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Outline 

 Photocurrent in Weyl semimetals 

 Floquet-Bloch bands in gapless topological 

materials 

 Nonequilibrium physics: light + topological matter + dynamics 

- Mahmood, CKC, et. al., Nature Physics, 2016 

- CKC, Lee, et. al., PRL, 2016 

- CKC, Oh, Han and Lee, PRB, 2016 

- CKC, Lindner, Refael and Lee, PRB, 2017 

- Ma, Xu, CKC, et. al. Nature Physics, 2017 
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Example of driven system: Kapitza Pendulum 

 

(https://www.youtube.com/watch?v=rwGAzy0noU0) 

New physics can emerge when physical systems are driven far 

away from equilibrium 



Nonequilibrium [H(t)=H(t+T)] 

“Floquet-wave”: 
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Motivation – Nonequilibrium Floquet bands 

Equilibrium [H] Nonequilibrium [H(t)] 

Evolution: 

 

 

Eigenenergies 

and 

eigenstates: 

 

 

State 

evolution: 

 

 

? 

Well-defined quasi-Hamiltonian in periodically driven systems 



Motivation – Floquet-Bloch bands 
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   - Spatial periodicity in lattice 

           → Bloch bands 

(ω, E, p) 

 - Temporal periodicity due to laser drives 

         → Floquet bands 
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Ordinary insulator 

E 

k 

EF 

k 

Photoinduced band inversion 

Laser drive 

Motivation – Floquet topological insulator 

Light induced topological matter 

Nontrivial Floquet band 

(Lindner, Refael and Galitski, 2011) 

Tuning topology by light! 
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Many new questions to be explored 

-Floquet-band manipulation 
 

- Interplay between intense laser drive and robustness of topological 

materials (e.g. 2D Dirac, 3D Dirac or Weyl semimetals) 

 

- Roles of symmetry 

 

-Topological phase transitions 

 

- Experimental relevance: photoemission, photoinduced transport 

phenomena, optical responses, etc. 

 

 

-And more: 

Dynamics/evolution 

Dissipation 

Heating 

Disorder 

Strong correlation 

Electronic 
structure 

Topology 

Laser optics 

Driven 
systems 



Driven 2D Massless Dirac Fermions  

- 2D Floquet-Bloch bands 

- Time-resolved ARPES 

- New experiment+theory findings 
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Driving the surface of 3D topological insulator 

E 

k 

Linearly polarized drive: 
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2D Dirac surface state 

EF (E, ω) 

kx,y 

ω 

Replica of Floquet-Dirac band 

E 

kx,y 

(E, ω) 
EF 

kx,y 

gap ~ E2/ω3 

Circularly polarized drive: 

Magnus expansion: 

Light induced 

band gap due 

to broken 

time-reversal 

symmetry 
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Pump-probe measurement of photoexcited electron (k, E, t): e- 

probe 

k 

EF 

t 

pump 

Experimental advance in Time-Resolved ARPES 

Experiment in Gedik’s group 

@ MIT: 

 

Sub-pico second laser pulse 

driving 3D TI Bi2Se3 



Floquet-Bloch band on the surface of topological insulator 

(F. Mahmood, CKC, et. al., Nature Physics, 2016) 

11 

Floquet-Bloch bands by driving the surface of Bi2Se3 

- CO2 laser: ħω ~ 120 meV  

- Gap ~ 60 meV, match well with theory 

- Spectral weight discrepancy 



Interference between Floquet and Volkov effects 

k 

12 

~ spin-probe effect 

Floquet 

x 

Volkov 



Spectral weights analysis 

P-polarized pump: 

13 (F. Mahmood, CKC, et. al., Nature Physics, 2016) 

(No fitting parameters) 



14 

More spectral weight analysis 

P-polarized pump: 

Higher order Floquet bands 

Purely intrinsic Floquet band using S-polarized pump 



Summary (what we learnt…) 

 Driving 2D Dirac generates Floquet bands and 

tunable gaps controlled by laser polarization, 

frequency and intensity through TR breaking 

 

 Spectral weights are quantitatively understood in 

terms of intrinsic and extrinsic Floquet effects 

 

 An excellent moment for more exotic ideas! 



