Influences on rainfall anomalies over eastern China

 and CNRM-CM5 projected changes of the boreal summer intraseasonal oscillations (BSISOs)> Jiangyu Mao, Jianying Li, and Guoxiong Wu

Institute of Amospheric Physics, Beijing

$$
\text { 2017.08. } 01 \text { IC'PP }
$$

Outline

1. Overview
2. Influences of BSISOs on rainfall anomalies over eastern China
3. Future changes of 30-60-day BSISO projected by CNRM-CM5 model
4. Summary

Discovery of the eastward-propagating 40-50-day intraseasonal oscillation (MJO) in tropical atmosphere during boreal winter

Madden and Julian $(1971,1972)$

Waliserfet al. (2009) \qquad

,

Global Impacts of MJO on Weather and Climate

Lin et al. (2006)

Monitoring, simulation diagnostics, and Eorecast

Developing Real-time Multivariate MJO (RMM) index (Wheeler and Hendon, 2004)
\checkmark Applying MJO diagnostics to Climate models for operational forecast

(1) Real-time MJO Index

Phase-space representation of MJO

Rainfall probabilities for eight MJO phases (Wheeler et al. 2009)

PHASE 203 days
(r)

PHASE 4
HASE 4217 days $, 2,1,1$ PHASE $8 \quad 260$ days
Ratio of weekly rain probabilities (shaded for α-level of 5%)

CPC: MJO monitoring and operational intraseasonal forecast

MJO seasonality (developing Real-time Boreal summer intraseasonal oscillation (BSISO) indices (Lee et al. 2013) to reflect northward propagation of BSISOs)
\checkmark Applying BSISO diagnostics to Climate models for operational forecast (APEC climate Center)

(2) Real-time BSISO Indices

Real-time BSISO Indices (BSISO1 for 30-60 days and BSISO2 for 10-30 days) Lee et al. (2013)

30-60-day

Canonical eastwardpropagating ISO with northward-propagating component

10-30-day

Westward and northwestward propagating oscillation during premonsoon and monsoon-onset periods

APCC: Operational Model BSISO Forecast

The BSISO forecast activity has been initiated in 2013 with the goal of improving our ability to understand and forecast the BSISO based on numerical models in cooperation with the CAS/WCRP Working Group on Numerical Experimentation (WGNE) Madden Julian Oscillation (MJO) Task Force, and hosted at the APEC Climate Center (APCC).

Outline

1. Overview
2. Influences of BSISOs on rainfall anomalies over eastern China
3. Future changes of 30-60-day BSISO projected by CNRM-CM5 model
4. Summary

Impacts of BSISOs on rainfall over eastern China (1981-2007)

1) 30-60-day BSISO

Li et al. $(2015, ~ C D)$

OLR (shading) and 850hPa wind anomalies

Station-Obs. Rainfall anomalies

20-50-day ISO of Yangtze Rainfall (based on 1979-2003 datasets)

Impacts of BSISOs on rainfall over eastern China (1981-2007)

1) 30-60-day BSIS0

Anomalous Divergence (shading) and vertical circulation along 115-120E

Anomalous ω (contour) and integrated precipitable water ($\mathbf{3 0 0 - 1 0 0 0 ~ h P a) ~}$

Impacts of BSISOs on rainfall over eastern China (1981-2007)

1) 30-60-day BSISO

Impacts of BSISOs on rainfall over eastern China (1981-2007)

2) 10-30-day BSISO

Li et al. $(2015, \mathrm{CD})$
OLR (shading) and 850 hPa wind anomalies

EOF3

EOF4

Station-Obs. Rainfall anomalies

Impacts of BSISOs on rainfall over eastern China (1981-2007)

2) 10-30-day BSISO

Anomalous Divergence

Anomalous ω (contour) and integrated precipitable water

Case study of the impact on the Yantze rainfall of both 30-60-day and 10-30-day BSISOs during the 1996 summer

30-60-day BSISO1

10-30-day BSISO2

Li, Mao, and Wu (2015, CD)

Correlation between Multivariate regressing forecasted and observed rainfall anomalies

Interaction of the 30-60-day BSISO with extratropical ISO around Tibetan Plateau and their coordinated influence the 1998 Yangtze flooding Li and Mao (2017)

Year-to-year difference in BSISO impact over eastern China

Li and Mao (2016)

Percentage rianfall anomaly (contour) Standard Deviation of intraseasonal rainfall (shading)

Three kind of distributions of larger intraseasonal rainfall variability appearing over different areas

Influence of IOD on the interannual variability of northward propagation of BSISO over South Asian Sector

Ajayamohan et al. (2008)

FIG. 2. (a) JJAS composite mean variance of $20-100$-day filtered CMAP precipitation anomalies $\left(\mathrm{mm}^{2}\right.$ day $^{-2}$) in contrasting IOD years (see Table 1 for the list of negative and positive IOD years). Contour levels are $3,9,15,24,36,48$, and 60 . The box represents the base region ($12^{\circ}-22^{\circ} \mathrm{N}, 70^{\circ}-95^{\circ} \mathrm{E}$) taken for the regression calculations.

