



#### **Analysis of the CREOLE Experiment Using MCNP6.1**

#### **Code and ENDF/B-VII.1 Library**

Laboratory of Radiations and Nuclear Systemes Abdelmalek Essaadi University of Tetouan (Morocco) Sanae EL OUAHDANI







- I Introduction
- **II CREOLE Experiment**
- **III Materials & Methods**
- **IV MCNP Model of CREOLE** 
  - **V** Theoretical considerations
- **VI Results & Interpretations**
- **VII Conclusion**





- ✓ The reactivity Temperature Coefficient (RTC) is an important parameter in design, control and safety of Light Water Reactors.
- ✓ For safety considerations, the RTC is desired to be negative throughout the core life.
- ✓ The calculation of the RTC is rather a complicated problem because it results from the combination of several negative and positive contributions from different physical phenomena related to the temperature change.
- ✓ it is important to validate any reactor calculation tool and any nuclear data library for an accurate prediction of this parameter.
- ✓ The objective of the present work is to perform the analysis of the CREOLE experiment using the Monte Carlo code in new version MCNP6.1 and its associated ENDF/B-VII.1 cross section library, in order to check the accuracy of new cross section library for the RTC calculations.



### **CREOLE Experiment**



CREOLE performed in the EOLE facility at CEA-Cadarache during the two last years of the seventies, this experiment is the most representative of the operating conditions of a large PWR power reactor; Water moderated  $UO_2$  lattices was investigated for the temperature range starting from room temperature up to (300°C).



Axial cross section of CREOLE reactor



### **CREOLE Experiment**



#### Fuel rod compositions for the central loop and the driver core at room temperature.

| Paramètres                        | Central loop    | Driver core                   |
|-----------------------------------|-----------------|-------------------------------|
| Fuel material                     | UO <sub>2</sub> | UO <sub>2</sub>               |
| Fuel density (g/cm <sup>3</sup> ) | 10.28 ± 0.02    | 10.25                         |
| <sup>234</sup> U (wt.%)           | 0.0304          | 3.04633E-02                   |
| <sup>238</sup> U (wt.%)           | 96.8696         | 85.0305                       |
| <sup>235</sup> U (wt.%)           | 3.10 ± 0.01     | 3,5                           |
| Fuel pellet radius (cm)           | 0.4098          | 0.3524                        |
| Pitch (cm)                        | 1.260 ± 0.003   | 1.430 ± 0.005                 |
| Fuel colomn height (cm)           | 70.0            | 80.0                          |
| Clad material                     | Zircolloy-2     | AG3 or stainless steel (304L) |
| Clad tickness (cm)                | 0,06            | 0,074                         |
| Cladding outer radius (cm)        | 0.478           | 0,535                         |

#### Critical sizes at room temperature

| Core<br>configuration             | Driver-core<br>temperature<br>(°C) | Central-loop<br>temperature<br>(°C) | Central-loop<br>pressure (bar) | Doubling<br>time<br>(s) | Residual<br>Reactivity<br>(pcm) | Driver-core<br>size<br>(fuel rods) |
|-----------------------------------|------------------------------------|-------------------------------------|--------------------------------|-------------------------|---------------------------------|------------------------------------|
| UO <sub>2</sub><br>1166 ppm boron | 19.6 ± 0.2                         | 21.83 ± 0.2                         | 66.5 ± 0.5                     | 6.86 ± 0.2              | 316 ± 13                        | 1772                               |



#### **MCNP Model of EOLE**



Radial cross section of the CREOLE model using MCNP6.1.



Axial cross section of the CREOLE model using MCNP6.1 .



