standard outputs Additional outputs 'List mode'

EXERCISES

ENDF/applications ENDF format Application: FISPACT-II 'Bayesian' files Uncertainty calculations

EXERCISES

Joint ICTP-IAEA Workshop on the Evaluation of Nuclear Reaction Data for Applications

24

1	
2.0	
Options(err,cor)	
92, 236, "EN"	

The last line gives the charge and baryon number of the fissioning system, as well as the type of fission:

Applications of Nuclear Data: GEF

Michael Fleming

Introduction

Code practicalities

Inputs

System options

Parameter variatio

Outputs

Standard outputs Additional outputs 'List mode'

EXERCISES

ENDF/applications

ENDF format Application: FISPAC

'Bayesian' files

Uncertainty calculations

EXERCISES

Joint ICTP-IAEA Workshop on the Evaluation of Nuclear Reaction Data for Applications

1	
2.0	
Options(err,cor)	
92, 236, "EN"	

- The last line gives the charge and baryon number of the fissioning system, as well as the type of fission:
 - GS: energy above the ground state

Inputs

System options

Applications of Nuclear Data: GEF

Michael Fleming

Introduction

Code practicalities

Inputs

System options

Parameter variatio

Outputs

Standard outputs Additional outputs 'List mode'

EXERCISES

ENDF/applications

ENDF format

'Rayonian' filon

Uncertainty calculations

EXERCISES

Joint ICTP-IAEA Workshop on the Evaluation of Nuclear Reaction Data for Applications

1	
2.0	
Options(err,cor)	
92, 236, "EN"	

- The last line gives the charge and baryon number of the fissioning system, as well as the type of fission:
 - GS: energy above the ground state
 - ► FC: as with GS, but allowing only first change fission

Applications of Nuclear Data: GEF

Michael Fleming

Introduction

Code practicalities

Inputs

System options

Parameter variatio

Outputs

Standard outputs Additional outputs 'List mode'

EXERCISES

ENDF/applications

ENDF format

Application: FISPACI-

'Bayesian' files

Uncertainty calcula

EXERCISES

Joint ICTP-IAEA Workshop on the Evaluation of Nuclear Reaction Data for Applications

1	
2.0	
Options(err,cor)	
92, 236, "EN"	

- The last line gives the charge and baryon number of the fissioning system, as well as the type of fission:
 - GS: energy above the ground state
 - ► FC: as with GS, but allowing only first change fission
 - ► **ISx**: nucleus in isomeric state *x* and energy above that state

Applications of Nuclear

Michael Fleming

Introduction

Code practicalities

Inputs

System options

Parameter variatio

Outputs

Standard outputs Additional outputs 'List mode'

EXERCISES

ENDF/applications

ENDF format

Application: FISPACT-

'Bayesian' files

Uncertainty calculations

EXERCISES

Joint ICTP-IAEA Workshop on the Evaluation of Nuclear Reaction Data for Applications

1
2.0
Options(err,cor)
92, 236, "EN"

- The last line gives the charge and baryon number of the fissioning system, as well as the type of fission:
 - GS: energy above the ground state
 - ► FC: as with GS, but allowing only first change fission
 - ► **ISx**: nucleus in isomeric state *x* and energy above that state
 - EN: incident neutron energy

Applications of Nuclear Data: GEF

Michael Fleming

Introduction

Code practicalities

Inputs

System options

Parameter variatio

Outputs

Standard outputs Additional outputs 'List mode'

EXERCISES

ENDF/applications

ENDF format

Application: FISPACT

'Bayesian' files

Uncertainty calculations

EXERCISES

Joint ICTP-IAEA Workshop on the Evaluation of Nuclear Reaction Data for Applications

1	
2.0	
Options(err,cor)	
92, 236, "EN"	

- The last line gives the charge and baryon number of the fissioning system, as well as the type of fission:
 - ► GS: energy above the ground state
 - ► FC: as with GS, but allowing only first change fission
 - ► **ISx**: nucleus in isomeric state *x* and energy above that state
 - EN: incident neutron energy
 - EP: incident proton energy

Applications of Nuclear Data: GEF

Michael Fleming

Introduction

Code practicalities

Inputs

System options

Parameter variation

Outputs

Standard outputs Additional outputs 'List mode'

EXERCISES

ENDF/applications

ENDF format

Application: FISPACT-

'Bayesian' files

Uncertainty calculations

EXERCISES

Joint ICTP-IAEA Workshop on the Evaluation of Nuclear Reaction Data for Applications

1	
2.0	
Options(err,cor)	
92, 236, "EN"	

- The last line gives the charge and baryon number of the fissioning system, as well as the type of fission:
 - GS: energy above the ground state
 - ► FC: as with GS, but allowing only first change fission
 - ► **ISx**: nucleus in isomeric state *x* and energy above that state
 - EN: incident neutron energy
 - EP: incident proton energy
 - ENx: as with EN but target in isomeric state x

Applications of Nuclear Data: GEF

Michael Fleming

Introduction

Code practicalities

Inputs

System options

Parameter variation

Outputs

Standard outputs Additional outputs 'List mode'

EXERCISES

ENDF/applications

ENDF format

Application: FISPACT-

'Bayesian' files

Uncertainty calculations

EXERCISES

Joint ICTP-IAEA Workshop on the Evaluation of Nuclear Reaction Data for Applications

1	
2.0	
Options(err,cor)	
92, 236, "EN"	

- The last line gives the charge and baryon number of the fissioning system, as well as the type of fission:
 - ► GS: energy above the ground state
 - ► FC: as with GS, but allowing only first change fission
 - ► **ISx**: nucleus in isomeric state *x* and energy above that state
 - EN: incident neutron energy
 - EP: incident proton energy
 - ENx: as with EN but target in isomeric state x
 - EB: energy above the outer fission barrier

