Overview of China Nuclear Waste Vitrification

Kai Xu

Stake Key Laboratory of Silicate Materials for Architectures (SMART)
Wuhan University of Technology (WHUT)

November 7, 2017
About Wuhan and WHUT

Wuhan city:
1) At the intersection of Yangtze River.
2) Largest city in Central China.
3) 3500-year history.

WHUT:
1) Student: ~50,000; faculty: ~3,300.
2) Ranking in the world: ~400 (THE Ranking).
3) Best University in glass and ceramics (in China).

Bird view of WHUT
About SMART Lab

Faculty and student:

- Faculty: ~65.
- Post-doc.: ~10.
- Student: ~500, Intl. stud.: 15.

Research areas:

- **Glass**
 - Faculty: ~20
 - Student: ~200

- **Silicate materials**
- **Cement**
- **Ceramics**

World-renowned glass scientist @ SMART

- Prof. Zhao
- Prof. Yue
- Prof. Peng
- Prof. Maruo
- Prof. Greaves

Ex-president of ICG

Aalborg, Denmark

cambridge, uk

Director

Adjunct prof.

PSU, US
Background – growing of China nuclear power

Reactors under construction

- China: 30
- Russia: 9
- India: 6
- USA: 5
- South Korea: 4
- UAE: 4
- Japan: 3
- Brazil: 1
- Finland: 1
- Argentina: 1
- Pakistan: 2
- Slovak: 2
- Belarus: 2
- Chinese Taipei: 2

Development plan of China nuclear power:

- 2020: 58 GW;
- 2035: 150 GW.

- ~10% of the total;
- 2nd world largest NNPs country.

Fastest-growing in the world.

-from world nuclear association (2015)
Background – China nuclear waste management

High-level waste

Optional

Intermediate/low-level waste

Glass

Cement
A typical China Nuclear Waste

- High Fe, Na, S, RE.

<table>
<thead>
<tr>
<th>(Oxides)</th>
<th>(Total oxides in VPC simulant)/(g • L⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al₂O₃</td>
<td>9. 116</td>
</tr>
<tr>
<td>BaO</td>
<td>0. 010</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>1. 625</td>
</tr>
<tr>
<td>Cs₂O</td>
<td>0. 695</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>20. 513</td>
</tr>
<tr>
<td>K₂O</td>
<td>1. 293</td>
</tr>
<tr>
<td>La₂O₃</td>
<td>15. 177</td>
</tr>
</tbody>
</table>

- Waste loading in BSi glass: 16%.
FeP glass immobilizing Re

\[x\text{CeO}_2-(100-x)(36\text{Fe}_2\text{O}_3-10\text{B}_2\text{O}_3-54\text{P}_2\text{O}_5) \text{ in mol\%} \]

Photos of FeP glasses containing different amounts of Ce
FeP glass immobilizing Re

XRD patterns of FeP glasses

- Monazite (CePO$_4$) formed, when $X \geq 9$.
- Monazite is a durable phase.

FeP glass immobilizing Re

- FePO₄ formed, when X≥18.
- FePO₄ is an undurable phase.

Glass-ceramics

Motivation

Barium borosilicate glass

(improve sulfate solubility)

Zirconolite, titanite phases

(improve TRUs solubility)

Barium borosilicate glass-ceramics containing zirconolite, titanite phases

Motivation

- **Barium borosilicate glass**
 - Improve sulfate solubility
- **Zirconolite, titanite phases**
 - Improve TRUs solubility

Melting-thermal treatment

- 1200°C-3h
- $T_g<T<T_c$ -4h

Barium borosilicate glass-ceramics containing zirconolite, titanite phases
BaBSi glass-ceramics (Nd effect)

Composition of glass-ceramics (wt%)

