



### 3D mobile Augmented Reality Interface for Laboratory Experiments

C. Onime International Centre for Theoretical Physics (ICTP), Trieste,Italy onime@ictp.it





# Outline

- Introduction
  - Mixed Reality Environments
  - Virtual Reality (VR)
  - Augmented Reality (AR)
  - Mobile AR (mAR)
    - App overview
- Experiments in mAR
  - Three example and results
- Conclusion







#### INTRODUCTION





## Mixed Reality Environments







# Virtual Reality

- Computer generated environment.
- Goal: create a completely virtual environment (without real objects)
- 3D visualization
  - Non-immersive
    - Computer desktop
  - Semi-immersive
    - Flight simulator (large screen)
  - Fully immersive
    - 3D headsets or caves (rooms)



#### **VR** Examples







Immersive VR requires expensive components such as multiple cameras/projectors and glasses, etc







# Augmented Reality

- Mixed environment (background is real, with some computer generated environment).
- Goal: integrate new virtual objects with real objects with well defined reference points/locations.
- 3D visualization
  - Layers combine different types of media:
    - Live video feed: e.g from camera/webcam or picture from camera
    - Computer generated information such as text-boxs/pop-ups.
    - Location services: real-time location information from GPS
  - Real-time integration with realism..
- Multi-media augmentations: visual, audio, tactile and haptic.





## Augmented reality

- Visualizing & interacting with virtual objects in real environment
- Tracking of objects usually via camera or webcam.









## Mobile Augmented Reality (mAR)

- Smartphones and Tablets
  - Processors
    - CPU + optional GPU
  - Human Computer Interface
    - Touchscreens: tactile input/visual output
    - Speakers: Audible
    - Haptics
  - Broad range of built-in sensors: gyroscope, accelerometer, gps, pressure, humidity, etc..

- Real-time interactive input and feedback to user via touchscreen.
- Ability to sense (other) environmental conditions as additional real objects
- Limited computational power (low power) for image recognition.
- Low cost (50USD, etc)





### mAR application overview







### mAR apps/software

- Overlay computer generated virtual objects on real live video feeds
- Faithfully reproduce presence of virtual object in real time interactive 3D
- Semi-immersive simulation in real environment.

- Ability to use normal (arbitrary) objects as location markers
- Realistic surface textures
- Automatic zooming in 3D from any angle
- Limitations in display size, computational power







#### 3D Mobile Augmented Reality Interface for

#### LABORATORY EXPERIMENTS



### Objectives

- Capture and translate practical laboratory experience for digital use
  - Minimize transformations
    - Replicate step-by-step procedures
  - Maintain experience





### mAR & Lab experiments

- Interface sensors
  - Multiple touch with pitch/pan on touchscreen
  - Gyroscope & accelerometer
- Complex marker for location tracking.
  - Uses photograph of real object or real object.

- Realistic graphics on virtual object
  - Real-time shadows
- Low cost devices
  - Mobiles devices or
  - < 100 euro tablets</p>
- Stand-alone or on-line
- Simulation of procedures



Experiment 1





- Lab experiment
  - Connect LED and resistor to physical ports.
  - Code/programme to pulse LED at different speeds
  - Replicate the experiment: Simulate Step-by-step, showing connections & expected output









#### • Overview

- Real Video of board or photo
- Virtual components: LED, resistors
- Interactivity: manipulation of virtual components to created virtual circuit and pulse LED.
- Also, the AR software acts as
  - Smart interactive manual: touching a component calls up information
  - Works with photo of board or real board itself..





International Centre for Theoretical Physics





Enhancing learner perception and understanding of antennae in Communications Engineering





(d) Yagi Antenna Elevation Plane Pattern

- Antenna radiation patterns better visualized in 3D
- AR app is
  - a companion tool to teaching three different antenna types.
  - Could use several QR codes on real antenna.







Communications: Antenna radiation patterns and characterization for yagi, spyder & can antennae





- Visualization in (3D & 2D) antenna radiation patterns.
  - Learner can observe
    "invisible" effects of
    changes in parameters
- AR app is
  - a companion-tool for teaching three different antenna types.



Experiment 3



Working with solar panels, calculating energy output



- AR app will use data from INTERNET databases (EU or NASA) or a heat MAP (off-line)
  - Estimates the theoretical output potential of solar panels using GPS location information and time.
  - Can show the influence of angular orientation.

The Abdus Salam Internation for Theore

#### International Centre for Theoretical Physics









- AR app used a solar irradiance world-map obtained from 3tier
  - Estimates the theoretical energy output of different models of solar panels at locations on the map. For different angles of inclination as determined from hardware accelerometer.





#### Survey on Familiarity with VR and AR in two HE institutions

| Response       | VR(%) | AR(%) |
|----------------|-------|-------|
| No             | 34.43 | 35.32 |
| Don't think so | 10.60 | 08.67 |
| Don't know     | 13.91 | 24.67 |
| Maybe          | 12.58 | 12.67 |
| Yes            | 28.48 | 18.67 |







Clement Onime- onime@ictp.it



International Centre for Theoretical Physics

### Overview



#### Innovations

- Interactive
  - Simulates/replicates experimental step-by-step procedures, including output of experiment
- Off-line use
  - Low cost mock-up
- Multi-use
  - Smart interactive manual
  - Validation of practical setup

#### Technical details

- Mobile Augmented Reality
  - Tablets + smart-phones with video camera
  - Low cost marker (location tracking)
- Interactive
  - Touch-screen
  - Pitch/pan
- Low cost
  - Android platform
  - Normal photograph of laboratory equipment



International Centre for Theoretical Physics

#### Summary



#### Strengths

- Cost effective hardware
- Simple software development
- Richer visualization of data
  - Interactivity for plots or graphs, etc..

#### Weaknesses

- Windowed-view
- Inherent from mobile devices
  - Poor visualization in strong ambient light
  - Limited storage capacity and battery life.
  - Single hand gestures
- Limited group use





### Future work

- International network of Mixed, Augmented, Virtual Reality Laboratories:
  - Laboratory experiments
    - Joint activities
  - AR Cubicle environment using mobile devices headgear supported with IoT sensors (also for dynamic markers)
    - Training & educational use: Studying, collaborative remote visualisations
    - exploring and visiting remote locations coral reefs, sea-beds, mining and virtual tourism



#### Thanks

- Telecommunications/ICT for Development Laboratory, International Centre for Theoretical Physics (ICTP), Trieste, Italy
- Santa's Co, Reggio Emilia, Italy