Applications of Nuclear Data: GEF

Michael Fleming

Introduction

Code practicalities

Inputs

System options

Parameter variation

Outputs

Standard outputs Additional outputs 'List mode'

EXERCISES

ENDF/applications

ENDF format

Application: FISPACT-

'Bayesian' files

Uncertainty calculations

EXERCISES

Joint ICTP-IAEA Workshop on the Evaluation of Nuclear Reaction Data for Applications

24

1		
2.0		
Options(err,cor)		
92, 236, "EN"		

The last line gives the charge and baryon number of the fissioning system, as well as the type of fission:

- ► GS: energy above the ground state
- ► FC: as with GS, but allowing only first change fission
- ► **ISx**: nucleus in isomeric state *x* and energy above that state
- EN: incident neutron energy
- EP: incident proton energy
- ENx: as with EN but target in isomeric state x
- EB: energy above the outer fission barrier
- ES: reads excitation energy spectrum from Espectrum.in and calculates weighted set of first chance fission for spectrum

10

24

Applications of Nuclear Data: GEF

Michael Fleming

Introduction

Code practicalities

Inputs

System options

Parameter variation

Outputs

Standard outputs Additional outputs 'List mode'

EXERCISES

ENDF/applications ENDF format Application: FISPACT-II 'Bayesian' files Uncertainty calculations

EXERCISES

Joint ICTP-IAEA Workshop on the Evaluation of Nuclear Reaction Data for Applications GEF uses a set of semi-empirical parameters to control the relative contributions of the various shell effects, the charge distribution, etc.

Inputs

Parameter variation

Applications of Nuclear Data: GEF Michael Fleming

wichael Fleming

Introduction

Code practicalitie

Inputs

System options

Parameter variation

Outputs

Standard outputs Additional outputs 'List mode'

EXERCISES

ENDF/applications ENDF format Application: FISPACT-II 'Bayesian' files Uncertainty calculations

EXERCISES

Joint ICTP-IAEA Workshop on the Evaluation of Nuclear Reaction Data for Applications

- GEF uses a set of semi-empirical parameters to control the relative contributions of the various shell effects, the charge distribution, etc.
- Each has its own internal 'uncertainty' value and automatic pertubation with the err option unlocks this

Inputs

Parameter variation

Applications of Nuclear Data: GEF

Michael Fleming

- Introduction
- Coue practi
- Inputs
- System options
- Parameter variation

Outputs

Standard outputs Additional output 'List mode'

EXERCISES

ENDF/applications

- ENDF format Application: FISPAC
- 'Bayesian' files
- Uncertainty calculations

EXERCISES

Joint ICTP-IAEA Workshop on the Evaluation of Nuclear Reaction Data for Applications

- GEF uses a set of semi-empirical parameters to control the relative contributions of the various shell effects, the charge distribution, etc.
- Each has its own internal 'uncertainty' value and automatic pertubation with the err option unlocks this
- Users can manually adjust these using the terminal-provided options:

```
Enter scaling factor for even-odd effect in Z and N yields (default = 1): 1.2
Shell effect in the symmetric channel is assumed to be 0.3 MeV.
You may enter another guess value if you want to change it: 0.4
Use locally adjusted model parameters, if available (0 or 1): 1
```


Inputs

Parameter variation

Applications of Nuclear Data: GEF

Michael Fleming

- Introduction
- Innute
- System options
- Parameter variation

Outputs

Standard outputs Additional output 'List mode'

EXERCISES

ENDF/applications ENDF format Application: FISPACT-I

- 'Bayesian' files
- Uncertainty calculations

EXERCISES

Joint ICTP-IAEA Workshop on the Evaluation of Nuclear Reaction Data for Applications

24

- GEF uses a set of semi-empirical parameters to control the relative contributions of the various shell effects, the charge distribution, etc.
- Each has its own internal 'uncertainty' value and automatic pertubation with the err option unlocks this
- Users can manually adjust these using the terminal-provided options:

```
Enter scaling factor for even-odd effect in Z and N yields (default = 1): 1.2
Shell effect in the symmetric channel is assumed to be 0.3 MeV.
You may enter another guess value if you want to change it: 0.4
Use locally adjusted model parameters, if available (0 or 1): 1
```

 The local adjusted parameters are held in the source code GEF.bas (this version has some parameters for Z=90, but you could add others)

Introduction

Inputs

System options Parameter variation

Outputs

Standard outputs Additional outputs 'List mode'

EXERCISES

ENDF/applications ENDF format Application: FISPACT-II 'Bayesian' files Uncertainty calculations

EXERCISES

Joint ICTP-IAEA Workshop on the Evaluation of Nuclear Reaction Data for Applications

24

ntroduction

Code practicalities

Inputs

System options Parameter variation

Outputs

Standard outputs Additional outputs 'List mode'

EXERCISES

ENDF/applications ENDF format Application: FISPACT-II 'Bayesian' files Uncertainty calculations

EXERCISES

Joint ICTP-IAEA Workshop on the Evaluation of Nuclear Reaction Data for Applications

24

► GEF generates a few output folders including:

 out/ contains the pseudo-xml .dat files containing summaries of all data

Introduction

Code practicalities

Inputs

System options Parameter variation

Outputs

Standard outputs Additional outputs 'List mode'

EXERCISES

ENDF/applications

ENDF format Application: FISPAC 'Bavesian' files

Uncertainty calculations

EXERCISES

Joint ICTP-IAEA Workshop on the Evaluation of Nuclear Reaction Data for Applications

24

- out/ contains the pseudo-xml .dat files containing summaries of all data
- dmp/ contains many .dmp 'dump' files separated by intuitive file names
- tmp/ contains some temporary files such as the multivariate distribution data
- ctl/ contains some files specific to multi-threading

Introduction

Code practicalities

Inputs

System options Parameter variation

Outputs

Standard outputs Additional outputs 'List mode'