### **MCNP Model of EOLE**



Experimental reactivity measurements (UO<sub>2</sub> lattice with 1166 ppm of boron)

| Driver-core | Driver-core | Central-loop | Central-loop | Doubling | Reactivity |
|-------------|-------------|--------------|--------------|----------|------------|
| size        | (°C)        | (°C)         | (bar)        | time (s) | (pcm)      |
|             | 19.6        | 21.83        | 66.5         | 6.86     | 298.30     |
|             | 19.6        | 33.83        | 66.5         | 6.83     | 298.90     |
|             | 19.7        | 44.03        | 66.5         | 6.81     | 299.26     |
|             | 19.7        | 63.87        | 67.0         | 6.77     | 300.05     |
| 4770        | 19.7        | 86.83        | 67.7         | 6.74     | 300.63     |
| 1//2        | 19.7        | 116.61       | 69.0         | 6.77     | 300.04     |
| álámonto    | 19.75       | 146.37       | 78.7         | 6.90     | 297.53     |
| elements    | 19.75       | 175.60       | 72.9         | 7.13     | 293.21     |
| _           | 19.8        | 206.73       | 75.7         | 7.57     | 285.38     |
| _           | 19.8        | 237.46       | 79.2         | 8.28     | 273.80     |
|             | 19.85       | 269.30       | 84.4         | 9.54     | 255.91     |
|             | 19.85       | 296.68       | 91.6         | 11.51    | 233.01     |



#### **Theoretical Considerations**



Decomposition and analysis of the temperature effets on the effectif multiplication factor:

$$k_{eff} = k_{\infty} \cdot P_{nL}$$

$$k_{\infty} = \chi \cdot \varepsilon \cdot \mathbf{p} \cdot \mathbf{f} \cdot \boldsymbol{\eta}$$

$$\alpha = \frac{1}{k_{eff}(T_1) \cdot k_{eff}(T_2)} \frac{k_{eff}(T_2) - k_{eff}(T_1)}{T_2 - T_1} \qquad \longrightarrow \qquad \alpha_T = \frac{1}{k_{eff}} \frac{dk_{eff}}{dT} = \frac{1}{k_{\infty}} \frac{dk_{\infty}}{dT} + \frac{1}{P_{nL}} \frac{dP_{nL}}{dT}$$
$$\alpha_T = \alpha_{k_{\infty}} + \alpha_{nL}$$
$$\alpha_{k_{\infty}} = \frac{1}{(\chi \cdot \varepsilon \cdot p \cdot f \cdot \eta)} \frac{d(\chi \cdot \varepsilon \cdot p \cdot f \cdot \eta)}{dT}$$
$$\alpha_{k_{\infty}} = \frac{1}{\chi} \frac{d\chi}{dT} + \frac{1}{\varepsilon} \frac{d\varepsilon}{dT} + \frac{1}{p} \frac{dp}{dT} + \frac{1}{f} \frac{df}{dT} + \frac{1}{\eta} \frac{d\eta}{dT}$$