FIG. 6. (a) Regressed filtered anomalies of CMAP precipitation $\left(\mathrm{mm} \mathrm{day}^{-1}\right)$ averaged over $70^{\circ}-95^{\circ} \mathrm{E}$ as a function of latitude and time lag during the 1980-2004 period. As in (a), but for (b) negative and (c) positive IOD years. Contour interval is 0.6 . Only statistically significant (0.1 significance level using a t test) anomalies are plotted.

Outline

1. Overview
2. Influences of BSISOs on rainfall anomalies over eastern China
3. Future changes of 30-60-day BSISO projected by CNRM-CM5 model
4. Summary

RCP 2.6

RCP 8.5
(a) Change in average surface temperature (1986-2005 to 2081-2100)

(b)

Change in average precipitation (1986-2005 to 2081-2100)

Global warming in the twenty-first century even under the RCP 2. 6 scenario.

Simulation and Projection of MJO／BSISO

Some CGCMs are able to reproduce reasonably the structure and propagation of MJO／BSISO（especially 30－60－day BSISO）based on evaluating the simulation performance of CMIP3（Meehl et al．2007）and CMIP5（Taylor et al． 2012）CGCMs．

OLR：20－100 day JJAS Variance Pattern Correlation
Sperber et al． 2013

Mokel							ution of BSISO Life Cycle （Movie）
	${ }_{\text {No }}$	，		Ycer	No	${ }_{\text {Nb }}^{\text {Nor }}$	comet
	No				No	m	amer
	Yo	No		${ }_{\text {Yos }}^{\text {Yos }}$	$\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$	${ }^{6}$	
Mibco cien	No	No	，	No	¢	No	\％mom
（exters	Noce	No	${ }_{\text {ves }}$	\％	¢	Yes	come
combe	Noss	\％os	\％	\％		\％	cemed
	${ }^{\text {Yos }}$	No	Ye	Vex	No	比起	comet
	No	No		\％	No	\％	cemed
	\％	No	\％ossoss	\％	\％	为	\％ome
（isticusbli	xo	No	Yo	No	No	\％	
，armocs	No	$\substack{\text { cot } \\ \text { Not }}$		cos			cet
	Nos	，		No		品	wome
		cest				cos	
city		cot			No	\％	mome

\square Scientific Issue：How will the 30－60－day BSISO change under extreme scenario of RCP8．5？

Capability of 24 CMIP5 models to simulate the important aspects of the BSISO

CNRM-CM5 (T127L31; $1.4^{\circ} \times 1.4^{\circ}$; Voldoire et al. 2013) by CNFRN-Gerfacs.Erancéury)

3. 1 Future changes in boreal summer-mean state

(shading) \& Specific Humidity

Rainfall and 850hPa winds

Li and Mao (2015)

Tropical convection centers generally occur over the areas of higher SST. High SST increase water vapor in the low-atmosphere, thereby increase the moist static energy, thus favorin convections to arise.

3. 1 Future changes in boreal summer-mean state

$$
\text { Clausius-Clapeyron equation for the atmospheric water vapor } \quad \frac{d e s}{d T}=\frac{L_{v} e_{s}}{R_{v} T^{2}}
$$

Saturation Vapor Pressure $\left(\boldsymbol{e}_{s}\right)$
Saturation Specific Humidity $\left(q_{s}\right)$

Increased SST \rightarrow enhanced saturation water vapor pressure \rightarrow more moisture into the lowlevel atmosphere, \rightarrow favoring stronger tropical convection
As the saturation vapor pressure increases by about 7% for each $1-\mathrm{K}$ warming in SSTs (Held and Soden, 2006), a 16% increase will arise in e_{s}, with q_{s} increasing to above $27.5 \mathrm{~g} / \mathrm{kg}$.

