IMPROVING THE CHEMICAL DURABILITY OF RADIATION STABLE GLASSES: THE EFFECT OF Al_2O_3 OR ZnO INCORPORATION

A. ANANTHANARAYANAN1, J. G. SHAH1, C. DAVID2, B. K. PANIGRAHI2, C. L. DUBE3, N. C. HYATT3 & R. SMITH4

1Process Development Division, Nuclear Recycle Group, Bhabha Atomic Research Centre, Mumbai
2Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakam, India
3Department of Materials Science and Engineering, The University of Sheffield, Sheffield UK
4Department of Mathematical Sciences, Loughborough University, Leicestershire, UK

*Corresponding author: jgshah@barc.gov.in
Outline of Presentation

- Overview of composition dependence in radiation stability
 - In Pile
 - Radiation Bombardment
 - Important Conclusions
- Chemical Durability Aspects
 - Effect of ZnO incorporation
 - Effect of Al₂O₃ incorporation
 - Conclusions
 - Further Studies Planned
Dose and Atomic Displacement: What does the Damage?

- Cumulative α dose will exceed cumulative $\beta + \gamma$ dose at 10^5 yr
- α decay events produce 3 – 4 orders of magnitude greater cumulative atomic displacements than β decay events
Glass Properties: Effects

Structural Changes:
- Atoms displaced
- Thermal energy deposited into network
- Polymerization/De-polymerization (crystallization possible)

Consequences:
- Production of occluded gases (He & O₂)
- Changes in waste form properties
 - ✓ Leach resistance
 - ✓ Hardness
 - ✓ Fracture toughness
 - ✓ Stored energy
 - ✓ Glass transition temperature – Tᵥ
 - ✓ Compaction/ Swelling – Density variation
Post Irradiation Characterization

Density Variation

<table>
<thead>
<tr>
<th></th>
<th>Before</th>
<th>After</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTRS (Base)</td>
<td>2.6</td>
<td>2.6</td>
</tr>
<tr>
<td>LTRS (Waste)</td>
<td>2.8</td>
<td>2.8</td>
</tr>
<tr>
<td>R7T7 (Base)</td>
<td>2.4</td>
<td>2.4</td>
</tr>
</tbody>
</table>

Density increases 1 – 3 %

Chemical Durability \(\left(L_{Na}, \text{g/cm}^2/\text{d} \right) \)

<table>
<thead>
<tr>
<th>Code</th>
<th>Before Irradiation</th>
<th>After Irradiation</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTRS (base)</td>
<td>(3.2 \times 10^{-5})</td>
<td>(2.7 \times 10^{-5})</td>
</tr>
<tr>
<td>LTRS (waste)</td>
<td>(6.0 \times 10^{-6})</td>
<td>(4.6 \times 10^{-6})</td>
</tr>
<tr>
<td>R7T7 (base)</td>
<td>(2.2 \times 10^{-5})</td>
<td>(3.3 \times 10^{-5})</td>
</tr>
</tbody>
</table>

Chemical Durability Unchanged

Summary of Results of In-Pile Irradiation

- Microhardness: \(\downarrow \sim 20\% \)
- Tg: \(\downarrow \sim 1 – 3\% \) (Thermal relaxation/annealing effect?)
- Stored Energy: LTRS base: 93 J/g; R7T7 base: 44 J/g
Observations and Inferences

• No oxygen release at lower temperature (573K)
• Total He: ~2 \times 10^{19} \text{ atoms} (20\% of expected value)
• Total O_2: ~4 \times 10^{20} \text{ atoms}
• Occluded He and O_2 in irradiated glass indicates breaking of oxide bonds, due to He and recoil damage
Post Irradiation characterization

Raman spectroscopy

AVS glass

Increasing boroxyl rings

Evolution of silicate polymerization

• Hints at phase separation under irradiation
• Tetrahedral BO_4 converted into trigonal BO_3
• Possible reduction in microhardness by plastic flow