#### **Results and Interpretations**



# Reactivity variation with temperature for the ${\rm UO}_2$ configuration with the 1166 ppm boron.



#### **Results and Interpretations**



| Température<br>de la boucle<br>(°C) | χ<br>±Std     | ε<br>±Std    | p<br>±Std    | f<br>±Std     | ຖ<br>±Std    | $\mathbf{k}_{\infty}$ ( f.f.f)<br>±Std | $\mathbf{k}_{\infty}$ (MCNP) $\pm$ Std |
|-------------------------------------|---------------|--------------|--------------|---------------|--------------|----------------------------------------|----------------------------------------|
| 21.83                               | 1.00142 ± 125 | 1.23305 ± 25 | 0.68102 ± 83 | 0.77976 ± 97  | 1.83663 ± 37 | 1.20433 ± 495                          | 1.2061 ± 8                             |
| 33.83                               | 1.00142 ± 124 | 1.23374 ± 25 | 0.68 ± 83    | 0.78046 ± 97  | 1.83626 ± 37 | 1.20405 ± 494                          | 1.20581 ± 7                            |
| 44.03                               | 1.00142 ± 124 | 1.23446 ± 25 | 0.67898 ± 83 | 0.78123 ± 97  | 1.83592 ± 37 | 1.2039 ± 494                           | 1.20559 ± 7                            |
| 63.87                               | 1.00143 ± 124 | 1.23622 ± 25 | 0.67657 ± 83 | 0.78306 ± 97  | 1.83519 ± 37 | 1.20369 ± 494                          | 1.20549 ± 7                            |
| 86.83                               | 1.00144 ± 125 | 1.239 ± 25   | 0.6731 ± 82  | 0.78557 ± 98  | 1.83426 ± 37 | 1.20344 ± 494                          | 1.20516 ± 6                            |
| 116.61                              | 1.00145 ± 125 | 1.24335 ± 25 | 0.66784 ± 82 | 0.78948 ± 98  | 1.83296 ± 37 | 1.20338 ± 494                          | 1.20511 ± 6                            |
| 146.37                              | 1.00147 ± 125 | 1.24874 ± 25 | 0.66162 ± 81 | 0.79393 ± 99  | 1.83159 ± 37 | 1.20321 ± 494                          | 1.20507 ± 7                            |
| 175.60                              | 1.00149 ± 125 | 1.25533 ± 25 | 0.65422 ± 80 | 0.7991 ± 99   | 1.83015 ± 37 | 1.20288 ± 495                          | 1.20468 ± 7                            |
| 206.73                              | 1.00152 ± 125 | 1.2638 ± 25  | 0.64513 ± 79 | 0.80535 ± 100 | 1.82859 ± 37 | 1.20253 ± 495                          | 1.20431 ± 7                            |
| 237.46                              | 1.00155 ± 125 | 1.27453 ± 25 | 0.63405 ± 78 | 0.81252 ± 101 | 1.82697 ± 37 | 1.20148 ± 495                          | 1.20335 ± 6                            |
| 269.30                              | 1.00159 ± 126 | 1.28951 ± 26 | 0.61938 ± 76 | 0.82159 ± 102 | 1.82523 ± 37 | 1.19965 ± 495                          | 1.20152 ± 7                            |
| 296.68                              | 1.00164 ± 126 | 1.30782 ± 26 | 0.60242 ± 74 | 0.83145 ± 104 | 1.82365 ± 36 | 1.19659 ± 495                          | 1.19859 ± 6                            |

#### The infinite multiplication components for a pin cell simulation

\*: Formule des cinq facteurs

±Std: déviation Standard (pcm).





Analytical formes for the  $k_\infty$  components calculated in the central loop

| Component | Analytique Forme (T in (°C))                                                                                                                         |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| X         | 3.9 10 <sup>-14</sup> T <sup>4</sup> - 2 10 <sup>-11</sup> T <sup>3</sup> + 5.4 10 <sup>-09</sup> T <sup>2</sup> - 1.4 10 <sup>-07</sup> T + 1       |
| 3         | 1.7 10 <sup>-11</sup> T <sup>4</sup> - 7.6 10 <sup>-09</sup> T <sup>3</sup> + 1.8 10 <sup>-06</sup> T <sup>2</sup> - 4.2 10 <sup>-05</sup> T + 1.2   |
| р         | -1.3 10 <sup>-11</sup> T <sup>4</sup> + 6.4 10 <sup>-09</sup> T <sup>3</sup> - 1.5 10 <sup>-06</sup> T <sup>2</sup> - 1.7 10 <sup>-06</sup> T + 0.68 |
| f         | 6.7 10 <sup>-12</sup> T <sup>4</sup> - 3.4 10 <sup>-09</sup> T <sup>3</sup> + 9.7 10 <sup>-07</sup> T <sup>2</sup> + 1.2 10 <sup>-05</sup> T + 0.78  |
| η         | -5.7 $10^{-13}$ T <sup>4</sup> + 4.3 $10^{-10}$ T <sup>3</sup> - 1.5 $10^{-07}$ T <sup>2</sup> - 2.4 $10^{-05}$ T + 1.8                              |