EXERCISES

ENDF/applications

ENDF format Application: FISPACT-'Bayesian' files

EXERCISES

Joint ICTP-IAEA Workshop on the Evaluation of Nuclear Reaction Data for Applications

24

- out/ contains the pseudo-xml .dat files containing summaries of all data
- dmp/ contains many .dmp 'dump' files separated by intuitive file names
- tmp/ contains some temporary files such as the multivariate distribution data
- ctl/ contains some files specific to multi-threading
- ► The .dat file contains many quantities such as:

Introduction

Code practicalities

Inputs

System options Parameter variatio

Outputs

Standard outputs Additional outputs 'List mode'

EXERCISES

- ENDF/applications
- ENDF format Application: FISPACT
- 'Bayesian' files

Uncertainty calculations

EXERCISES

Joint ICTP-IAEA Workshop on the Evaluation of Nuclear Reaction Data for Applications

24

- out/ contains the pseudo-xml .dat files containing summaries of all data
- dmp/ contains many .dmp 'dump' files separated by intuitive file names
- tmp/ contains some temporary files such as the multivariate distribution data
- ► ctl/ contains some files specific to multi-threading
- ► The .dat file contains many quantities such as:
 - nuclide distributions,

Introduction

Code practicalities

Inputs

System options Parameter variation

Outputs

Standard outputs Additional outputs 'List mode'

EXERCISES

- ENDF/applications
- ENDF format Application: FISPACT
- 'Bayesian' files
- Uncertainty calculations

EXERCISES

Joint ICTP-IAEA Workshop on the Evaluation of Nuclear Reaction Data for Applications

24

- out/ contains the pseudo-xml .dat files containing summaries of all data
- dmp/ contains many .dmp 'dump' files separated by intuitive file names
- tmp/ contains some temporary files such as the multivariate distribution data
- ► ctl/ contains some files specific to multi-threading
- ► The .dat file contains many quantities such as:
 - nuclide distributions,
 - gamma spectra,

Introduction

Code practicalities

Inputs

System options Parameter variation

Outputs

Standard outputs Additional outputs 'List mode'

EXERCISES

- ENDF/applications
- ENDF format Application: FISPAC
- 'Bayesian' files
- Uncertainty calculations

EXERCISES

Joint ICTP-IAEA Workshop on the Evaluation of Nuclear Reaction Data for Applications

24

- out/ contains the pseudo-xml .dat files containing summaries of all data
- dmp/ contains many .dmp 'dump' files separated by intuitive file names
- tmp/ contains some temporary files such as the multivariate distribution data
- ► ctl/ contains some files specific to multi-threading
- ► The .dat file contains many quantities such as:
 - nuclide distributions,
 - ► gamma spectra,
 - neutron yields and spectra,

Introduction

Code practicalities

Inputs

System options Parameter variatio

Outputs

Standard outputs Additional outputs 'List mode'

EXERCISES

- ENDF/applications
- ENDF format Application: FISPAC
- 'Bayesian' files

Uncertainty calculations

EXERCISES

Joint ICTP-IAEA Workshop on the Evaluation of Nuclear Reaction Data for Applications

24

- out/ contains the pseudo-xml .dat files containing summaries of all data
- dmp/ contains many .dmp 'dump' files separated by intuitive file names
- tmp/ contains some temporary files such as the multivariate distribution data
- ► ctl/ contains some files specific to multi-threading
- ► The .dat file contains many quantities such as:
 - nuclide distributions,
 - ► gamma spectra,
 - neutron yields and spectra,
 - ► kinetic energies, J of fragments,

Introduction

Code practicalities

Inputs

System options Parameter variation

Outputs

Standard outputs Additional outputs 'List mode'

EXERCISES

- ENDF/applications
- ENDF format
- 'Bavesian' files
- Uncertainty calculations

EXERCISES

Joint ICTP-IAEA Workshop on the Evaluation of Nuclear Reaction Data for Applications

24

- out/ contains the pseudo-xml .dat files containing summaries of all data
- dmp/ contains many .dmp 'dump' files separated by intuitive file names
- tmp/ contains some temporary files such as the multivariate distribution data
- ► ctl/ contains some files specific to multi-threading
- ► The .dat file contains many quantities such as:
 - nuclide distributions,
 - ► gamma spectra,
 - neutron yields and spectra,
 - ► kinetic energies, J of fragments,
 - many derived quantities and multi-parameter distributions

12

24

Applications of Nuclear Data: GEF Michael Fleming

Michael Fleming

Introduction

Code practica

Inputs

System options Parameter variati

Outputs

Standard outputs Additional outputs

EXERCISES

ENDF/applications ENDF format Application: FISPACT-II 'Bayesian' files Uncertainty calculations

EXERCISES

Joint ICTP-IAEA Workshop on the Evaluation of Nuclear Reaction Data for Applications Adding the various options to the input file also generates data made with sampled input model parameters.

Applications of Nuclear Data: GEF Michael Fleming

wichael Fleming

Introduction

Code practicalities

Inputs

System options Parameter variati

Outputs

Standard outputs Additional outputs

EXERCISES

ENDF/applications ENDF format Application: FISPACT-II 'Bayesian' files Uncertainty calculations

EXERCISES

Joint ICTP-IAEA Workshop on the Evaluation of Nuclear Reaction Data for Applications

- Adding the various options to the input file also generates data made with sampled input model parameters.
 - The .mvd multi-variate distribution file contains the nuclide yields from each set with different, sampled input parameters

Applications of Nuclear Data: GEF Michael Fleming

Introduction

Code practicalities

Inputs

System options Parameter variation

Outputs

Standard outputs Additional outputs

EXERCISES

ENDF/applications ENDF format Application: FISPACT-II 'Bayeslan' files Uncertainty calculations

EXERCISES

Joint ICTP-IAEA Workshop on the Evaluation of Nuclear Reaction Data for Applications

- Adding the various options to the input file also generates data made with sampled input model parameters.
 - The .mvd multi-variate distribution file contains the nuclide yields from each set with different, sampled input parameters
 - The .ptb pertubation files within out/ contains a series of standard, full outputs for each of the calculations with sampled input parameters

Applications of Nuclear Data: GEF Michael Fleming

.....