Driven 3D Weyl Semimetals 
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- Role of chirality 

- Photoinduced anomalous Hall effect 

- Semimetal transitions by light 

16 
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Weyl fermion – 3D band touching points 
 

Why is 3D special? 

In 3D, conditions generically satisfied without fine tuning  

               robust against perturbation 

In 2D, additional symmetries required to force, say fz (k) = 0 (e.g. graphene) 

               not robust if one of those symmetries is removed 

Gapped     or Gapless 

Any 2-band Hamiltonian: 

Band touching (points) iff 



Features: 

 

- 3D linearly band touching points 

 

- Come in a pair of opposite chirality 

  (Nielsen-Nynomiya theorem) 

 

- Monopole and anti-monopole of Berry 

curvature in momentum space 

 

 

 

- Fermi arc surface states 

 

- Chiral anomaly  

 

- Can be created by breaking TR or I 

symmetry of 3D Dirac semimetals 
 

Weyl semimetals: 3D Chiral fermion 

(H. Weng, et. al., PRX, 2015) 

Berry curvature of TaAs 

3D Dirac with 

both TR and I 

x2 

3D Weyl 

breaking 

TR or I 

(X. Wan, et. al., 

PRB, 2011) 



Effects of chiral photons on Dirac and Weyl fermions 

E 

kx,y 

(E, ω) EF 

kx,y 

E2/ω3 

2D Dirac (TR required): 

3D Weyl (TR not required): 

EF 

kx,y,z 

EF 

kx,y,z 

or  

E2/ω3 

Anomalous  

Hall Effect! 
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E 

kx,y,z 

(E, ω) 

? 
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Anomalous Hall Effect in Weyl semimetals 

ky 

kz 

kx 

View as a stack of 2D layers 

with well-defined topological 

invariant and σxy 

C 

kz 

1 

 

0 
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σxy = Ce2/h 

Ix 

Vy 

In general,  with Chern vector 

(Yang, Lu and Ran, PRB, 2011) 



ΔKz 

ΔKz 

σxy/ σ0 = (ΔKz ) + (-ΔKz) = 0 

With TR, σxy from TR Weyl pairs 

cancel each other 

 

No AHE in TR Weyl semimetal! 

AHE in TR Weyl semimetals 

21 

Without drive 



ΔKz + 2Δkz 

ΔKz - 2Δkz 

Driven 

EF 

k 

Δkz ~ χ ξ v A2/ω 

σxy/ σ0 ~ 4 ξ v A2/ ω 

Photoinduced Weyl nodes shift 

in a chirality (χ) and polarization 

(ξ) dependent manner 

 

Lead to photoinduced AHE 

AHE in driven TR Weyl semimetals 

(CKC, et. al., PRL, 2016) 
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Chirality-dependent Weyl node shift 
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Low-energy Weyl Hamiltonian coupled to AC drive propagating along z: 

Effective Floquet contribution: 

Anisotropy: 

Coupling to higher bands: 

chirality: 



Lattice model study 
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(Ojanen, PRB, 2013) 

Hoping model on diamond lattice that breaks 

inversion symmetry 

 

Supports 12 Weyl nodes (6 +ve and 6 -ve) 

Lattice structure 
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(CKC, et. al., PRL, 2016) 

Lattice model study 

Model Hamiltonian 

(periodic drive) 

Floquet Hamiltonian 

E2/ω3 

σxy (scaled) 



Effects of doping 
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Doping only leads to negligible correction 

~O(μ2) 

+ - 

- + 

μ 

μ 

k 

In sensitive to node positions: 



Mirror and TR symmetry 24 Weyl nodes 

Experimental estimation on TaAs family 
(H. Weng, et. al., PRX, 2015) 

Weyl family of nonmagnetic material: TaAs, TaP, NbAs and NbP 

Sample size: 100μm x 100μm x 100 nm 

CO2-laser: ħω = 120meV, P = 1W 

Average Fermi velocity: 2 eVÅ 

Hall current: 1A 

VH~ 130 nV CW drive 

Pulsed drive Faraday angle: ~  200 mrad (Weyl semimetal) 

compared to : ~  7 mrad (graphene)  
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Can we do more? 



