

Waste Vitrification - Overview of Current Practice

Ian L. Pegg

Vitreous State Laboratory The Catholic University of America Washington, DC

> ICTP-IAEA Workshop November 6 – 10, 2017

Overview

- VSL background
- Vitrification what and why?
- Vitrification constraints
- Glass formulation and process optimization
 - Defense legacy wastes vs. modern reprocessing wastes
- Vitrification processes
- Off-gas treatment

Glass Formulation and Process Development at VSL

SRS – M Area

Sellafield, UK

Savannah River DWPF

Rokkasho, Japan

- Developed the glass formulations used at WVDP and SRS M-Area
- Support to Hanford WTP since 1996
- Support to Rokkasho since 2005
- Support to DWPF since 2009
- VSL Joule Heated Ceramic Melter (JHCM) Systems:
 - The largest array of JHCM test systems in the US
 - The largest JHCM test platform in the US

Hanford WTP

3 scales, 60X scale-up across VSL test melters

Vitrification

- Immobilization of waste by conversion into a glass
 - Internationally accepted treatment for HLW
 - Can also have advantages for other waste streams
- Why glass?
 - Amorphous material able to incorporate a wide spectrum of elements over wide ranges of composition; resistant to radiation and transmutation damage
 - Waste elements become part of the glass structure
 - Long-term durability natural analogs
 - Relatively simple process amenable to nuclearization at large scale
- There are numerous glass-forming systems why borosilicate glass?
 - Relatively low-melting temperature
 - Materials of construction, component lifetimes
 - Potential for high chemical durability

Vitrification...

- Waste and additives are heated and react to form molten glass
 - Additives can be separate chemicals or a glass frit
 - Can be pre-mixed or fed separately
 - Additives are formulated to optimize the process
- Molten glass is typically poured into containers where it solidifies; container is sealed and decontaminated
- Alternatively, melting can be done in the disposal container
- Major systems:

During Vitrification...

- Water is evaporated
- Salts melt and decompose
 - $Na_2CO_3 \rightarrow Na_2O + CO_2$; $Al(NO_3)_3 \rightarrow Al_2O_3 + NO_x$, $2FeOOH \rightarrow Fe_2O_3 + H_2O$; etc.
- Oxides react and melt to form molten glass
- Organics are pyrolyzed and oxidized
- Most metals, if present, are oxidized if sufficiently small amounts and particle size
- Most species are incorporated into silicate glasses as their oxides; exceptions include CI, F, I
- Volatile species (such as H₂O, CO₂, NO_x, etc.) are completely lost to the off-gas stream
 - Typically contributes to significant volume reduction
- Other species are retained in the glass melt to varying extents
- Additional losses due to physical entrainment (dust)

JHCM – Principle of Operation

Waste + glass Reaction at an interface forming additives so *melt rate* scales as (chemicals or frit) the melt surface area, other things equal Melt rate also depends on temperature, mixing, feed and glass Evaporation O Calcination Sintering composition, etc. Melting PAMELA, WVDP, DWPF, WTP, Mayak, VEK, Rokkasho, Tokai, Lanzhou, etc. Alternating Current Power Supply Glass CUA Product

Off-gas

VSL DM1200 HLW Pilot Melter System

About 400,000 kg glass made from about 1 million kg feed

DM1200 Cold Cap Samples Spinel and Noble Metals Phases

Inside the VSL DM1200 HLW Pilot Melter: Start of Feeding

Inside the VSL DM1200 HLW Pilot Melter: Partial Cold Cap

Inside the VSL DM1200 HLW Pilot Melter: Steady State

Process Optimization

 Higher waste treatment rate capability translates into cost savings through small plant size and/or reduced operating time

- Increased waste loading increases waste treatment rate and reduces volume for disposal
- Increased glass production rate increases waste treatment rate
- Both factors depend on waste composition and glass composition
- Optimization of glass composition can have drastic effects on overall process economics
 - Such changes are easy to implement since they do not require hardware changes
 - Complicated by numerous components present in typical wastes
 - Problem in constrained optimization of multiple properties with respect to numerous composition variables

 Typically requires large data sets and development of glass propertycomposition models

Typical Vitrification Constraints

- Product Quality Depends on requirements
 - Chemical durability per specific short-term test and long-term performance assessment
 - Thermal and radiation stability
 - Phase composition
 - Heat load
- Processability Depends on melter technology
 - Melt viscosity
 - Melt electrical conductivity
 - Crystallinity
 - Salt formation e.g., sulfate, molybdate, etc.
 - Processing rate
- Economic
 - Processing rate
 - Waste loading
 - Volume reduction
 - Materials compatibility (melter lifetime)
- Other
 - Typically also require information on properties such as density, thermal conductivity, heat capacity, etc.

