Developments in wave function-based approaches to two-dimensional materials

George Booth
King’s College London

Conference on Frontiers in Two-dimensional Quantum Systems
Trieste, Italy
14/11/17
An enduring legacy of lattice model research...

Hubbard model in infinite dimensions

Antoine Georges
Physics Department, Princeton University, Princeton, New Jersey 08544

Gabriel Kotliar
Serin Physics Laboratory, Rutgers University, Piscataway, New Jersey 08854
(Received 23 September 1991)

Hubbard model in infinite dimensions

Density Matrix Formulation for Quantum Renormalization Groups

Steven R. White
Department of Physics, University of California, Irvine, California 92717
(Received 22 May 1992)

A generalization of the numerical renormalization-group procedure used first by Wilson for the Kondo problem is presented. It is shown that this formulation is optimal in a certain sense. As a demonstration of the effectiveness of this approach, results from numerical real-space renormalization-group calculations for Heisenberg chains are presented.
Wavefunction (ground state) approaches to lattice models:

- **Long history:** Gutzwiller, RVB, ...

- **More recently:**
 - Tensor Networks: **MPS, PEPS**
 (White, Cirac, Verstrate, Corboz,...)
 - Wfn-QMC: **VMC, AFQMC, GFMC**
 (Sorella, Becca, Zhang,...)

\[
|\psi\rangle = \sum_{q_1q_2q_3...q_m} C^{q_1q_2q_3...q_m} |q_1q_2q_3...q_m\rangle
\]
\[|\psi\rangle = \sum_{q_1 q_2 q_3 \ldots q_r} C^{q_1 q_2 q_3 \ldots q_m} |q_1 q_2 q_3 \ldots q_m\rangle \]

Choose subset?

- Linear problem
- Zero correlation in thermodynamic limit
\[|\psi\rangle = \sum_{q_1 q_2 q_3 \ldots q_m} C^{q_1 q_2 q_3 \ldots q_m} |q_1 q_2 q_3 \ldots q_m\rangle \]

Projector QMC

- Stochastically apply projector
- Discretize and sample from amplitudes

\[\Psi = e^{-\beta H} |\psi_0\rangle \]

Various flavors

(Choice of projector, Hilbert space):

- AFQMC, GFMC, FCIQMC, DMC, ...

Sign problem
\[|\psi\rangle = \sum_{q_1q_2q_3\ldots q_m} C^{q_1q_2q_3\ldots q_m} |q_1q_2q_3\ldots q_m\rangle \]

Variational QMC

\[|\psi\rangle = \sum_{q_1q_2q_3\ldots q_m} f(q_1q_2q_3\ldots q_m; X)|q_1q_2q_3\ldots q_m\rangle \]

- Choose an explicit non-linear parameterization
- Optimize parameters via Metropolis sampling

• How to choose parameterization?
• How to optimize variables with MC?
• How to reduce parameter space?
Correlator Product States / Entangled Plaquette States

$$\psi = \sum_{q_1q_2q_3} C^{q_1q_2q_3} |q_1q_2q_3\rangle$$

$$|\psi\rangle = \sum_{q_1q_2q_3\ldots q_m} C^{q_1q_2q_3} C^{q_2q_3q_4} C^{q_3q_4q_5} \ldots |q_1q_2q_3\ldots q_m\rangle \times \phi_{HF/DFT}$$

- Linear parameters with system size
- Exponential growth of parameters with correlator size
Non-linear projector Monte Carlo

Overlapping 5-site correlators x Slater determinant for 98-site, 2D Hubbard (U=8t)

Similar problems found in optimization of non-linear neural networks...

\[
\frac{\partial \Psi}{\partial \beta} = - (H - E) \Psi
\]

\[
\frac{\partial^2 \Psi}{\partial \beta^2} = -b \frac{\partial \Psi}{\partial \beta} - (H - E) \Psi
\]

- Chebyshev expansion of optimal projection operator
Non-linear projector Monte Carlo

Overlapping 5-site correlators × Slater determinant for 98-site, 2D Hubbard (U=8t)

Non-linear projector Monte Carlo

Overlapping 5-site correlators x Slater determinant for 98-site, 2D Hubbard (U=8t)

Million+ parameter VMC...
Non-linear projector Monte Carlo

4 x 4 Graphene sheet
Local p-space Gaussian functions from VASP

Low-energy correlated spin-fluctuations
• How to choose parameterization?
• How to optimize variables with MC?
• How to reduce parameter space?

