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The Madden-Julian oscillation (MJO) is the largest element of the intraseasonal (30-90
day) variability in the tropical atmosphere, and was discovered by Roland Madden and
Paul Julian in 1971.

Large-scale coupling between atmospheric circulation and tropical deep convection.

The MJO is a traveling envelope of enhanced and suppressed convection that
propagates eastward at approximately 4 to 8 m/s.
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Understanding the extra-tropical response to the MJO

Measures of the observed Response:
* Simple regression, or composites of upper level fields (Z200) based on different phases of
the MJO. Should 2200 lag the MJO heating, and by how much?
* Changes in probability of teleconnection patterns (NAO, AO) and/or circulation regimes.

Stationary Wave Theory:
* Use of stationary wave models (and other simplified models) to determine the steady
state response to the diabatic heating associated with each phase of the MJO. (Ignore
transient nature of heating)

Response to Tropical Pulses of heating

Role of mid-latitude instabilities in the extratropical MJO response:
* Barotropic instability and the Simmons-Wallace-Branstator modes
* Baroclinic instability and the role of storm track shifts

Response to the full cycle of MJO transient heating
* Intervention Experiments

* Response to Fast vs. Slow MJO Episodes

Current Work and Future Directions
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Lagged composites of Z 500-hPa anomaly for MJO (a)—(c) phase 3 and (d)—(f) phase 7. Contour

interval is 10 m. numbers in upper right corners are the projection of the composite anomalies
onto the NAO

Lin, H., G. Brunet and J. Derome, 2009: An Observed Connection between the North Atlantic
Oscillation and the Madden-JLAIéan Oggillag]on J. Climate 22 %64—380.

vanced School on Tropical-Extratropiéa
Interactions on Intraseasonal Time Scales
2017



NAO -

NAO- 1,021 days (2« v,

Z 500 regimes

NAO+ 1,485 days (30%)
A 4

Latitude

Atlantic ridge

Scandinavian blocking

1,339 days (27%)

30°S 1
30°N |
0°
30°s Y~ SO A ~ N (£ :
CaSSOU 2008 60°E 120° E 180° 120°W  60°W 0°
Longitude

neéd School on Tropical-Extratropi

_jjjjjjma-ions on Intraseasonal Time Scales2 24-16 -8 0 8 16 24 32 OLR(Wm?)
2017

200 -100 0 100 200 7500 (m) Figure 2 | Dynamical and thermodynamical signatures of the eight phases

Af tha MIN Wintartizma camnacita nf NT D (~alase) and ctranm fanctian

10



|£<9 QTpLCllivel £Vvo

Occurrence (%)

Change of Occurrence of NAO+ / NAO- Associated with MJO Phases (Cassou, 2008)
NAO- NAO+ Atlantic ridge Scandinavian blocking

0
-30 —
30
0
-30 —

30 —
0

-30 —

' T 1 1 T T 17 1T T T T T 1T 1717 T 71711
10 12 14 0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 0 2 4 6

Advanced Schonl an Tranical-Fxtratranical

The phase of the MJO influences the development of NAO life cycle two weeks latet*

o_
o —
e
o —
o —
o —

10 12 14



Quasi-Stationary Wave Interpretation of Observed Response

Rossby wave source is created in the Indian and western Pacific Oceans as MJO
convection propagates eastward through the Indian Ocean and into the
western and central Pacific

Stationary wave trains lead to the retraction of the Pacific jet when the MJO-
related convection is over the Indian Ocean and, hence, to changes in the
associated fluxes of momentum - implications for Rossby wave breaking?

Quasigeostrophic index of refraction relevant to the response - sensitivity to
changes (or biases) in the “basic state”

The propagation of the MJO influence into the North Atlantic region is less
well understood, although the changes in storm tracks may play a role.