#### **Results and Interpretations**



## CREOLE experiment calculation results of the temperature coefficient of $k_\infty$ components in (/°C)

| т (°С) | $\alpha_{\chi}$ | $lpha_{arepsilon}$ | $\alpha_f$ | $\alpha_p$ | $lpha_{\eta}$ |
|--------|-----------------|--------------------|------------|------------|---------------|
| 21.83  | 6.8696E-03      | 2.1435             | 6.3825     | -8.6020    | -1.6311       |
| 33.83  | 1.6251E-02      | 4.5655             | 8.5839     | -12.240    | -1.7841       |
| 44.03  | 2.3219E-02      | 6.3276             | 10.232     | -14.876    | -1.9011       |
| 63.87  | 3.4519E-02      | 9.1116             | 12.934     | -18.998    | -2.0975       |
| 86.83  | 4.4688E-02      | 11.558             | 15.415     | -22.504    | -2.2797       |
| 116.61 | 5.5008E-02      | 14.122             | 17.989     | -25.890    | -2.4582       |
| 146.37 | 6.4359E-02      | 16.793             | 20.338     | -29.100    | -2.5892       |
| 175.6  | 7.4993E-02      | 20.338             | 22.933     | -33.326    | -2.6909       |
| 206.73 | 9.0534E-02      | 26.001             | 26.562     | -40.419    | -2.7908       |
| 237.46 | 1.1284E-01      | 34.344             | 31.552     | -51.685    | -2.9025       |
| 269.3  | 1.4615E-01      | 46.687             | 38.721     | -69.867    | -3.0552       |
| 296.68 | 1.8537E-01      | 60.783             | 46.859     | -92.905    | -3.2352       |





Measured value and (C-E) for the core RTC

| α and C-E<br>(pcm/°C)              | 20 °C – 111 °C           | 111 °C – 186 °C          | 186 °C – 242 °C          | 242 °C – 296 °C          |
|------------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| EXPERIENCE<br>(α) [1]              | + 0.02 ± 0.04            | - 0.12 ± 0.04            | - 0.35 ± 0.05            | - 0.67 ± 0.06            |
| MCNP6.1 (ENDF/B7.1)<br>(C – E)     | + 0.003 ± 0.128          | + 0.117 ± 0.146          | - 0.019 ± 0.191          | + 0.041 ± 0.205          |
| TRIPOLI4 (JEFF3.1.1)<br>(C -E) [1] | - 0.10 ± 0.06<br>(0.04)* | + 0.08 ± 0.06<br>(0.05)* | - 0.01 ± 0.09<br>(0.07)* | + 0.05 ± 0.10<br>(0.08)* |
| APOLLO2 (JEFF3.1.1)<br>(C – E) [1] | - 0.01 ± 0.04            | + 0.01 ± 0.04            | + 0.05 ± 0.05            | + 0.12 ± 0.06            |

C-E on the central loop RTC for the  $UO_2$  with the 1166 ppm of boron (integration of the differential measurements)

| C-E (pcm/°C)           | UO <sub>2</sub> (1166 ppm de bore)<br>20°C – 296°C |
|------------------------|----------------------------------------------------|
| EXPERIENCE (a) [1]     | - 0.22 ± 0.02                                      |
| MCNP6.1 (ENDF/B-VII.1) | 0.036 ± 0.02                                       |
| APOLLO2 (JEFF3.1.1)    | 0.03 ± 0.05                                        |
| TRIPOLI4 (JEFF3.1.1)   | - 0.004 ± 0.01                                     |





In the present work, we have analyzed the CREOLE experiment of a PWR lattice type on the reactivity temperature coefficient of  $UO_2$  boron poisoned lattice. The analysis of this experiment has been carried out using the Monte Carlo code MCNP6.1 with the ENDF/B-VII.1 library.

The discrepancies between calculations and experiment on the Reactivity temperature Coefficient for the boron poisoned  $UO_2$  LWR lattices is relatively small.

In this study, we could quantify the contribution of each infinite multiplication factor's components separately in the reactivity temperature coefficient.

# Thank you