3.2 Future changes in the BSISO

- BSISO amplitude

Li and Mao (2015)

Enhanced Variability between equator and 15 N

Expanded range (more eastward extension)

The northward/northwestward propagation over EA/WNP

3.2 Changes in the BSISO

Historical
 RCP 8.5

Equatorial Eastward Propagation component from Indian to Pacific Oceans

Zonal Wavenumberfrequency power spectra over the equatorial region $\left(10^{\circ} \mathrm{S}-25^{\circ} \mathrm{N}\right)$
lagged-time-1ongitude diagram
Base point: EIO ($10^{\circ} \mathrm{S}-5^{\circ} \mathrm{N}, 75-100^{\circ} \mathrm{E}$)

3.2 Changes in the BSISO over South Asia Sector

Historical (20C)
RCP 8.5 (21C)

3.2 Changes in the BSISO over South Asia Sector

- Northward Propagating Component over South Asian Sector

Finite Domain Wavenumber-frequency power spectra over the SASM region ($10^{\circ} \mathbf{S}$ $30^{\circ} \mathrm{N}, 70^{\circ}-100^{\circ} \mathrm{E}$)

3.2 Changes in the BSISO over South Asia Sector

- Northward Propagation Component in dynamical and thermal factors
Historical RCP 8.5

Li and Mao (2015)

3.2 Changes in the BSISO over East Asia/WNP Sector

Historical (20C) RCP 8.5 (21C)

3.2 Changes in the BSISO over East Asia/WNP Sector

Historical
RCP 8.5

- Northward Propagation Component over East Asian/WNP Sector

Finite Domain Wavenumber-frequency power spectra over the EA/WNP region $\left(10^{\circ} \mathrm{S}\right.$ $30^{\circ} \mathrm{N}, 100^{\circ}-140^{\circ} \mathrm{E}$)
lagged-time-latitude diagram Base point: EWP $\left(10^{\circ} \mathrm{S}-5^{\circ} \mathrm{N}, 100-140^{\circ} \mathrm{E}\right)$

3.2 Changes in the BSISO over East Asia/WNP Sector

Northward Propagation Component in dynamical and thermal factors (Confirmed by Multi-model ensemble)
Historical RCP 8.5

Outline

1. Overview
2. Influences of BSISOs on rainfall anomalies over eastern China
3. Future changes of 30-60-day BSISO projected by CNRM-CM5 model
4. Summary

conclusions

1. Intraseasonal rainfall anomalies over eastern China are closely phasedependent on the evolutions of BSISOs, being caused by a local meridional-vertical cell.
2. Under RCP8.5 scenario, the saturation water vapor pressure in the planetary boundary layer (PBL) will increase by about 16%, as a response to the increase of sea surface temperature (SST) in the tropical and subtropical Indian and Pacific 0ceans, providing more moisture and moist static energy for tropical convection.
3. BSISO will be intensified, prevailing in a broader range of the Indo-Pacific region. The convective signal will initiate over more westward parts of the Indian Ocean and decay over the more eastward tropical Pacific.
4. Due to the increased moisture-holding capacity of the lowlevel atmosphere, the phase speeds of SASM and EA/WNP northward propagation will decrease.

Related Papers

- Jianying Li, Jiangyu Mao, Guoxiong Wu (2015) A Case Study of the Impact of Boreal Summer Intraseasonal Oscillations on Yangtze Rainfall. Clim Dym 44: 2683-2702 DOI: 10.1007/s00382-014-2425-9
- Jianying Li, Jiangyu Mao (2016) Experimental 15-day-Lead statistical forecast of intraseasonal summer monsoon rainfall over Eastern China. Atmospheric and Oceanic Science Letters 9: 66-73
- Jianying Li, Jiangyu Mao (2016) Changes in the boreal summer intraseasonal oscillation projected by the CNRM-CM5 model under the RCP 8.5 scenario. Clim Dym DOI: 10.1007/s00382-016-3038-2

Thank for your attention

LASC

$\operatorname{SADI}(\mathbf{t})=\mathbf{A}\left(\mathbf{t}+\mathbf{n l a g}_{A B}\right)-\mathbf{B}(\mathbf{t})$
$\operatorname{EADI}(\mathbf{t})=\mathbf{C}\left(\mathbf{t}+\right.$ nlag $\left._{\mathbf{C D}}\right)-\mathbf{D}(\mathbf{t})$
$\mathbf{Q P I}(\mathbf{t})=\mathbf{S A D I}(\mathbf{t}+\mathbf{n l a g})-\operatorname{EADI}(\mathbf{t})$

亚洲夏季风30－60天季节内振荡的北传自组织机制

四裉型指数定义

OLR \＆850hPa 风场异㦂

Lee et al． 2013

$$
\left.\begin{array}{c}
\operatorname{SADI}(\mathrm{t})=\mathrm{A}(\mathrm{t}+\mathrm{nlag} \\
\mathrm{AB}
\end{array}\right)-\mathrm{B}(\mathrm{t}),
$$