Introduction

Code practicalities

Inputs

System options Parameter variation

Outputs

Standard outputs Additional outputs 'List mode'

EXERCISES

ENDF/applications ENDF format Application: FISPACT-II

'Bayesian' files

Uncertainty calculations

EXERCISES

Joint ICTP-IAEA Workshop on the Evaluation of Nuclear Reaction Data for Applications

- Adding the various options to the input file also generates data made with sampled input model parameters.
 - The .mvd multi-variate distribution file contains the nuclide yields from each set with different, sampled input parameters
 - The .ptb pertubation files within out/ contains a series of standard, full outputs for each of the calculations with sampled input parameters
 - The standard .dat file contains all of the standard information, plus a variety of covariance matrices

Applications of Nuclear Data: GEF Michael Fleming

Introduction

Code practicalities

Inputs

System options Parameter variation

Outputs

Standard outputs Additional outputs

EXERCISES

ENDF/applications ENDF format Application: FISPACT-II 'Bayesian' files Uncertainty calculations

EXERCISES

Joint ICTP-IAEA Workshop on the Evaluation of Nuclear Reaction Data for Applications

- Adding the various options to the input file also generates data made with sampled input model parameters.
 - The .mvd multi-variate distribution file contains the nuclide yields from each set with different, sampled input parameters
 - The .ptb pertubation files within out/ contains a series of standard, full outputs for each of the calculations with sampled input parameters
 - The standard .dat file contains all of the standard information, plus a variety of covariance matrices
- GEF calculates covariances between mass, charge and nuclide distributions, but with low-statistics calculations for each of the perturbed sets. Various other correlations may be calculated using the full, perturbed output files

Introduction

Code practicalities

Inputs

System options Parameter variation

Outputs

Standard outputs Additional outputs

'List mode'

EXERCISES

ENDF/applications ENDF format Application: FISPACT-II 'Bayesian' files Uncertainty calculations

EXERCISES

Joint ICTP-IAEA Workshop on the Evaluation of Nuclear Reaction Data for Applications

24

► The .lmd contains a history of all the individual events that were simulated by GEF. These allow users to calculate any of a large range of outputs, correlations, etc.

Introduction

Code practicalities

Inputs

System options

Outputs

Standard outputs Additional outputs 'List mode'

EXERCISES

ENDF/applications ENDF format Application: FISPACT-II 'Bayesian' files Uncertainty calculations

EXERCISES

Joint ICTP-IAEA Workshop on the Evaluation of Nuclear Reaction Data for Applications

- ► The .1md contains a history of all the individual events that were simulated by GEF. These allow users to calculate any of a large range of outputs, correlations, etc.
- Depending on the input options (within the terminal, request the extra outputs), the data will be expanded or simple.

Introduction

Code practicalities

Inputs

System options

Outputs

Standard outputs Additional outputs 'List mode'

EXERCISES

ENDF/applications

- ENDF format Application: FISPAC
- 'Bayesian' files
- Uncertainty calculations

EXERCISES

Joint ICTP-IAEA Workshop on the Evaluation of Nuclear Reaction Data for Applications

- The .1md contains a history of all the individual events that were simulated by GEF. These allow users to calculate any of a large range of outputs, correlations, etc.
- Depending on the input options (within the terminal, request the extra outputs), the data will be expanded or simple.
 - First lines are always populated with the data from the preand post-neutron fragments:
 - Charge and baryon numbers
 - Spins and excitation energies
 - Neutron emission
 - Kinetic energies

Introduction

Code practicalities

Inputs

System options

Outputs

Standard outputs Additional outputs 'List mode'

EXERCISES

ENDF/applications

Application: FISPACT-

Lincortainty calcula

EXERCISES

Joint ICTP-IAEA Workshop on the Evaluation of Nuclear Reaction Data for Applications

- ► The .1md contains a history of all the individual events that were simulated by GEF. These allow users to calculate any of a large range of outputs, correlations, etc.
- Depending on the input options (within the terminal, request the extra outputs), the data will be expanded or simple.
 - First lines are always populated with the data from the preand post-neutron fragments:
 - Charge and baryon numbers
 - Spins and excitation energies
 - Neutron emission
 - Kinetic energies
 - Subsequent lines are optional and contain information on the emitted neutron and gamma yields, energies and angles

Introduction

Code practicalities

Inputs

System options

Outputs

Standard outputs Additional output 'List mode'

EXERCISES

ENDF/applications

ENDF format Application: FISPACT-I 'Bayesian' files

EXERCISES

Joint ICTP-IAEA Workshop on the Evaluation of Nuclear Reaction Data for Applications

- /home/nfs1/smr3151/scripts/install_GEF.sh
- Run GEF directly with terminal prompts
- Run GEF for U235 with input files over an energy range for neutron-incident simulations and compare the mass distributions – check the range 5-7 MeV for novel features
- Run GEF using the perturbation options for covariance data
- Run GEF in 'list mode'. For those seeking a challenge, process the data for correlations

Lecture break for exercises

UK Atomic Energy Authority

Applications of Nuclear Data: GEF Michael Fleming

CT

Introduction

Code practicalities

Inputs

System options Parameter variation

Outputs

Standard outputs Additional output 'List mode'

EXERCISES

ENDF/applications ENDF format Application: FISPACT-II 'Bayesian' files Uncertainty calculations

15

24

EXERCISES

Joint ICTP-IAEA Workshop on the Evaluation of Nuclear Reaction Data for Applications GEF can calculate several quantities that can be contained within the ENDF-6 file format, for example average prompt neutron emission and neutron spectra