Recorded under Indo-French CEA Project
Composition Range of Boro-Silicate Glass

<table>
<thead>
<tr>
<th>Composition and structural parameters of NBS glasses</th>
<th>NBS-1 (Mole %)</th>
<th>NBS-2 (Mole %)</th>
<th>NBS-3 (Mole %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component</td>
<td>SiO₂</td>
<td>B₂O₃</td>
<td>Na₂O</td>
</tr>
<tr>
<td></td>
<td>55.00</td>
<td>20.00</td>
<td>25.00</td>
</tr>
<tr>
<td></td>
<td>60.00</td>
<td>20.00</td>
<td>20.00</td>
</tr>
<tr>
<td></td>
<td>53.40</td>
<td>26.66</td>
<td>20.00</td>
</tr>
<tr>
<td></td>
<td>Na₂O/B₂O₃</td>
<td>1.25</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>(R) 2.75</td>
<td>3.00</td>
<td>2.00</td>
</tr>
<tr>
<td>SiO₂/B₂O₃</td>
<td>2.75</td>
<td>3.00</td>
<td>2.00</td>
</tr>
</tbody>
</table>

Calculations using Dell, Yuan and Bray model of Borosilicate glass:

- \(R_{\text{max}} = 0.5 + \frac{K}{16} \)
- \(R_{d1} = 0.5 + \frac{K}{4} \)
- \(R_{d2} = 1.5 + \frac{3K}{4} \)

- Three types of networks probed
- Characterized by different R and K values

- Planar BO₃ converted into BO₄
- No NBO on Si tetrahedra
- Additional Na forms NBO on silicate reedmergnerite groups
- Conversion of planar diborate into pyroborate by formation of NBO on BO₃ planar rings
- Further formation of Si NBOs and breakup of reedmergnerite units
- High depolymerization of all structural units
- Glass stability low
Comparing NBS-1, 2 and 3

NBS-1

No Crystallization post irradiation

NBS-2

- Crystallization covers full surface
- Caused by spherical cascade region localized just below the surface
- Gas bubbling also evident

NBS-3

- He ions penetrate ~10μm into the sample
- Most of the crystallization too far into the sample to observe near the end of the ion track
- Small amount of crystallization at ion impact site, causing raster like feature
Variable Dose Experiments

• Change in network polymerization evident at 10^{13} and 10^{14} ion/cm²
• Possible network re-amorphization in 10^{15} ions/cm² sample
• High doses can lead to reamorphization (but higher fictive temperature structure: still looking into this)
Important Conclusions

• Glasses with high Na$_2$O content but low B$_2$O$_3$ and high T_g are resistant to radiation damage
• **BUT:** These glasses are vulnerable to leaching!
• Chemical durability concerns addressed by Al$_2$O$_3$/ZnO addition in NBS-1?
• How will this affect phase separation?
• Melting behaviour?
Compositions Chosen

<table>
<thead>
<tr>
<th>Oxide</th>
<th>NBS-1 (mol%)</th>
<th>NBS-Al-2 (mol%)</th>
<th>NBS-Al-6 (mol%)</th>
<th>NBS-Al-10 (mol%)</th>
<th>NBS-Zn-2 (mol%)</th>
<th>NBS-Zn-6 (mol%)</th>
<th>NBS-Zn-10 (mol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>55.00</td>
<td>53.9</td>
<td>51.7</td>
<td>49.5</td>
<td>53.9</td>
<td>51.7</td>
<td>49.5</td>
</tr>
<tr>
<td>B₂O₃</td>
<td>20.00</td>
<td>19.6</td>
<td>18.8</td>
<td>18</td>
<td>19.6</td>
<td>18.8</td>
<td>18</td>
</tr>
<tr>
<td>Na₂O</td>
<td>25.00</td>
<td>24.5</td>
<td>23.51</td>
<td>22.5</td>
<td>24.5</td>
<td>23.5</td>
<td>22</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>-</td>
<td>2</td>
<td>6</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ZnO</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>Na₂O/B₂O₃ (R)</td>
<td>1.25</td>
<td>1.14</td>
<td>0.93</td>
<td>0.69</td>
<td>1.14</td>
<td>0.93</td>
<td>0.69</td>
</tr>
<tr>
<td>SiO₂/B₂O₃ (K)</td>
<td>2.75</td>
<td>2.75</td>
<td>2.75</td>
<td>2.75</td>
<td>2.75</td>
<td>2.75</td>
<td>2.75</td>
</tr>
</tbody>
</table>