Sabeerali et al. 2013)

Li and Mao (2015)

Fig. 9 Regression coefficients (shading) of rainfall anomaties against a the SADI and \mathbf{b} the EADI during the boreal summer (1 May to 31
October) from the twentieth-century simulations. c, d As in (a) and
(b) except for the twenty-first century simulations. Stippling indicates
the regions where the regression coefficients are statistically significant at the 5% significance level. The two rectangles represent the domains over which the time series of area-averaged intraseasonal rainfall anomaly are produced to calculate the SADI and EADI

Differences between strong and weak BSISO years of seasonal-mean SST (color scale, K) over the tropical Pacific during the preceding winter (1 December-28 February). Stippling indicates the regions where the SST differences are statistically significant at the 90% confidence level. (La Nina 1996 and 2006)

For the IPCC AR5, four scenarios were designed: RCP (the representative concentration pathway) $2.6, \mathrm{RCP} 4.5, \mathrm{RCP} 6.0$ and RCP 8.5. All of these are considered likely changes in future anthropogenic greenhouse gas emissions, with a possible range of radiative forcing in the year 2100 relative to 1850 of 2.6, 4.5, 6.0, and 8.5 W m-2, respectively.

The RCP 2.6 is a mitigation scenario and the RCP 4.5 and RCP 6.0 represent stabilization scenarios, while the RCP 8.5 is a scenario of extremely high greenhouse gas emissions (IPCC 2013). The historical simulation forced by the observed atmospheric composition changes was integrated from 1850 to 2005.

The historical simulation forced by the observed atmospheric composition changes was integrated from 1850 to 2005 . We extracted the simulation results over the recent 20 years from 1981 to 2000 to demonstrate present-day climate. The RCP 8.5 simulation was integrated from 2006 to 2100, and the outputs over the last 20 years from 2081 to 2100 were used to reflect future climate.

We are confident that lower-tropospheric water vapor will increase as the climate warms.

We can predict, with nearly as much confidence, that certain other changes will occur that are coupled to this increase in water apor (Hydrological response to warming).

Figure 8. Lag-longitude diagrams of regressed anomalies of $20-100$ day band pass filtered precipitation (mm day ${ }^{-1}$) averaged between $5^{\circ} \mathrm{S}$ and $5^{\circ} \mathrm{N}$ illustrating the eastward propagation along the equatorial belt in (a) GPCP, (b-gg) 32 CMIP5 models. The $20-100$ day band pass filtered precipitation anomalies averaged over $10^{\circ} \mathrm{S}-5^{\circ} \mathrm{N}$ and $75^{\circ} \mathrm{E}-100^{\circ} \mathrm{E}$ is used as a reference time series for regression

Figure 10. The finite domain space time spectra of rainfall anomalies calculated over $15^{\circ} \mathrm{S}-30^{\circ} \mathrm{N}, 60^{\circ} \mathrm{E}-100^{\circ} \mathrm{E}$ as a func tion of wave number and frequency for the northward and southward propagating BSISO (a) observations, (b-gg) 32 CMIP5 models.

SABEERALI ET AL.: SIMULATION OF BSISO IN THE CMIP5 MODELS

Figure 11. Regressed 20 to 100 day band pass filtered precipitation anomalies $\left(\mathrm{mm} \mathrm{day}^{-1}\right)$ with reference to a reference time series created by averaging the filtered precipitation anomalies over the monsoon core region $\left(12^{\circ} \mathrm{N}-22^{\circ} \mathrm{N}, 70^{\circ} \mathrm{E}-90^{\circ} \mathrm{E}\right)$ at zero lag (a) CMAP, (b-gg) 32 CMIP5 models.

1) The well simulated northward propagation of BSISO is achieved by improving the equatorial eastward propagation in the CMIP5 models.
2) By analyzing the multiple aspects of the BSISO, it is found that the models MIROC5, IPSL-CM5A-LR, GFDL-CM3, CMCC-CM, and MPI-ESM-LR represents most of the observed characteristics of the BSISO and give an opportunity to study the BSISO and its modulations under future warming scenarios (Sabeerali et al. 2013).

Although the CNRM-CM5 model reproduces the northward propagations over both the SASM and EA/WNP areas (Li and Mao 2016), the complementary relationship between these two dipoles is not well captured, with the SASM dipole being accompanied by convection anomalies with the same sign over the EWP and SCS (see fig. 11k of Sabeerali et al. 2013).

