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Motivation

2D materials 
database

Properties 
database

High-throughput 
screening

• High-mobility materials
• Good ionic conductors
• 2D catalysts
• Topological insulators
• Piezoelectric /ferroelectric materials
• Superconductors
• Materials for spintronics
• Porous membranes

• Thermomechanical properties
• Mechanical / dynamical / chemical 

stability
• Electronic / magnetic properties
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External 
databases 
(ICSD, COD)

Layered 
structures

Binding 
energies

Aim: computational exfoliation of novel 2D 
materials from known 3D structures

Similar study identifying 92
two-dimensional compounds, by
S. Lebègue et al., PRX (2013)

Screening

Relaxation

Filtering
2D database 
& properties

Phonons

Elec. / mag. 
prop.
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We group together chemically bonded atoms, defined as those separated 
by distance di,j such that

Low dimensionality screening

van der Waals radii 
of atoms i, j

S. Alvarez, Dalton Trans. 
42, 8617–8636 (2013)

Δ

van der 
Waals bonds

chemical bonds
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2D, or not 2D?

→ the rank of the ensemble of vectors found from periodic copies 
of the atom, gives  the dimensionality of the group.

Connected periodic copies 
of a given atom:

Vector between
periodic copies

From the full supercell, get all the vectors connecting periodic copies:
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A few complex examples

NM et al, arXiv:1611.05234
(2016), Nature Nanotech.,
in press (2018).
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Binding energy computation

Following up a study on 72 layered 
materials by T. Björkman et al., 
PRL 108, 235502 (2012)

Computations handled by Quantum ESPRESSO using PBE and vdW functionals:
- DF2 with C09 exchange - K. Lee et al., PRB 82, 081101 (2010); V. R. Cooper, 

PRB 81, 161104 (2010),
- rVV10 - O. A. Vydrov and T. Van Voorhis, JCP 133, 244103 (2010); R. Sabatini et 

al., PRB 87, 041108 (2013).

Relaxed 3D 
(layered) structure

Energy calculation 
on each 2D 

structure extracted

Pseudopotentials: SSSP 
library (I. E. Castelli et al.,
http://materialscloud.org), 
most accurate pseudo 
library so far, w.r.t.
all-electron calculations
http://molmod.ugent.be/delt
acodesdft.

http://materialscloud.org
http://molmod.ugent.be/deltacodesdft
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How reliable are the functionals?
Relative change in out-of-plane 
lattice parameter w.r.t. experimental 
structure

573 samples

non-vdW functionals

vdW functionals

→ Small average error (-1% for 
DF2-C09, -0.3% for rVV10)
→ Small MAPE (1.5% for both)

→ Large average error, large 
spread

NM et al, arXiv:1611.05234 (2016),
Nature Nanotech., in press (2018).
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How reliable are the functionals?
Binding energies: RPA vs. DF2-C09 and rVV10

→ Overall good agreement (in particular for the variation from compound to 
compound)
→ Both vdW functionals slightly overbind (rVV10 more than DF2-C09)

RPA calculations from 
T. Björkman et al., PRL 
108, 235502 (2012)
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Refining the screening of layered materials
Binding energy Eb vs difference in interlayer distance when computed with / 
without vdW functionals:

Three groups:
• Eb < 30 meV/Å2 (DF2-C09) or Eb < 35 meV/Å2 (rVV10)  → 2D, easily exfoliable
• Eb > 130 meV/Å2 → not 2D (discarded)
• In-between → 2D, potentially exfoliable

1036 monolayers

789 monolayers

NM et al, arXiv:1611.05234 (2016),
Nature Nanotech., in press (2018).
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• Geometrical selection

• Structural relaxation

• Binding energy
• Exfoliation

• Identification of prototypes
• Structural relaxation

• Phonons & structure refinement
• Magnetic / electronic properties
• Topological phases

108423 unique 3D 
structures

5619 layered structures

1,825 monolayers

3210 relaxed 
structures

258 promising systems
(≤6 atoms/cell, easily 

exfoliable)

Building the 2D database
Starting from the ICSD (www.fiz-karlsruhe.com/icsd.html) and 
COD (www.crystallography.net) databases:

http://www.fiz-karlsruhe.com/icsd.html
http://www.crystallography.net/
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Layered materials statistics
• Distribution of point groups of layered materials, vs. ICSD+COD:

 -3, 3m, -3m & 6mm point groups are more frequent in layered structures
 222 is much less present; cubic groups obviously absent from layered materials

NM et al, arXiv:1611.05234 (2016),
Nature Nanotech., in press (2018).
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2D structural prototypes
Most common prototypes:

NM et al, arXiv:1611.05234 (2016), Nature Nanotech., in press (2018).
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Are these structures stable?
 We assess mechanical stability by computing phonons, using Density-Functional 

Perturbation Theory (DFPT) as implemented in the Quantum ESPRESSO code.
 For 2D monolayers, 3D periodic boundary conditions may not work well: long-

wavelength perturbations induce long-ranged Coulomb interactions → periodic 
images interact.