Applications of Nuclear Data: GEF Michael Fleming

ICTE

Introduction

Code practicalities

Inputs

System options Parameter variation

Outputs

Standard outputs Additional outputs 'List mode'

EXERCISES

ENDF/applications ENDF format Application: FISPACT-II 'Bayesian' files Uncertainty calculations

EXERCISES

Joint ICTP-IAEA Workshop on the Evaluation of Nuclear Reaction Data for Applications

- GEF can calculate several quantities that can be contained within the ENDF-6 file format, for example average prompt neutron emission and neutron spectra
- For use with FISPACT-II, we will be interested in the fission yields

Applications of Nuclear Data: GEF Michael Fleming

ICT

Introduction

Code practicalities

Inputs

System options Parameter variation

Outputs

Standard outputs Additional outputs 'List mode'

EXERCISES

ENDF/applications ENDF format

'Bayesian' files Uncertainty calculations

EXERCISES

Joint ICTP-IAEA Workshop on the Evaluation of Nuclear Reaction Data for Applications

24

- GEF can calculate several quantities that can be contained within the ENDF-6 file format, for example average prompt neutron emission and neutron spectra
- For use with FISPACT-II, we will be interested in the fission yields
- Fission yields have an exceptionally simple structure, as described in section 8.3 of the manual:

https://www-nds.iaea.org/exfor/x4guide/manuals/ endf-manual.pdf

fispact.ukaea.uk/nuclear-data/fission-yields

Joint ICTP-IAEA Workshop on the Evaluation of Nuclear Reaction Data for Applications

24

(CTP

Applications of Nuclear Data: GEF

(CTP

Michael Fleming

Introduction

Code practicalities

Inputs

System options Parameter variati

Outputs

Standard output Additional output 'List mode'

EXERCISES

ENDF/applications ENDF format Application: FISPACT-II 'Bayesian' files

EXERCISES

Joint ICTP-IAEA Workshop on the Evaluation of Nuclear Reaction Data for Applications

24

9.4239E+04	2.3700E+02	37	0	0	03586	8454	1
1.0000E-05	0.0000E+00	36	0	6144	15363586	8454	2
2.1060E+04	0.0000E+00	0.0000E+00	0.0000E+00	2.2060E+04	0.0000E+003586	8454	3
0.0000E+00	0.0000E+00	2.2061E+04	0.0000E+00	0.0000E+00	0.0000E+003586	8454	4
2.2062E+04	0.0000E+00	0.0000E+00	0.0000E+00	2.2063E+04	0.0000E+003586	8454	5
0.0000E+00	0.0000E+00	2.3060E+04	0.0000E+00	1.2381E-15	1.2379E-133586	8454	6
2.3061E+04	0.0000E+00	1.0550E-15	1.0549E-13	2.3062E+04	0.0000E+003586	8454	7
3.8392E-16	3.2184E-14	2.3063E+04	0.0000E+00	9.7240E-17	5.6010E-153586	8454	8
2.3064E+04	0.0000E+00	0.0000E+00	0.0000E+00	2.3065E+04	0.0000E+003586	8454	9
0.0000E+00	0.0000E+00	2.4060E+04	0.0000E+00	2.1660E-14	2.1658E-123586	8454	10
2.4061E+04	0.0000E+00	4.9592E-14	4.9587E-12	2.4062E+04	0.0000E+003586	8454	11
9.3808E-14	7.8536E-12	2.4063E+04	0.0000E+00	7.2610E-14	4.1286E-123586	8454	12

First line, column is the target

Applications of Nuclear Data: GEF

(CTF

Michael Fleming

Introduction

Code practicalities

Inputs

System options Parameter variati

Outputs

Standard output Additional output 'List mode'

EXERCISES

ENDF/applications ENDF format Application: FISPACT-II

'Bayesian' files Uncertainty calculation

EXERCISES

Joint ICTP-IAEA Workshop on the Evaluation of Nuclear Reaction Data for Applications

9.4239E+04	2.3700E+02	37	0	0	03586	8454	1
1.0000E-05	0.0000E+00	36	0	6144	15363586	8454	2
2.1060E+04	0.0000E+00	0.0000E+00	0.0000E+00	2.2060E+04	0.0000E+003586	8454	3
0.0000E+00	0.0000E+00	2.2061E+04	0.0000E+00	0.0000E+00	0.0000E+003586	8454	4
2.2062E+04	0.0000E+00	0.0000E+00	0.0000E+00	2.2063E+04	0.0000E+003586	8454	5
0.0000E+00	0.0000E+00	2.3060E+04	0.0000E+00	1.2381E-15	1.2379E-133586	8454	6
2.3061E+04	0.0000E+00	1.0550E-15	1.0549E-13	2.3062E+04	0.0000E+003586	8454	7
3.8392E-16	3.2184E-14	2.3063E+04	0.0000E+00	9.7240E-17	5.6010E-153586	8454	8
2.3064E+04	0.0000E+00	0.0000E+00	0.0000E+00	2.3065E+04	0.0000E+003586	8454	9
0.0000E+00	0.0000E+00	2.4060E+04	0.0000E+00	2.1660E-14	2.1658E-123586	8454	10
2.4061E+04	0.0000E+00	4.9592E-14	4.9587E-12	2.4062E+04	0.0000E+003586	8454	11
9.3808E-14	7.8536E-12	2.4063E+04	0.0000E+00	7.2610E-14	4.1286E-123586	8454	12

- First line, column is the target
- Second line, first column is the incident energy in eV

Applications of Nuclear Data: GEF

ICTP

Michael Fleming

Introduction

Code practicalities

Inputs

System options Parameter variati

Outputs

Standard output Additional output 'List mode'

EXERCISES

ENDF/applications ENDF format Application: FISPACT-II 'Bayesian' files

Uncertainty calculations

EXERCISES

Joint ICTP-IAEA Workshop on the Evaluation of Nuclear Reaction Data for Applications