<table>
<thead>
<tr>
<th>Samples</th>
<th>SiO₂</th>
<th>B₂O₃</th>
<th>Na₂O</th>
<th>BaO</th>
<th>CaO</th>
<th>TiO₂</th>
<th>ZrO₂</th>
<th>Nd₂O₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nd–0</td>
<td>27.50</td>
<td>11.00</td>
<td>5.50</td>
<td>11.00</td>
<td>12.77</td>
<td>18.19</td>
<td>14.03</td>
<td>0</td>
</tr>
<tr>
<td>Nd–2</td>
<td>26.50</td>
<td>10.60</td>
<td>5.30</td>
<td>10.60</td>
<td>12.77</td>
<td>18.19</td>
<td>14.03</td>
<td>2</td>
</tr>
<tr>
<td>Nd–4</td>
<td>25.50</td>
<td>10.20</td>
<td>5.10</td>
<td>10.20</td>
<td>12.77</td>
<td>18.19</td>
<td>14.03</td>
<td>4</td>
</tr>
<tr>
<td>Nd–8</td>
<td>23.50</td>
<td>9.40</td>
<td>4.70</td>
<td>9.40</td>
<td>12.77</td>
<td>18.19</td>
<td>14.03</td>
<td>8</td>
</tr>
<tr>
<td>Nd–10</td>
<td>22.50</td>
<td>9.00</td>
<td>4.50</td>
<td>9.00</td>
<td>12.77</td>
<td>18.19</td>
<td>14.03</td>
<td>10</td>
</tr>
<tr>
<td>Nd–12</td>
<td>21.50</td>
<td>8.60</td>
<td>4.30</td>
<td>8.60</td>
<td>12.77</td>
<td>18.19</td>
<td>14.03</td>
<td>12</td>
</tr>
</tbody>
</table>

Photos of glass-ceramics

- (a) 6 wt% Nd₂O₃
- (b) 12 wt% Nd₂O₃
BaBSi glass-ceramics

XRD patterns with different contents of Nd$_2$O$_3$

Fluoride wastes from molten salt reactors

- MSR utilizes liquid molten fluoride salts as coolant, or even the fuel in the molten salt mixture.

- Reprocessing includes fluorination, distillation to separate uranium and other FPs from fluoride salts.

- Typical simulated fluoride wastes (mol%)
 - 18.8LiF-23.8NaF-0.1MgF₂-57KF-0.3PF(SrF₂-SrF-CeF₃)
 - 8.4CsF-8.3SrF₂-37.8SmF₃-29.7ZrF₄-15.8CeF₄

Yanbo Qiao, et al., China Academy of Sciences.
XRD patterns of FeBP glasses

- Monazite formed when CeF$_3 \geq$20 wt%.
- No crystallization when SrF$_2$ =30 wt%.
Phosphate glass encapsulated waste-form

Experimental

\[\text{Simulated fluoride wastes} \xrightarrow{\text{sintering}} \text{Fluorapatite, syn-(Ca,Sr)\(_5\)(PO\(_4\))_3F} \]

\[\text{Raw materials} \xrightarrow{\text{melting}} \text{Low melting phosphate glasses} \]

\[\text{Fluorapatite crystals with hexagonal structure} \]

\[(Ca, M)\(_5\)(PO\(_4\))_3F + MF\(_2\) \rightarrow 3(Ca, M)\(_2\)(PO\(_4\))F \]

\[\text{Cold pressing} \xrightarrow{\text{sintering}} \text{Waste-form body} \]

\[\text{Glass-encapsulated phosphate wasteform} \]

XRD pattern and wasteform photo
(SrF\(_2\) as simulant)
Works doing @ WHUT - ISG corrosion study

As-received ISG sample
Works doing @ WHUT - ISG corrosion study

Assessment of PCT (surface area)

Spheroidization unit

Coating unit

Induction plasma system (40 kW)
Works doing @ WHUT - ISG corrosion study

Assessment of PCT (surface area) – glass spheroidization

Uniform size of glass beads with smooth surface
Summary and outlooks

- HLW generated from defense program is urgent to be vitrified, and a large amount of HLW will be produced from reprocessing of spent nuclear fuel soon.

- R&D of China nuclear waste vitrification is in the preliminary stage, and is very needed, in order to construct our own vitrification facility.
Thanks for your attention and comments!

E-mail: kaixu@whut.edu.cn