Two types of Weyl cones 
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(A. A. Soluyanov, et. al., Nature, 2015) 

Type-II Weyl features: 

 

-Open Fermi surfaces 

 

-Finite electronic DOS 

 

-Fermi arc surfaces states 

 

- Anisotropic chiral anomaly  
 

Type-I Type-II 

Conic section 

Fermi surfaces 



Photoinduced type-II Weyl transition - 1 

Floquet phase diagram as a function of drive 

amplitude (A) and angle (θA)  

W-I 

W-II 

BaAuBi 

(CKC, Oh, Han and Lee, PRB, 2016) 



Linenode semimetal: 

 

- 3D linearly band touching ring 

 

- nearly flat drum-like surface state 

 

- interesting Berry phase features 
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Photoinduced type-II Weyl transition - 2 

Before drive 

Linenode semimetal 
Driven 

Weyl semimetal (type I or II) 

~ E2/ω3 

(CKC, Oh, Han and Lee, PRB, 2016) 



(Weng, Dai, Fang, JPCM, 2016) 
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Topological semimetal 

Light 

induced 

transitions 

by light! transitions 



Summary 

 Driving Weyl semimetals photoinduce anomalous Hall 

effect (large effect, measurable by optical and transport 

experiments) 

 

Various ways to photoinduce Weyl transitions (changes of 

Fermi surfaces, surfaces states, transport properties…) 
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Photocurrents in Weyl semimetals 

- Circular photogalvanic effect (CPGE) 

- Weyl semimetals as infrared detector 

34 
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Growing interests in nonlinear photovoltaic effects 

Intraband effects 

-Gyrotropic magnetic: Moore and Orenstein, PRL (2010); Zhong, Orenstein and 

Moore, PRL (2015) 

-Quantum nonlinear Hall: Sodemann and Fu, PRL (2015) 

-Photovoltaic chiral magnetic: Taguchi, et. al, PRB (2016) 

-Emergent electromagnetic induction: Ishizuka, et. al, PRL (2016) 

-Photoinduced anomalous Hall: Chan, et. al, PRL (2016) 
 

Interband Circular Photogalvanic effect (CPGE) 

 

 Quantum wells: Ganichev, et. al, Physica E (2001) 

 Nanotubes: Ivchenko and Spivak, PRB (2003) 

 Noncentrosymmetric media: Deyo, et. al, arXiv:0904.1917 (2009) 

 

 Weyl semimetals: 

 
 

 

-Konig, et.al, PRB (2017) 

-Golub, el. al, JETP (2017) 

-de Juan, et. al, Nature Comm (2017) 

 



Conventional semiconductors: 

 

- High efficiency 

- But, frequency range is limited by electronic bandgap (~300meV or 4μm) 

* Blackbody object at 300K  has radiation peak ~73meV or 17 μm 
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Infrared photodetection in various systems 

Graphene: 

 

- No frequency limitation (in theory) 

- Very low efficiency 

  as low as ~0.00001 for infrared detection 
 

(Zhu, et al, IEEE J Quant. Electron, 2014) 

E 

k 

J 

ħω 

3D TI (surface state) + magnetic superlattice: 

 

- Improved efficiency 

- Require external coupling 
 

(Lindner, et. al, arXiv: 1403.0010) 



Circular photovoltaic effects in Dirac and Weyl systems 

2D Dirac system 

 

-Symmetric 

photoexcitation leads 

to zero current 

- Inversion symmetry 

forbids current 

3D Weyl system 

 

-Asymmetric 

photoexcitation 

 

- Current direction 

governed by chirality 

 No net current ? 