9.4239E+04	2.3700E+02	37	0	0	03586	8454	1
1.0000E-05	0.0000E+00	36	0	6144	15363586	8454	2
2.1060E+04	0.0000E+00	0.0000E+00	0.0000E+00	2.2060E+04	0.0000E+003586	8454	3
0.0000E+00	0.0000E+00	2.2061E+04	0.0000E+00	0.0000E+00	0.0000E+003586	8454	4
2.2062E+04	0.0000E+00	0.0000E+00	0.0000E+00	2.2063E+04	0.0000E+003586	8454	5
0.0000E+00	0.0000E+00	2.3060E+04	0.0000E+00	1.2381E-15	1.2379E-133586	8454	6
2.3061E+04	0.0000E+00	1.0550E-15	1.0549E-13	2.3062E+04	0.0000E+003586	8454	7
3.8392E-16	3.2184E-14	2.3063E+04	0.0000E+00	9.7240E-17	5.6010E-153586	8454	8
2.3064E+04	0.0000E+00	0.0000E+00	0.0000E+00	2.3065E+04	0.0000E+003586	8454	9
0.0000E+00	0.0000E+00	2.4060E+04	0.0000E+00	2.1660E-14	2.1658E-123586	8454	10
2.4061E+04	0.0000E+00	4.9592E-14	4.9587E-12	2.4062E+04	0.0000E+003586	8454	11
9.3808E-14	7.8536E-12	2.4063E+04	0.0000E+00	7.2610E-14	4.1286E-123586	8454	12

- First line, column is the target
- Second line, first column is the incident energy in eV
- ► Remaining lines are sets of 4 numbers in sequence:

Applications of Nuclear Data: GEF

ICTE

Michael Fleming

Introduction

Code practicalities

Inputs

System options Parameter variati

Outputs

Standard output Additional output 'List mode'

EXERCISES

ENDF/applications ENDF format Application: FISPACT-II 'Bayesian' files

Uncertainty calculations

EXERCISES

Joint ICTP-IAEA Workshop on the Evaluation of Nuclear Reaction Data for Applications

9.4239E+04	2.3700E+02	37	0	0	03586	8454	1
1.0000E-05	0.0000E+00	36	0	6144	15363586	8454	2
2.1060E+04	0.0000E+00	0.0000E+00	0.0000E+00	2.2060E+04	0.0000E+003586	8454	3
0.0000E+00	0.0000E+00	2.2061E+04	0.0000E+00	0.0000E+00	0.0000E+003586	8454	4
2.2062E+04	0.0000E+00	0.0000E+00	0.0000E+00	2.2063E+04	0.0000E+003586	8454	5
0.0000E+00	0.0000E+00	2.3060E+04	0.0000E+00	1.2381E-15	1.2379E-133586	8454	6
2.3061E+04	0.0000E+00	1.0550E-15	1.0549E-13	2.3062E+04	0.0000E+003586	8454	7
3.8392E-16	3.2184E-14	2.3063E+04	0.0000E+00	9.7240E-17	5.6010E-153586	8454	8
2.3064E+04	0.0000E+00	0.0000E+00	0.0000E+00	2.3065E+04	0.0000E+003586	8454	9
0.0000E+00	0.0000E+00	2.4060E+04	0.0000E+00	2.1660E-14	2.1658E-123586	8454	10
2.4061E+04	0.0000E+00	4.9592E-14	4.9587E-12	2.4062E+04	0.0000E+003586	8454	11
9.3808E-14	7.8536E-12	2.4063E+04	0.0000E+00	7.2610E-14	4.1286E-123586	8454	12

- First line, column is the target
- Second line, first column is the incident energy in eV
- Remaining lines are sets of 4 numbers in sequence:
 - ZAFP identifier = (1000Z + A)
 - ► **FPS** isomeric state identifier (e.g. 0, 1, 2...)
 - Y(I/C) yield (independent or cumulative)
 - DY(I/C) 1 σ uncertainty (independent or cumulative)

Independent vs cumulative

Applications of Nuclear Data: GEF

(CTP

18

24

Michael Fleming

Introduction

Code practicalities

Inputs

System options Parameter variate

Outputs

Standard outputs Additional output 'List mode'

EXERCISES

ENDF/applications ENDF format Application: FISPACT-II 'Bayesian' files Uncertainty calculations

EXERCISES

Joint ICTP-IAEA Workshop on the Evaluation of Nuclear Reaction Data for Applications The independent yields IY(nuc) are the standard outputs that you would expect: an appropriately normalised probability of producing each nuclide (nuc = isotope and state)

Independent vs cumulative

Applications of Nuclear Data: GEF

ICTE

Michael Fleming

Introduction

Code practicalities

Inputs

System options Parameter variation

Outputs

Standard outputs Additional outputs 'List mode'

EXERCISES

ENDF/applications ENDF format Application: FISPACT-II 'Bayesian' files Uncertainty calculations

18

24

EXERCISES

Joint ICTP-IAEA Workshop on the Evaluation of Nuclear Reaction Data for Applications

- The independent yields IY(nuc) are the standard outputs that you would expect: an appropriately normalised probability of producing each nuclide (nuc = isotope and state)
- ► Cumulative yields *CY*(*nuc*) are a derived quantity:

$$CY(nuc) = IY(nuc) + \sum_{nuc'} B(nuc' \rightarrow nuc)CY(nuc')$$

Independent vs cumulative

Applications of Nuclear Data: GEF

ICTE

Michael Fleming

Introduction

Code practicalities

Inputs

System options Parameter variation

Outputs

Standard outputs Additional output 'List mode'

EXERCISES

ENDF/applications ENDF format Application: FISPACT-II 'Bayesian' files Uncertainty calculations

EXERCISES

Joint ICTP-IAEA Workshop on the Evaluation of Nuclear Reaction Data for Applications