§+J(zp,§+f)=5=-v-(vxg) -DE-V, - V§
o i
Traditional Source: Divergence x Vorticity
Vorticity ~ f (Coriolis parameter)
D used to specify tropical “heating”

Additional Source: Vorticity Advection by the Divergent flow

1228 JOURNAL OF THE ATMOSPHERIC SCIENCES VoL. 45, No. 7

The Generation of Global Rotational Flow by Steady Idealized Tropical Divergence

PRASHANT D. SARDESHMUKH
European Centre for Medium-range Weather Forecasts, Reading, United Kingdom

BRIAN J. HOSKINS
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Understanding the extra-tropical response to the MJO

Measures of the observed Response:
* Simple regression, or composites of upper level fields (Z200) based on different phases of
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transient nature of heating)

Response to Tropical Pulses of heating

Role of mid-latitude instabilities in the extratropical MJO response:
* Barotropic instability and the Simmons-Wallace-Branstator modes
* Baroclinic instability and the role of storm track shifts

Response to the full cycle of MJO transient heating
* Intervention Experiments
* Response to Fast vs. Slow MJO Episodes
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(Quasi-)Stationary Wave Modeling
(Matthews et al 2004)

The Basic Method:

- Dry non-linear T42 model (12 levels) — initialized about a 3D DJF climatological-
mean basic state with constant forcing term.

- Response to imposed heating:

- After ~25 days of integration, baroclinic waves begin to dominate. but during the

first 25 days the direct response to the imposed fixed MJO heating anomalies can
be diagnosed.

The Experiments:

Time-varying heating experiments:

- Tropical heating anomalies (corresponding to 48 day regular MJO cycle) are
prescribed with fixed vertical structure

- Model integrations started at days 1, 2, ..., 48 of imposed heating cycle.

- Pick a fixed forecast time (19 days) in each run so that response to heating is
well-developed but not overwhelmed by baroclinic transients

Matthews, A. J., B. J. Hoskins and M. Masutani, 2004: The global response to tropical heating

in the Madden—Julian oscillation during the northern winter, Quart. J. Royal Meteor. Soc.,
130, 1991-2011.



U200 Pattern correlation (20-90N) between Model U at day 19 and observed U at
time t in the MJO cycle.

0 6 12 18 24 30 42 480
Model Integration started 10 days previous Tlme (t) Of MJO CYCIe

to time=0 in the MJO cy(ile. Day 19 field Model Integration started 2 days previous to
matches OBS U at day 0 in MJO cycle time=24 in the MJO cycle. Day 19 field

matches OBS U at day 24 in MJO cycle

Matthews, A. J., B. J. Hoskins and M. Masutani, 2004: The global response to tropical heating in the Madden—Julian
oscillation during the northern winter, Quart:dd Royal Meteor:Soc;r180p11991-2011
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Understanding the extra-tropical response to the MJO
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* Use of stationary wave models (and other simplified models) to determine the steady
state response to the diabatic heating associated with each phase of the MJO. (Ignore
transient nature of heating)

Response to Tropical Pulses of heating

Role of mid-latitude instabilities in the extratropical MJO response:
* Barotropic instability and the Simmons-Wallace-Branstator modes
* Baroclinic instability and the role of storm track shifts

Response to the full cycle of MJO transient heating
* Intervention Experiments
* Response to Fast vs. Slow MJO Episodes

Current Work and Future Directions
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Response to Tropical Pulses of Heating
(Branstator, 2014)

Mid-latitude response to localized equatorial heating events that last 2 days AGCM.
Responses to such pulses serve as building blocks with which to study the impacts of
more general heating fluctuations.

Short-lived heating produces responses in mid-latitudes at locations far removed
from the source and these responses persist much longer than the pulses
themselves.

Response to steady heating can be reconstructed from responses to a sequence of
2-day pulses, each evaluated with the appropriate time delay.

Limitations:
- low-resolution GCM: T42 (CAM3)
- Only equatorial heating (idealized hor. & vert. structure), 24 locations

BUT:
- Large Ensemble Size: 100 integrations of length 62 days for each heating

*Branstator, G., 2014: Long-livéd responsecofthenrmidlatitudetirculation and storm tracks to
pulses of tropical heating. J. Climate., ,Ogéﬁ%f'lg@ﬂ@' Time Scales 18
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The MJO heating is not a single localized source but a cycle in both space and
time, consisting of negative and positive anomalies.

From a linear point of view, both the heating and cooling distribution Q(x,t) at
one particular time may be thought of as sources for wave trains.

The remote response R()_é, t) at any point x some time t later will involve the

sum of these wave trains, each having traveled a different distance to reach the
given point and thus in a different phase of its life cycle.

R(X.1) = f G(X,X:t,t") Q& t)d>X'dt’



Understanding the extra-tropical response to the MJO

Measures of the observed Response:
* Simple regression, or composites of upper level fields (Z200) based on different phases of
the MJO. Should 2200 lag the MJO heating, and by how much?
* Changes in probability of teleconnection patterns (NAO, AO) and/or circulation regimes.