3D Weyl system (with tilt) 

 

-Asymmetric excitation 

by Pauli blockade 

 

- Current direction can be 

arbitrary 

 Net current in general 



38 

Centrosymmetry vs Non-centrosymmetry 

IC 

Jχ 

-Jχ 

Centrosymmetric 

Weyl semimetal 

 

Currents from 

positive and negative 

Weyl nodes cancel 

 

 

TRIM 

Jχ 

Jχ 

-J χ’ 

-J χ’ 

Non-centrosymmetric 

Weyl semimetal 

 

Positive and negative 

Weyl nodes are not 

symmetry related.  

No current cancellation 

in general. 

 

 Necessary condition - 1: Break inversion symmetry 
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Role of mirror symmetry 

E 

μ 

k 
Not 

active 
Active 

With μ imbalance, 

expect to see a net 

photocurrent. 

 

In many realistic materials 

(e.g. TaAs), the presence of 

mirror symmetry aligns the 

crossing points. 

Still have a non-zero 

photocurrent? 

Necessary condition - 2: Finite tilts of Weyl spectra 
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Single Weyl node consideration 

Single Weyl Hamiltonian: 

tilt direction Chirality χ = Sgn{Det[vF vij]} 

tilt velocity Fermi velocity 

Consider                            and                                 (=                          ),   

(J = 0 in inversion symmetric system) 

In general, 



41 

Minimal model of 4 Weyl nodes with TR symmetry 

J =  

Example plot of photocurrent generated by 

4 Weyl nodes driven along some direction 

qt 

E 

μ 

(small μ/ω) 

qt 

E 

μ 

(intermediate μ/ω) 

qt 

E 

μ 

(large μ/ω) 

(dimensionless) 
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Type I vs type II Weyl cone 

-Larger tilt increases the 

“active” region (μ/ħω) 

 

-Magnitude of photocurrent 

is insensitive to tilt 
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Some notable features 

 Photocurrent magnitude is independent of frequency 

 

 

 Photocurrent magnitude is independent of Fermi velocity (vF) 

 

 

 

 Photocurrent direction is determined by lattice crystal symmetry 



Room temperature IR photodetector 

Weyl semimetal candidate: TaAs 

Long relaxation time ~ 45ps 

Tilt ~ 60% 

μ ~ 20meV 
 

                   + 
 

CO2 laser: ħω = 120meV 

Intensity: I ~ 106 Wm-2 

 

 Current density ~ 4 x 107 Am-2 

at low temperature  

 

  

 

Room temperature 

reduction: ~ 30 

- Gigantic photocurrent density 

can be generally induced in Weyl 

semimetals 

- Several orders of efficiency 

improvement when compared to 

graphene on substrates 

(CKC, Lindner, Refael and Lee, PRB, 2017) 
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Observation of circular photogalvanic effect in TaAs 

Setup:  

-CO2 laser ħω = 120meV 

-TaAs Weyl dispersion tilting~ 72% and μ ~ 18meV 
 

Observation of sizeable photocurrent amplitude ~ 40 nA. 

 

 

(Ma, Xu, CKC, et. al., Nature Physics, 2017) 
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Observation of circular photogalvanic effect in TaAs 

Photocurrent response tensor respects crystal symmetry 
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Observation of circular photogalvanic effect in TaAs 

Photocurrent drops by increasing 

temperature due to  
 

- reduced relaxation time 

- population of excited states in 

Fermi-Dirac distribution 
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Conclusion 

Floquet band replica, open gaps by breaking TR, 

manipulate Weyl spectra 

- Tunable Floquet-Bloch bands 

 

 

 

 

- Circular photogalvanic effect 

 

 

 

 

 

-Experimental relevance 

 

 

 

 

 

 

TRARPES, photoinduced AHE, Faraday effects, 

photovoltaic effects, etc.. 

Generic and large effect in noncentrosymmetric Weyl 

semimetals, promising candidate for room temperature 

infrared photodetector 

 