24

- The independent yields IY(nuc) are the standard outputs that you would expect: an appropriately normalised probability of producing each nuclide (nuc = isotope and state)
- ► Cumulative yields *CY*(*nuc*) are a derived quantity:

$$CY(nuc) = IY(nuc) + \sum_{nuc'} B(nuc' \rightarrow nuc)CY(nuc')$$

 Independent and cumulative data are distinguished by mt numbers 454 and 459, respectively

Independent vs cumulative

Applications of Nuclear Data: GEF

ICTE

Michael Fleming

Introduction

Code practicalities

Inputs

System options Parameter variation

Outputs

Standard outputs Additional outputs 'List mode'

EXERCISES

ENDF/applications ENDF format Application: FISPACT-II 'Bayesian' files Uncertainty calculations

EXERCISES

Joint ICTP-IAEA Workshop on the Evaluation of Nuclear Reaction Data for Applications

- The independent yields IY(nuc) are the standard outputs that you would expect: an appropriately normalised probability of producing each nuclide (nuc = isotope and state)
- ► Cumulative yields *CY*(*nuc*) are a derived quantity:

$$CY(nuc) = IY(nuc) + \sum_{nuc'} B(nuc' \rightarrow nuc)CY(nuc')$$

- Independent and cumulative data are distinguished by mt numbers 454 and 459, respectively
- Cumulative data are inherently dependent on decay data evaluations

Independent vs cumulative

Applications of Nuclear Data: GEF

ICTE

Michael Fleming

Introduction

Code practicalities

Inputs

System options Parameter variation

Outputs

Standard outputs Additional outputs 'List mode'

EXERCISES

ENDF/applications ENDF format Application: FISPACT-II 'Bayesian' files Uncertainty calculations

EXERCISES

Joint ICTP-IAEA Workshop on the Evaluation of Nuclear Reaction Data for Applications

- The independent yields IY(nuc) are the standard outputs that you would expect: an appropriately normalised probability of producing each nuclide (nuc = isotope and state)
- ► Cumulative yields *CY*(*nuc*) are a derived quantity:

$$CY(nuc) = IY(nuc) + \sum_{nuc'} B(nuc' \rightarrow nuc)CY(nuc')$$

- Independent and cumulative data are distinguished by mt numbers 454 and 459, respectively
- Cumulative data are inherently dependent on decay data evaluations
- Note that it is common to treat only 100 products with remaining as 'psuedo-products'

Applications of Nuclear Data: GEF Michael Fleming

(CTP

Introduction

Code practicalities

Inputs

System options Parameter variation

Outputs

Standard outputs Additional output 'List mode'

EXERCISES

ENDF/applications ENDF format Application: FISPACT-II 'Bayesian' files Uncertainty calculations

19

24

Joint ICTP-IAEA Workshop on the Evaluation of Nuclear Reaction Data for Applications Use of the independent yields requires complete knowledge of the decay processes

Applications of Nuclear Data: GEF Michael Fleming

ICTP

Introduction

Code practicalities

Inputs

System options

Outputs

Standard outputs Additional outputs 'List mode'

EXERCISES

ENDF/applications ENDF format Application: FISPACT-II 'Bayesian' files Uncertainty calculations

19

24

Joint ICTP-IAEA Workshop on the Evaluation of Nuclear Reaction Data for Applications

- Use of the independent yields requires complete knowledge of the decay processes
- FISPACT-II utilises the full, energy-dependent (and reaction-rate weighted) fission yield data
Applications of Nuclear Data: GEF Michael Fleming

ICTE

Introduction

Code practicalities

Inputs

System options

Outputs

Standard outputs Additional outputs 'List mode'

EXERCISES

ENDF/applications ENDF format Application: FISPACT-II 'Bayesian' files Uncertainty calculations

19

24

- Use of the independent yields requires complete knowledge of the decay processes
- FISPACT-II utilises the full, energy-dependent (and reaction-rate weighted) fission yield data
 - This requires matching decay data evaluations

Applications of Nuclear Data: GEF Michael Fleming

ICT

Introduction

Code practicalities

Inputs

System options

Parameter variation

Outputs

Standard outputs Additional output: 'List mode'

EXERCISES

ENDF/applications ENDF format Application: FISPACT-II 'Bayesian' files Uncertainty calculations

EXERCISES

Joint ICTP-IAEA Workshop on the Evaluation of Nuclear Reaction Data for Applications

24

- Use of the independent yields requires complete knowledge of the decay processes
- FISPACT-II utilises the full, energy-dependent (and reaction-rate weighted) fission yield data
 - This requires matching decay data evaluations
- There is no agreed ENDF-6 format for covariance matrices of fission products, so at present FISPACT-II cannot utilise any of this data (even though GEF can calculate it)

If you build it, they will come!

Applications of Nuclear Data: GEF Michael Fleming

ICT

Introduction

Code practicalities

Inputs

System options

Parameter variation

Outputs

Standard outputs Additional output: 'List mode'

EXERCISES

ENDF/applications ENDF format Application: FISPACT-II 'Bayesian' files Uncertainty calculations

EXERCISES

Joint ICTP-IAEA Workshop on the Evaluation of Nuclear Reaction Data for Applications

24

- Use of the independent yields requires complete knowledge of the decay processes
- FISPACT-II utilises the full, energy-dependent (and reaction-rate weighted) fission yield data
 - This requires matching decay data evaluations
- There is no agreed ENDF-6 format for covariance matrices of fission products, so at present FISPACT-II cannot utilise any of this data (even though GEF can calculate it)

If you build it, they will come!

► An alternative is to use Total Monte-Carlo

ENDF/applications Bayesian files

Applications of Nuclear Data: GEF Michael Fleming

Introduction

Code practicalities

Inputs

System options Parameter variati

Outputs

Standard outputs Additional output 'List mode'

EXERCISES

ENDF/applications ENDF format Application: FISPACT-II 'Bayesian' files Uncertainty calculations

20

24

EXERCISES

Joint ICTP-IAEA Workshop on the Evaluation of Nuclear Reaction Data for Applications

Bayesian statistics

0.6

Bayes theorem allows one to formally incorporate prior knowledge into computing statistical probabilities.