Modern fitting of Potential Energy Surfaces

\[E(r_1, r_2, r_3, \ldots, r_N) \]

Statistical inference
(Gaussian Process Regression)
\(f(\text{plaquette parameters}) \)

- Explicit parameters
- Iterative Non-linear fitting
- Restricted to ‘small’ numbers of parameters
- Optimize parameters

\(f(\text{distance from data points}) \)

- Implicit parameters (never referenced directly)
- Analytic optimal fitting without expanding in variables
- No restriction in number of parameters
- Optimize datapoints
<table>
<thead>
<tr>
<th>Parameter-space’</th>
<th>‘Data-space’</th>
</tr>
</thead>
</table>

\[\Psi(r) = e^{\left(\sum_d k r_d \alpha_d \right)} \phi_{SD}(r) | r \rangle \]

- Independent of number of underlying parameters
- Linear with number of “data” configurations

“Distance” to data points

Weight of data points
Data:

Subset of configurations and their amplitudes
 e.g. All configurations on ‘small’ system, then infer amplitudes on ‘large’ system

Distance “Covariance Kernel”:

Quantify ‘similarity’ (covariance) between two configurations:
 How likely is it that their amplitudes are similar?
K1: How many unoccupied (Holons), up, down, Doubly-occupied (Doublons)?

\[
\begin{pmatrix}
\#\text{unocc} \\
\#\text{up} \\
\#\text{down} \\
\#\text{doub}
\end{pmatrix}
\]
K1: How many unoccupied (Holons), up, down, Doubly-occupied (Doublons)?

\[k_{1,2} = \begin{pmatrix} \#unocc \\ \#up \\ \#down \\ \#doub \end{pmatrix}_1 \cdot \begin{pmatrix} \#unocc \\ \#up \\ \#down \\ \#doub \end{pmatrix}_2 \]

Does not need to refer to the same sized system
K1: How many unoccupied (Holons), up, down, Doubly-occupied (Doublons)?

K2: Start to build in (local) anti-ferromagnetic correlation, Holon-Doublon binding

16-dimensional ‘feature’ space
K1: How many unoccupied (Holons), up, down, Doubly-occupied (Doublons)?

K2: Start to build in (local) anti-ferromagnetic correlation, Holon-Doublon binding

K3: 3-site descriptors
Gutzwiller Projection:

= 1.0

= 1.0

= 1.0

= 0.0
Extrapolation errors: Can we reproduce 10-site wave function from 6-site data?

All 6-site fluctuations with all symmetries conserved
1D Hubbard Model, U=8t

400 linear coefficients from 6-site model
1D Hubbard Model, $U=8t$

400 linear coefficients from 6-site model
1D Hubbard Model, U=8t

400 linear coefficients from 6-site model
1D Hubbard Model, $U=8t$

- Variational
- Size-extensive, $N_t M^4$ cost
- 97% correlation in TDL

400 linear coefficients from 6-site model
1D Hubbard Model, U=2t

400 linear coefficients from 6-site model
1D Hubbard Model, U=2t

Variational, Size-extensive, \(N_t M^4 \) cost, 95% correlation in TDL

400 linear coefficients from 6-site model
How to we avoid constructing these vectors...?
How to we avoid constructing these vectors...?

\[L^2 \text{ cost} \text{ to evaluate contribution to kernel function } \text{between any two configurations, for any plaquette topology, independent of size} \]
How to we avoid constructing these vectors...?

L^2 cost to evaluate contribution to kernel function **between any two configurations**, for any plaquette topology, independent of size
How to we avoid constructing these vectors...

- **L³ cost** to evaluate *all* possible plaquettes of *all* topology to quantify configurational similarity (k_d)
- **Exponentially** large ‘feature’ space of implicit plaquette parameters
- **Exact results with exact data**
- Beware of *overfitting*... (Hyperparameters avoid this)
Exact results for data with complete plaquette space
MF energy for 32 sites

Bethe Ansatz

GP extrapolation from 8 to 32 sites
96-99% correlation in TDL with data-driven, zero parameter wavefunction
Optimize parameters

Optimize Data

Graph showing the variation of energy with epoch, comparing exact energy, ED of variational WF, and MC of variational WF.
Conclusions

• **Accelerated Gradient Descent** technique for combining projector and variational QMC

• **Data-driven wavefunctions** as an intriguing new approach to formulations of lattice models
 – Early development, but clear extension to 2D systems
Thanks

Non-linear stochastic optimizations:
Lauretta Schwarz

Gaussian Process Wavefunctions:
Aldo Glielmo, Sandro de Vita, Gabor Csanyi

PhD and Postdoc positions available in the group!