Stationary Wave Theory:
* Use of stationary wave models (and other simplified models) to determine the steady
state response to the diabatic heating associated with each phase of the MJO. (Ignore
transient nature of heating)

Response to Tropical Pulses of heating

Role of mid-latitude instabilities in the extratropical MJO response:
* Barotropic instability and the Simmons-Wallace-Branstator modes
* Baroclinic instability and the role of storm track shifts

Response to the full cycle of MJO transient heating
* Intervention Experiments
* Response to Fast vs. Slow MJO Episodes

Current Work and Future Directions
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The role of mid-latitude barotropic instability
(Simmons et al., 1983)

Low frequency fluctuations which derive their kinetic energy from barotropic
instability of the mean flow.

- Climatological 300 hPa flow has fastest growing barotropic mode of period
about 45 days, and e-folding time of ~6.8 days.

- With an e-folding time of the order of a week or more for the most unstable
normal mode, it might be thought that this barotropic instability would be of
much less importance than baroclinic instability.

- However, this e-folding time defines the growth of a global, low-frequency
mode. Locally in space and time, their may be episodes of rapid growth.

- This mode may play a large role in the response to MJO heating, which has time
scales similar to the mode itself.

Simmons, A. J., J. M. Wallace, and G. W. Branstator, 1983: Barotropic Wave Propagation and
Instability, and Atmospheric Teleconnection Patterns. J. Atmos. Sci., 40, 1363-1392.
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12-day mean Z response from barotropic
model forced by 48-day MJO cycle, with
Rossby Wave Source included. Contour interval
of 30 m

Ferranti, L., T. N. Palmer, F. Molteni and E. Klinker, 1990: Tropical-extratropical interaction associated
with the 30-60 Day Oscillation and Its Impact on Medium and Extended Range Prediction. J. Atmos. Sci.,

47,2177-2199. Advanced School on Tropical-Extratropical
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Response to the full cycle of MJO transient heating

Intervention Experiments
Use full ocean-atmosphere coupled model as a tool

Don’t force the model with specified heating evolution, but “nudge it”

ADD MJO-like heating evolution Q_44(X,Y,p,t) to the model’s own internally
generated diabatic heating.

Add the identical evolution of heating Q_44(X,Y,p,t) to each member of a large
ensemble (each member having different ICs). This allows you to pull out the
daily time varying response with Predictable Component Analysis

Leave all internal feedbacks in the model untouched

Advanced School on Tropical-Extratropical
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The Specified Additional MJO heating*

* The three-dimensional heating is based on TRMM radar observations

* The observed climatology of heating for each month/day for each MJO phase is taken
into account

* The evolution of the additional heating runs through slightly more than 3 full cycles of
the MJO, starting the first cycle with phase 5 (convection in the Indian Ocean) on 27
October and ending the last cycle with phase 6 (convection in the western Pacific on 15
April, for a total of 24 total phases

*Straus, D.M., E. K. Swenson and C.-L. Lappen, The MJO Cycle Forcing of the North Atlantic Circulation:
Intervention Experiments with the Community Earth System Model. J. Atmos. Sci., 72, 660-681.
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Temperature tendency due
to all diabatic heating
processes (including the
additional heating) from a
single ensemble member in
colored contours from
longitudes 60E- 240E.
(averaged 10S-10N; interval 2
deg K / day). The Heating run
is shown in the left panel, the
corresponding Control run is
shown on the right. The
additional heating is shown
in black contours (interval 0.5
deg K /day). The abscissa is
longitude in degrees, the
ordinate is forecast time (1
to 181 days), with day 1
corresponding to 02 October
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Temperature tendency due to all
diabatic heating processes (including
the additional heating) from the
ensemble average in colored contour
from longitudes 60E-240E. (averaged
10S-10N; interval 2 deg K / day).

The Heating ensemble average is
shown in the left panel, the
corresponding Control average is
shown on the right. The additional
heating is shown in black contours
(interval 0.5 deg K /day). The abscisse
longitude in degrees, the ordinate is
forecast time (1 to 181 days), with da
1 corresponding to 02 October.

’ :&9' a B

| 60 80 100 120 140 160 180 200 220 240 60 80 100 120 140 160 180 200 220 240
Ens Ave Ci=2 Ens Ave Ci=2




Important point:
Full tropical heating (added + model generated) is different in each simulation

How to extract the “mechanistic mode” = mode in common among all
simulations?

