Hidden long-range order in a spin-orbit coupled two-dimensional Bose gas

Shih-Wei Su, I-Kang Liu, Shih-Chuan Gou, Renyuan Liao, Oleksandr Fialko, Joachim Brand

1 Dodd-Walls Centre for Photonics and Quantum Technology and Centre for Theoretical Chemistry and Physics, New Zealand Institute for Advanced Study, Massey University, Auckland, New Zealand
2 Department of Physics and Graduate Institute of Photonics, National Changhua University of Education, Changhua 50058 Taiwan
3 Physics Division, National Center for Theoretical Sciences, Hsinchu 30013, Taiwan
4 College of Physics and Energy, Fujian Normal University, Fuzhou 350108, China
5 Dodd-Walls Centre for Photonics and Quantum Technology and Centre for Theoretical Chemistry and Physics, Institute for Natural and Mathematical Sciences, Massey University, Auckland, New Zealand

A spin-orbit-coupled two-dimensional Bose gas is shown to simultaneously possess quasi- and true long-range order in the total and relative phase sectors, respectively [1]. The total phase undergoes a Berenzinskii-Kosterlitz-Thouless transition to a low-temperature phase with quasi-long-range order, as expected for a two-dimensional quantum gas. Additionally, the relative phase undergoes an Ising-type transition building up true long-range order, which is induced by the anisotropic spin-orbit coupling in combination with spin-dependent particle-particle interactions. Based on the Bogoliubov approach, expressions for the total- and relative-phase fluctuations are derived analytically for the low-temperature regime. Numerical simulations of the stochastic projected Gross-Pitaevskii equation give a good agreement with the analytical predictions.