

Super El Nino event and its impacts on climate in China in spring and summer

Yimin Liu, Anmin Duan, Jiangyu Mao, Rongcai Ren, Yajun Hu

LASG, Institute of Atmospheric Physics (IAP), CAS, China

TTA, ITCP August 1 2017

Outline

- Introduction
- General physics of the ENSO Impacts on circulation
- Indian ocean SSTA associated with ENSO
- Impacts on the rainfall in spring in China
- Impacts on the rainfall in summer in China
- Collaborative influence of the PDO and ENSO

Introduction

El Nino in 2015/2016

SSTA index for ENSO: Mean of SSTA of 5N- 5S: NINO4 (160E-150W), NINO3.4 (170W-120W), NINO3 (150W-90W) NINO1+2 (10S-EQ, 90W-80W)

Bob Tisdale

Outline

- Introduction
- General physics of the ENSO Impacts on circulation
- Indian ocean SSTA associated with ENSO
- Impacts on the rainfall in spring in China
- Impacts on the rainfall in summer in China
- Collaborative influence of the PDO and ENSO

Thermocline: a thin but distinct layer in which the temperature changes more rapidly with depth that above and below

Wagg, Geography

Schematic representation of atmospheric teleconnection

DJF: El Nino impacts on the South Indian Ocean (IO) through westward Rossby waves

MAM: Rossby waves inducing Southwest IO warming, which in turn induces an antisymmetrical wind pattern over the tropical IO

JJA: 2nd IO warming exciting a tropospheric Kelvin wave propagating into the western Pacific, forcing the AAC and PJ/EAP pattern to affect East Asia during the following JJA Xie et al (2016)

"Two-stage thermal adaptation" of the atmospheric circulation to the SSTA in the northern Indian Ocean Wu et al. (2000)

El Nino in 2015/2016

SSTA, Nov. 2015 compared to 1981-2009 average

Outline

- Introduction to El Nino
- General physics of the ENSO Impacts on circulation
- Indian ocean SSTA associated with ENSO
- Impacts on the rainfall in spring in China
- Impacts on the rainfall in summer in China
- Collaborative influence of the PDO and ENSO

Quantitative attributing analysis of the interdecadal summer IOB warming in recent decades through the CFRAM Partial contributions between later-decay and normal-decay El Nino years

Partial contributions between laterdecay and normal-decay El Nino years

Ren et al., 2016

Outline

- Introduction to El Nino
- General physics of the ENSO Impacts on circulation
- Indian ocean SSTA associated with ENSO
- Impacts on the rainfall in spring in China
- Impacts on the rainfall in summer in China
- Collaborative influence of the PDO and ENSO

GPCP_MAM_1979-2010

GPCP_JJA_1979-2010

Percentage of rainfall amount

PRES: Persistence of rainfall in eastern China in spring

Hu, Liu, 2017

PRES: Persistence of rainfall in eastern China in spring

Land-sea thermal contrast (Tian and Yasunari, 1998) Tibetan Plateau impacts (Wu, Wan et al., 2007, 2008)

Stationary wave patters in winter and spring

850hPa V^* and θ

Winter: Dipole Mode

PRES formation- TP's impacts 0km 50N km 40N 850hPa V Pre 111 11 30N 40N 0 30N 20N 20N An' £ 12.5 -6 10N 10N km 60N 40N 2km 30N 40N 6 8 6 30N 20N 20N Eres Eres 10N 101 60N 40N **4km**^{50N} 6 30N 8 40N 10 30N 20N 20N स Eur 10N 10N 60N 40N 50N 6km 30N See 6+ 12 30N 20N

20N

8ÔE

100E

12⁰E

55000 Wu et al., 2007

10N + 90E 140E 100E 11₀ Star

4

km

6 km

<u>0 km</u>

5500

km

ETE

Bi-weekly Oscillation of the TP SH and its impacts on PRES

Div & -v ω

PRES's interannual variability

Forecast?	Mostly on tropic oceans		
ENSO	刘永强和丁一汇,1995;万日金等,2008; Feng and Li, 2011		
SSTA in West Pac.	邓立平和王谦谦,2002;陈艺敏和钱永甫, 2005;张博等,2011;		
Heat content in West Pac.	尚可等,2013,2014		
SSTA in Indian Ocean	陈丹等,2012;程慧萍和贾晓静,2014; Xie et al., 2016		
AAO	郑菲和李建平,2012		
Vegetation in			
PRES's definition: 13-2	27 P (Wu and Wan, 2007)		
Q1: If fixed period of PRES is available?			
Q2: PRES is not consistent for each factors, why?			
Q3: Include multi-factors to improve the predictability?			

PRES definition

PRES amount: Pre. From Start Pentad to End Pentad

Pre.: Fixed dates & non-fixed dates

PRES	Fixed	Non-fixed
Mean (mm)	427.13	437.98
Stand.(mm)	71.99	136.10

Similar Mean Larger St.

Fixed as

13-27 P

Impacts of the ENSO

Regressed based NINO3.4 850-hPa V

Water vapor transport

Impacts of the ENSO

Regressed based NINO3.4

16

12

(km)

∞ Height

Divergence - ascent _____ More Pre.
Moisture ______

Impacts of the ENSO: predictability?

PRES

	El Niño 10	La Niña 7
Agree	1983,1992,1998, 2003,2005,2010	1989,1996,1999, 2000,2001, 2008
Non-agree	1987,1988,1995 2007	1985

Multi-factors regression

$y = -2.29 - 7.99 \times IOB + 67.67 \times Nino3.4 - 64.99 \times AAO$

- Corr. of New Pre & Pre: 0.76
 Corr. Of Nino3.4 & Pre: 0.69
- For extreme PRES year (1982, 2014), Stan. Of New Pre >±0.5
- Non-agree year (1985,87, 88,95,2007), better

Outline

- Introduction to El Nino
- General physics of the ENSO Impacts on circulation
- Indian ocean SSTA associated with ENSO
- Impacts on the rainfall in spring in China
- Impacts on the rainfall in summer in China
- Collaborative influence of the PDO and ENSO

Pre* and 500-hPa H* (subtropical high) in JJA(+1) of El Nino

OLR* and 850-hPa V* in JJA(+1) of El Nino

Outline

- Introduction to El Nino
- General physics of the ENSO Impacts on circulation
- Indian ocean SSTA associated with ENSO
- Impacts on the rainfall in spring in China
- Impacts on the rainfall in summer in China
 - Collaborative influence of the PDO and ENSO

Pre anomaly (mm m⁻¹) in the following El Nino with positive PDO

- 15<=x<40
- 40<=x<65
- 65<=x<90
- -40<=x<-15
- -65<=x<-40
- -90<=x<-65

Summer

Spring

Mao et al., 2017

Pre anomaly percentage in spring all El Nino El Nino & +PDO

Mao et al., 2017

Pre anomaly +PDO

Feng et al., 2014

Impacts of El Nino – beyond the precipitation: air pollution

Extreme PM2.5 Beijing Dec 2015

http://bbs.qianlong.com/thread-9587819-1-1.html

Impacts of El Nino – beyond the precipitation air pollution

Anomaly in Dec. 2015

Higher land T: weaker winter monsoon

Anticyclonic circulation: More moisture

Liu et al., 2017

Thank You!