“Predictable Component Analysis”

e also called “Signal-to-Noise Optimizing EOFS”

* Expand any field ( at all seasonal times, all years and all ensemble members) as
a linear combination of “modes” each with its own pattern

* The coefficient of expansion (the variate) depends on time, year and ensemble
member

* Maximize the “signal” / “noise” ratio of the variates

* “Signal” = variability of the ensemble means of the variates

* “Noise” = variance of deviations about the ensemble mean of the variates

* Modes ordered by signal to noise ratio (measured by the F-value)

Advanced School on Tropical-Extratropical
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Cor(Opt mode 1 / Opt mode 2)

Z200 (black)

Each mode
represents an
oscillation of
about 30 days

DZ300 (red)

RWS200 (blue)

KE 300 (dot)
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Lag correlation between the two most predictable (optimal) modes for 200 hPa geopotential
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Role of transients diagnosed via high-frequency vorticity flux convergence

(primes denote 2- 10 day time scale filtered fields)
Encompasses both:

» Extraction of kinetic energy from the mean flow (as in slow barotropic instability
modes of SWB)

» Effects of the corresponding momentum fluxes in forcing the jets (Rossby wave
breaking)



Patterns of two most
predictable (optimal)
modes for:

200 hPa geopotential
height (top row)

300 hPa synoptic wave
geopotential height
tendency (middle row),

200 hPa Rossby wave
source (lower row).

Contour intervals are:
10 m (upper)

2 m/d (middle)

2 x101s? (bottom)
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Synthesis of leading two most
predictable components for:

RWS200 at 32N:
Interval of 5x1011s1

Vertically integrated diabatic
heating (averaged 25 S - 25 N)
in Wm?2,

Red (green) curves on right
show frequency of occurrence
of NAO+ (NAO-) clusters (set
text for details). Abscissa is
longitude, ordinate in time in
days
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What have we learned from this intervention experiment?

» Strongly propagating nature of Predictable Component: Cycle of MJO
heating leads to propagating, not stationary response

» Elements of Stationary wave theory are in play: Rossby wave source,
tight coupling of baroclinic (high frequency) vorticity flux convergence
and geopotential height

» Further interrogation of the results needed to determine the roles of:
o Rossby wave breaking
o Barotropic instability
o Interaction with storm tracks

» Still assuming relatively uniform phase speeds for the MJO



Understanding the extra-tropical response to the MJO

Measures of the observed Response:
* Simple regression, or composites of upper level fields (Z200) based on different phases of
the MJO. Should 2200 lag the MJO heating, and by how much?
* Changes in probability of teleconnection patterns (NAO, AO) and/or circulation regimes.

Stationary Wave Theory:
* Use of stationary wave models (and other simplified models) to determine the steady
state response to the diabatic heating associated with each phase of the MJO. (Ignore
transient nature of heating)

Response to Tropical Pulses of heating

Role of mid-latitude instabilities in the extratropical MJO response:
* Barotropic instability and the Simmons-Wallace-Branstator modes
* Baroclinic instability and the role of storm track shifts

Response to the full cycle of MJO transient heating
* Intervention Experiments
* Response to Fast vs. Slow MJO Episodes

Current Work and Future Directions

Advanced School on Tropical-Extratropical
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Slow MJO Episodes:
Strongest NAO+
response occurs 10 days
after middle of phase 4+

Response is stronger and
later than in composites
using all MJO episodes

500hPa Geopotential ht. Slow case: phase 4




Slow Case (Phase 3): v'T’ Total and v'T’ anomaly at 850hPa

Strong enhancement of
baroclinic storm tracks

(high pass V'T’) in Pacific
after phase 3.

Strong shift in Atlantie
storm tracks.

— Do these changes set
up the strong NAO+
response?
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Current Work

Further interrogation of existing experiments on the response to MJO cycles -
both fast and slow episodes.

Re-Forecast intervention experiments involving slow and fast MJO episodes
separately

Future Directions

What is the role of barotropic instability? Does it contribute to:

* The predictable signal
e The signal-modulated noise
* Pure Noise

To what extent would a “very good” prediction of MJO tropical convection 2 -4
weeks in advance be associated with dramatically improved extra-tropical
predictions?

Can we identify MJO “windows of opportunity” when the atmosphere is in a state
favorable for the propagation of-the tropical signal,