Priors can be of different sorts: empirical, principled or shrinkage priors.

Prior

- Likelihood

- Posterior

The "posterior" probability of the parameters given the data is an optimal combination of prior knowledge and new data, weighted by their relative precision.

Applications of Nuclear Data: GEF

ICT

Michael Fleming

Introduction

Code practicalities

Inputs

System options

Outputs

Standard output Additional output 'List mode'

EXERCISES

ENDF/applications ENDF format Application: FISPACT-II 'Bayesian' files Uncertainty calculations

EXERCISES

Joint ICTP-IAEA Workshop on the Evaluation of Nuclear Reaction Data for Applications

24

Sampling of the input parameters with posterior distributions generated from a Bayesian process, we can obtain files with *fully correlated* yield variation

ENDF/applications Bayesian files

Applications of Nuclear Data: GEF Michael Fleming

ICTP

Introduction

Code practicalities

Input

System options Parameter variation

Outputs

Standard outputs Additional outputs 'List mode'

EXERCISES

ENDF/applications ENDF format Application: FISPACT-II 'Bayesian' files

22

24

EXERCISES

Joint ICTP-IAEA Workshop on the Evaluation of Nuclear Reaction Data for Applications

Random files

Random fission yields
Random thermal scattering
Random ENDF-6 files

4. Random ACE files

Sub-library files

TENDL-2015: (release date: 18 January 2016)

Last update: 5 October 2016

TENDL is a nuclear data library which provides the output of the TALYS nuclear model code system for direct use in both basic physics and applications. The 8th version is TENDL-2015, which is based on both default and adjusted TALYS calculations and data from other sources (previous releases can be found here: <u>2008</u>, <u>2009</u>, <u>2010</u>, <u>2011</u>, <u>2012</u>, <u>2013</u>, and <u>2014</u>).

12ATI 13IRMM 14NNI

- 1. neutron
- Thankfully, Dmitri has done the work and it is available to the public!

https:

- //tendl.web.psi.ch/tendl_2015/randomYields.html
- For data, reference ENDF-6 data files are used in the Bayesian analysis

Decay heat calculations

Applications of Nuclear Data: GEF Michael Fleming

Wiender Flerinn

Introduction

Code practicalities

Inputs

System options Parameter variati

Outputs

Standard outputs Additional output 'List mode'

EXERCISES

ENDF/applications ENDF format Application: FISPACT-II 'Bayesian' files Uncertainty calculations

23

24

Joint ICTP-IAEA Workshop on the Evaluation of Nuclear Reaction Data for Applications

You have calculated decay heat from fission pulses with FISPACT-II (or will)

Applications of Nuclear Data: GEF Michael Fleming

Introduction

Code practicalities

Inputs

System options

Outputs

Standard outputs Additional outputs 'List mode'

EXERCISES

ENDF/applications ENDF format Application: FISPACT-II 'Bayesian' files Uncertainty calculations EXERCISES

23

24

- You have calculated decay heat from fission pulses with FISPACT-II (or will)
- These are sensitive to fission yields

Applications of Nuclear Data: GEF Michael Fleming

Introduction

Code practicalities

Inputs

System options

Outputs

Standard outputs Additional outputs 'List mode'

EXERCISES

ENDF/applications ENDF format Application: FISPACT-II 'Bayesian' files Uncertainty calculations

23

24

- You have calculated decay heat from fission pulses with FISPACT-II (or will)
- These are sensitive to fission yields
- Exercise: calculate with the set of Bayesian fission yield files as decay heat simulation samples

Applications of Nuclear Data: GEF Michael Fleming

Introduction

Code practicalities

Inputs

System options

Parameter variation

Outputs

Standard outputs Additional outputs 'List mode'

EXERCISES

ENDF/applications ENDF format Application: FISPACT-II 'Bayesian' files Uncertainty calculations

Joint ICTP-IAEA Workshop on the Evaluation of Nuclear Reaction Data for Applications

24

- You have calculated decay heat from fission pulses with FISPACT-II (or will)
- These are sensitive to fission yields
- Exercise: calculate with the set of Bayesian fission yield files as decay heat simulation samples
- /home/nfs1/smr3151/scripts/install_uqp_dh.sh

Applications of Nuclear Data: GEF Michael Fleming

Introduction

Code practicalities

Inputs

System options

Parameter variation

Outputs

Standard outputs Additional outputs 'List mode'

EXERCISES

ENDF/applications ENDF format Application: FISPACT-II 'Bayesian' files Uncertainty calculations

23

24

- You have calculated decay heat from fission pulses with FISPACT-II (or will)
- These are sensitive to fission yields
- Exercise: calculate with the set of Bayesian fission yield files as decay heat simulation samples
- /home/nfs1/smr3151/scripts/install_uqp_dh.sh
- Plot the results and compare with libraries and experimental data

Applications of Nuclear Data: GEF Michael Fleming

Introduction

Code practicalities

Inputs

System options

Parameter variation

Outputs

Standard outputs Additional outputs 'List mode'

EXERCISES

ENDF/applications ENDF format Application: FISPACT-II 'Bayesian' files Uncertainty calculations

EXERCISES

Joint ICTP-IAEA Workshop on the Evaluation of Nuclear Reaction Data for Applications

24

- You have calculated decay heat from fission pulses with FISPACT-II (or will)
- These are sensitive to fission yields
- Exercise: calculate with the set of Bayesian fission yield files as decay heat simulation samples
- /home/nfs1/smr3151/scripts/install_uqp_dh.sh
- Plot the results and compare with libraries and experimental data
- For those seeking a challenge, download the TENDL nFY files for another system - ask me for experimental data

Lecture break for exercises

UK Atomic Energy Authority