Salt Formation

- Sulfate •
 - High-sulfate feeds increase the tendency for sulfate salt formation
 - Sulfate salt formation in the melter is deleterious:
 - Salt is very corrosive, low melting, very fluid, highly electrically conductive, and incorporates toxic elements (e.g., Cr) and radionuclides (e.g., Tc, Cs, Sr) into the water-soluble salt
 - Additives such as Li, V, Ca significantly increase sulfate tolerance
 - CI, Cr, Mo, Re reduce sulfate tolerance
- Molybdate ullet
 - Na/Li/Cs Molybdate
 - Ca/Ba Molybdate

1050

1100

000

050

1200

Yellow Phase Evolution

Phase stability of yellow phase varies with temperature

Migration of yellow phase depends on salt composition \rightarrow Density (f(C_i,T))

Structural Characteristics of Mo in HLW Glass

XAS (XANES, EXAFS) Studies on Silicate Glasses

- Na: Na⁺O₃₋₇ : Na-O = 2.30 -2.60 Å
- Mn: Mn²⁺O₄₋₅: Mn-O = 2.07 Å, Mn-Mn = 3.48 Å
- Cu: Cu²⁺O₄: Cu-O = 1.96 Å, Cu-Cu = 2.98 Å
- Sr: Sr²⁺O₄₋₅ : Sr-O = 2.53 Å
- Zr: Zr⁴⁺O₆₋₇: Zr-O = 2.08 Å
- Mo: Mo⁶⁺O₄ : Mo-O = 1.75 Å
- Ag: Ag^+O_2 : Ag-O = 2.10 2.20 Å
- l: l⁻(Na,I)₄: l-Li = 2.80 Å, l-Na = 3.04 Å
- Re: Re⁷⁺O₄ : Re-O = 1.74 Å
- Bi: Bi³⁺O₃ : Bi-O = 2.13 Å
- S: S⁶⁺O₄ surrounded by network modifiers; S²⁻; S-S
- Cl: Cl-O = 2.70 Å; Cl-Cl = 2.44 Å; Cl-Na; Cl-Ca
- V: $V^{5+}O_4$; minor $V^{4+}O_5$ under reducing conditions
- Cr: redox sensitive: $Cr^{6+}O_4 Cr-O = 1.64 \text{ Å}$; $Cr^{3+}O_6 Cr-O = 2.00 \text{ Å}$; $Cr^{2+}O_4 Cr-O \sim 2.02 \text{ Å}$
- Tc: redox sensitive, $Tc^{4+}O_6$ Tc-O = 2.00Å; $Tc^{7+}O_4$ Tc-O = 1.75 Å; evidence of Tc-Tc = 2.56 Å in hydrated, altered glass
- Sn: Sn⁴⁺O₆ (minor Sn²⁺O₄) Sn-O = 2.03 Å; Sn-Sn = 3.50 Å
- AI: AI³⁺O₄ : AI-O: 1.77 Å
- Si: Si⁴⁺O₄: various polymerizations
- Zn: Zn²⁺O₄: Zr-O: 1.96 Å, Zn-Si 2nd nearest-neighbor evidence

Standard Glass Leach Tests - Examples

- Product Consistency Test (PCT)
 - Glass powder (75 150 um), deionized water, 90°C, 7 days, S/V = 2000 m⁻¹
- Toxicity Characteristic Leaching Procedure (TCLP)
 - Glass pieces (<1 cm), sodium acetate buffer (~pH 5), 23°C, 18 hrs, constant end-overend rotation at 30 rpm
- MCC-1
 - Glass monolith, deionized water, typically 90°C and 28 days, S/V = 10 m⁻¹
- Vapor Hydration Test
 - Glass monolith, steam in pressure vessel at 200°C, typically 24 days; measure altered layer thickness
- Single-Pass Flow Through
 - Glass powder in flow cell; various leachants, temperatures, and flow rates; run to steady state concentrations in leachate
- Soxhlet Test
 - Glass monolith, refluxing water (100°C); variable durations
- IAEA Test
 - Glass monolith, 25°C, deionized water, periodic total replacement
- ANS/ANSI 16.1
 - Diffusion-based primarily intended for cementious waste forms; cylinder, deionized water, 25°C, periodic total replacement
- Many Others

Schematic Overview of Water-Glass Reaction

20

Example: Glasses Characterized to Support Hanford WTP LAW Operating Envelope

- 538 LAW glasses, designed, fabricated and characterized
- Combination of statistical and active design
- Multiple properties relating to product quality and processability
- Data set used to develop glass property-composition models for those properties

Example LAW Glass Property Models

HLW Glass Property Models

- PCT B, Li, Na
- TCLP Cd
- Spinel T_{1%}
- Melt viscosity
- Melt electrical conductivity
- Nepheline formation
- Model development supported by statisticallydesigned test matrices

Melter Technologies - Examples

- Hot wall induction melters
 - La Hague, Sellafield, India (several)
- Cold wall induction melters ("cold crucible" CCIM)
 - Radon, Ulchin, La Hague
- Joule-heated ceramic melters (JHCM)
 - PAMELA, WVDP, DWPF, WTP, Mayak, VEK, Rokkasho, Tokai, Lanzhou
- Others
 - Plasma
 - Microwave
 - Cyclone combustion
 - Submerged combustion
 - In-can
 - Stirred

Hot Wall Induction Melting

FRENCH TWO-STAGE CONTINUOUS VITRIFICATION PROCESS

Cold Crucible Induction Melting

DWPF and WTP HLW Melters

- 2.6 m² melt surface area
- Vacuum discharge
- Lid heaters
- Glass frit
- Bottom drain

- 3.75 m² melt surface area
- Air-lift discharge
- Bubblers
- Glass forming chemicals
- WTP has two HLW melters

West Valley Demonstration Project

- Only US commercial reprocessing facility
- VSL Support 1985 1993
 - Glass formulations developed at VSL
 - Melter testing
- ~660,000 gal HLW containing 24 million curies converted to 275 canisters of glass (~550 MT) using VSL glass formulation
- Vitrification facility decommissioned

WVDP Vitrification Process

Defense Waste Processing Facility (DWPF)

Facility has been operating on DOE site in South Carolina since 1996.