- Varying concentrations of Al₂O₃ and ZnO substituted into NBS-1
- Sufficient Na⁺ for compensation
- R reducing with substitution, K unchanged: Na⁺ used for charge compensation
Effect of Composition Changes on the Network

MAS-NMR spectra of NBS-1 glasses with Al$_2$O$_3$ and ZnO incorporation.
(a) 11B, (b) 23Na, (c) 27Al and (d) 29Si MAS-NMR spectra

- Modifier environment not perturbed by incorporation of ZnO or Al$_2$O$_3$
- 2Al glasses show a shift in 29Si resonance: Under investigation
- All Al present in [4] coordination: Adequate charge compensation
- BO$_3$ fraction increases for high ZnO
Chemical Durability

Degradation performance of NBS-1 glasses with various concentration of Al₂O₃ and ZnO

<table>
<thead>
<tr>
<th>Glass</th>
<th>Density (gm/cc)</th>
<th>Normalized leach rate for Na (gm/cm²/day)</th>
<th>Normalized leach rate for B (gm/cm²/day)</th>
<th>Normalized leach rate for Si (gm/cm²/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NBS-I</td>
<td>2.53</td>
<td>2.48 x 10⁻⁴</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>NBS-Al-2</td>
<td>2.50</td>
<td>1.33 x 10⁻⁴</td>
<td>6.19 x 10⁻⁶</td>
<td>9.67 x 10⁻⁷</td>
</tr>
<tr>
<td>NBS-Al-6</td>
<td>2.48</td>
<td>1.09 x 10⁻⁴</td>
<td>5.78 x 10⁻⁶</td>
<td>4.02 x 10⁻⁶</td>
</tr>
<tr>
<td>NBS-Al-10</td>
<td>2.50</td>
<td>5.72 x 10⁻⁵</td>
<td>2.59 x 10⁻⁶</td>
<td>6.5 x 10⁻⁸</td>
</tr>
<tr>
<td>NBS-Zn-2</td>
<td>2.56</td>
<td>2.09 x 10⁻⁴</td>
<td>9.04 x 10⁻⁶</td>
<td>1.83 x 10⁻⁶</td>
</tr>
<tr>
<td>NBS-Zn-6</td>
<td>2.58</td>
<td>1.05 x 10⁻⁴</td>
<td>4.40 x 10⁻⁶</td>
<td>7.58 x 10⁻⁷</td>
</tr>
<tr>
<td>NBS-Zn-10</td>
<td>2.43</td>
<td>8.92 x 10⁻⁶</td>
<td>4.34 x 10⁻⁷</td>
<td>8.71 x 10⁻⁸</td>
</tr>
</tbody>
</table>

How is Radiation Stability Affected?

- No significant changes in radiation stability under 2MeV Au ion bombardment
- Radiation stability of the original NBS-1 composition retained
Effect of ZnO/Al$_2$O$_3$ on Glass Formation

• Glass formation observed for all compositions studied: No crystallization tendencies
• Pouring temperature \sim1150$^\circ$C for ZnO samples
• Pouring temperature increases to \sim1300$^\circ$C for Al$_2$O$_3$ containing samples: Volatility concerns
• Prefer ZnO to Al$_2$O$_3$
Conclusions

• ZnO incorporation seems beneficial to augment chemical durability of radiation stable compositions
• High Na$_2$O content: Cold Crucible melting?
• ZnO induced crystallization not a significant limitation
Further Studies

• Coordination environment of Zn in these glasses
• Electrical conductivity measurements
• Incorporate RO and effect of same on chemical/radiation stability
• Effect of electronic and ballistic damage on the revised compositions
Acknowledgements

• ICTP for partial funding of the trip
• Sh. K. Agarwal AD, NRG, BARC, India
• Indo-UK team and EPSRC
• Solid-state NMR Service, Durham University
• Sh. A. Manjrekar, Smt. A. Joseph, BARC, India