 We use a 2D version of the DFT and DFPT code, with a truncated Coulomb 
interaction:

 This allows to compute properly the LO-TO
splitting in 2D insulators:

LO-TO splitting in BN
Sohier, Gibertini, Calandra, 
Mauri, Marzari, Nano Lett., 
2017, 17 (6), pp 3758–3763

T. Sohier, M. Calandra, F. Mauri, 
Phys. Rev. B 96, 075448 (2017)
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Dealing with unstable structures
Computing phonons at Γ, we can check the unstable ones and “follow” them to get 
a stabilized structure:

Using spglib to refine symmetries and find primitive 
cells (A. Togo, https://atztogo.github.io/spglib)

Implemented 
by G. Pizzi

A. Togo and 
I. Tanaka, PRB 
87, 184104 
(2013)

After stabilization:

Example of initial phonon dispersion:
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Phonon dispersions

Vibrational properties of 245 monolayers:

NM et al, arXiv:1611.05234 (2016), Nature Nanotech., in press (2018).



Automation Data Environment Sharing

Automation Database Research environment Social
Remote management Provenance Scientific workflows Sharing
High-throughput Storage Data analytics Standards

A factory             A library          A scholar       A community

http://www.aiida.net
(MIT BSD, jointly developed with Robert Bosch)
G. Pizzi et al., Comp. Mat. Sci. 111, 218 (2016)
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Main-Workflow
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Structure 
Relaxation

Dynamical 
matrices

Interatomic 
force constants

Phonon 
dispersion

Relaxation #1

Relaxation #2

Relaxation #n

Parallelization

Structure cell converged

Initialize PH

PH on q-grid

Collect phonons

PH on q1

PH on q2

PH on qn

Sub-workflows

An AiiDA workflow: phonon dispersions
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Magnetic / electronic properties
 Magnetic ground state found after exploration of possible ferro- and antiferro-

magnetic configurations (DFT-PBE level), using supercells.
 Mapping band-gaps and magnetic properties for the 258 most promising 

monolayers:

NM et al, arXiv:1611.05234 (2016), Nature Nanotech., in press (2018).
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Optimal 2D materials for electronic applications
 Computing electronic band structures → band gap & effective 

masses (at the DFT-PBE level)

D. Campi, in 
preparation
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Search for topological insulators
 Novel 2D topological insulators candidates found, the optimal being 

Jacutingaite (Pt2HgSe3 - 3D bulk form discovered in 2008, in Brazil)

→ see Antimo Marrazzo’s poster, “Prediction of a large-gap and 
switchable Kane-Mele quantum spin Hall insulator”

A. Marrazzo, M. Gibertini, D. Campi, NM, N. Marzari, arXiv:1712.03873 (2017)
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Summary
• Around 5600 layered materials were extracted from close to

480000 non unique, classified 3D structures.

• Among them, at least 1800 structures exhibit weak interlayer
bonding and 1000 of them are very good candidates for easy
exfoliation.

• 2600 binding energies were computed, all within the AiiDA
platform (G. Pizzi et al., Comp. Mat. Sci. 111, 218 - 2016) which allows
sharing, reproducibility, automatization, and efficient querying.

• Phonons / magnetic / electronic / topological properties were
computed for 258 of them (easily exfoliable, small unit cell).

• All computed data with its provenance is available on Materials
Cloud (https://beta.materialscloud.org), as well as under the doi
https://doi.org/10.24435/materialscloud:2017.0008/v1

NM, M. Gibertini, P. Schwaller, D. Campi, A. Merkys, A. Marrazzo, T. Sohier,
I. E. Castelli, A. Cepellotti, G. Pizzi and N. Marzari, arXiv:1611.05234 (2016),
Nature Nanotechnology, in press (2018).

https://beta.materialscloud.org)/
https://doi.org/10.24435/materialscloud:2017.0008/v1
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