Since 2009, VSL has been providing R&D support to enhance its performance to expedite completion of waste treatment

~Doubled melter throughput with retro-fit of bubblers

Melt Rate Enhancement

- Conventional JHCMs rely on natural convection in a viscous melt
- Melt rate is limited by heat and mass transport at the cold cap
- VSL developed active melt pool mixing using bubbler arrays
- Provides drastic increases in melt rates (up to 5X)
 - Used successfully at SRS M-Area
 - Incorporated into Hanford WTP LAW and HLW melters
 - Retro-fitted into Savannah River DWPF melter

Duratek HLW model, Case 2A: Feed, 2el Duratek HLW model, Case 5A: Feed, 2el, bubl Front View (YZ) Front View (YZ)

Unagitated JHCM (West Valley, DWPF pre-2010)

Agitated JHCM (M-Area, WTP LAW, WTP HLW)

DWPF Melter Off Gas Treatment System

The Hanford Waste Treatment Plant

35

WTP LAW Melters

- LAW Production = 30 MT glass/day with ES-VSL bubbler technology
- Weight: 330 tons
- Exterior Dimensions: 29'-6" (L) x 21'-6" (W) x 15'-9" (H)
- 10 m² glass pool surface area
- 7630 L molten glass pool
- Design production rate 15 MT glass/day each

LAW Melter During Installation

Hanford WTP HLW Vitrification

WTP HLW Flow Diagram

VEK

Process Diagram of Ulchin Vitrification Facility(UVF)

Foaming During Cooling of High Bi-P HLW Glass Melts

Risk of overflow of HLW glass during canister cooling

Foaming During Cooling of High Bi-P HLW Glass Melts

- Essential role of P & Cr but not Bi
- Stabilization of hexavalent Cr in phospho-chromate environments in the melt; auto-reduction to trivalent Cr on cooling as a result of its higher stability in spinels
- Results were used to modify glass formulations to mitigate melt foaming
- Confirmed in one-third scale DM1200 pilot melter tests

Effect of Form of Cr on Spinel Crystallization

- Cr tends to promote spinel formation
 - e.g., Cr_2O_3 + FeO \rightarrow Cr_2FeO_4 •
 - Redox conditions determine Cr³⁺/Cr⁶⁺ •
 - Form of Cr in the batch affects amount of crystallization in the glass product ٠

Effect of Form of Cr on Spinel Crystallization – Melter Tests

- Cr-nitrate \rightarrow less Cr³⁺ \rightarrow less spinel \rightarrow more Cr dissolved in glass
 - Cr³⁺/Cr⁶⁺ increases as oxygen diffuses away
 - $2Cr^{6+}O_3 \rightarrow Cr_2O_3 + 3/2 O_2$
- Cr-oxide \rightarrow more Cr³⁺ \rightarrow more spinel \rightarrow less Cr dissolved in glass
 - Cr³⁺/Cr⁶⁺ decreases as oxygen diffuses in
 - $Cr_2O_3 + 3/2 O_2 \rightarrow 2 Cr^{6+}O_3$
- Very slow redox kinetics

Results can be used to reduce crystallization during processing of high-Cr HLW streams and thereby increase waste loadings

Reduction of Bi₂O₃ and Inconel 690 Metal Corrosion

Effect of redox on high-Bi HW glasses

Bi-rich HLW Glass • $Bi_2O_3 = 6.7 \text{ wt\%}$ • $Fe_2O_3 = 7 \text{ wt\%}$ •NiO = 1.9 wt%• $P_2O_5 = 5 \text{ wt\%}$

Inconel 690 Alloy •Ni =58 wt% •Cr = 27-31 wt% •Fe = 7-11 wt%

Reduction of Bi₂O₃ and Inconel 690 Metal Corrosion

- Inconel 690 Corrosion in Bi-rich and Bi-free HLW melts at 1150°C and 10^{-5.8} atm O₂
- Inconel 690 Corrosion in Bi-rich HLW melts at 1150°C and 10^{-5.8}, 10⁻⁴ atm O₂, and ambient air
- Test metal coupon: 0.15x0.3x1 inch with S/V=0.15cm⁻¹ for 7 days under controlled atmosphere

Inconel 690 Corrosion in Bi-rich HLW Glass Bi + reduction \rightarrow Ni/Bi alloying \rightarrow Catastrophic failure of Ni-Cr alloy at 1150°C