

Regional Downscaling and High-Resolution (AGCM) Climate Simulations

Swapna Panickal (Inputs from CORDEX Team, CCCR) Centre for Climate Change Research Indian Institute of Tropical Meteorology (IITM)

ICTP TTA: Monsoon in a changing climate, Italy, 31st-4th August 2017

Background

- Regional downscaling methods are used to provide climate information at the smaller scales needed for many climate impact studies
- There is high confidence that downscaling adds value both in regions with highly variable topography and for various small-scale phenomena.
- Regional models necessarily inherit biases from the global models used to provide boundary conditions.
- However, several studies have demonstrated that added value arises from higher resolution of stationary features like topography and coastlines, and from improved representation of small-scale processes like convective precipitation.

IPCC, WG1 Ch.9

Outline

- Dynamical Downscaling
- Co-ordinated Regional Climate Downscaling Experiment (CORDEX) South Asia from CCCR
- High Resolution Regional Climate Simulations for South Asia
- Tools for evaluation/visualization
- Future Road map

Dynamical Downscaling

- Dynamical downscaling uses a limited area, high-resolution model (a regional climate model, or RCM) driven by boundary conditions from a GCM to derive smaller-scale information
- Lateral Boundary condition variables:
 - -Wind
 - -Temperature
 - -Water vapour
 - -Surface pressure

Lower boundary condition variables:

- SST
- Land Use & Land cover

Downscaling regional climate information for impact assessment studies

Why regional downscaling is needed?

There are a number of uncertainties in our understanding of climate change in the 21st century. These can be summarized into terms of three questions:

- how will the external forcing of the climate system change in the future?
- how will changes in external forcing factors influence climate?
- to what degree is the future climate change signal masked/amplified by natural variability of the climate system?

A common way to deal with these uncertainties is to perform several simulations constituting an ensemble

Uncertainties can be addressed by ;

- Several different emission scenarios can be used to get an understanding on the uncertainty related to external forcing thereby sampling a multitude of possible outcomes such as the Representative Concentration Pathways (RCPs).
- Using multiple climate models or an ensemble of simulations with one model perturbed in its formulation of the physics, parts of the uncertainties related to how changes in forcing influence the climate can be assessed.
- Finally, to get an understanding on the natural variability one may use several simulations with one climate model under the same emission scenario differing only in initial conditions.
 - These uncertainties in long term regional climate projections need to be properly quantified and communicated for use in risk assessment and management studies.

CORDEX South Asia Co-ordination

•Development of multi-model ensemble projections of high resolution (50km) regional climate change scenarios for South Asia

- Generation of regional climate projections at CCCR-IITM
 - LMDZ variable grid global climate model
 - RegCM4 regional climate model
- Co-ordination with partner institutions for multi-model ensemble projections - SMHI, IAES, CSC, CSIRO, ICTP...
- Development of an Earth System Grid (ESG) node at CCCR-IITM for CORDEX South Asia
 - Archival, Management, Retrieval, Dissemination of CORDEX South Asia data
 - Evaluation of regional climate projections over South Asia
 - to provide relevant and reliable regional climate change information for effective harnessing of science-based climate information by Vulnerability, Impact & Adaptation (VIA) community
 - Development of regional capacity for assessment of regional climate change

High Resolution regional climate simulations for

- 1. Understanding Regional Climate Process
- 2. Improving climate models
- 3. Capacity Building
- Providing evaluated high resolution regional climate projections for land-regions worldwide
- Linking climate modelling better with regional impact, adaptation and vulnerability assessment

Centre for Climate Change Research

Indian Institute of Tropical Meteorology (IITM)

http://cccr.tropmet.res.in/globaldata/

Home

Contact Us

High Resolution Climate Change Simulation over South Asia

High-resolution simulations of 20th century climatic variations and future climate projections have been developed at CCCR-IITM, using a global climate model with telescopic zooming (~ 35 km in longitude x 35 km in latitude) over the South Asian region.

These high-resolution simulations, which were performed on the PRITHVI High Performance Computing (HPC) facility at IITM, offer new opportunities to better understand several key regional scientific issues concerning climate change over South Asia - e.g., Monsoons, precipitation extremes, heat waves, droughts and floods, changes in cyclonic weather systems, hydrological cycle etc.

A variable resolution global modeling framework, based on the Laboratorie Dynamique Meteorologie (LMD, France) atmospheric general circulation model (GCM), has been employed for this purpose under a scientific collaboration between CCCR-IITM and LMD.

Monthly outputs of simulated rainfall and surface air temperature for the historical period (1951 - 2005) and 21st century RCP4.5 scenario projection for the period 2006-2095 are presently made available for downloads.

Monthly Data	Historical (1951-2005)	RCP 4.5 (2006-2095)				
Rainfall (mm / day)	<u>Download</u>	Download				
Surface Air Temperature (°C)	Download	<u>Download</u>				

To Download Global Data Click here : http://cccr.tropmet.res.in/Global-Data/

Experiment Name	RCM Description	Driving GCM	Contributing Institute			
CCLM4(MPI)	COnsortium for Small- scale MOdelling (COSMO) model in CLimate Mode version 4.8 (CCLM; Dobler and Ahrens, 2008)	Max Planck Institute for Meteorology, Germany, Earth System Model (MPI-ESM- LR; Giorgetta et al 2013)	Institute for Atmospheric and Environmental Sciences (IAES), Goethe University, Frankfurt am Main (GUF), Germany			
RCA4(ICHEC)	Rossby Centre regional atmospheric model version 4 (RCA4; Samuelsson et al., 2011)	Irish Centre for High-End Computing (ICHEC), European Consortium ESM (EC-EARTH; Hazeleger et al. 2012)	Rosssy Centre, Swedish Meteorological and Hydrological Institute (SMHI), Sweden			
CCAM(ACCESS)	Commonwoolth Scientifie	ACCESS1.0				
CCAM(CNRM)	and Industrial Research	CNRM-CM5	CSIRO Marine and			
CCAM(CCSM)	Organisation (CSIRO),	CCSM4	Atmospheric Research,			
CCAM(GFDL)	Atmospheric Model	GFDL-CM3	Melbourne, Australia			
CCAM(MPI)	(CCAM; McGregor and	MPI-ESM-LR				
CCAM(BCCR)	Dix, 2001)	NorESM-M				
LMDZ4(IPSL)	Institut Pierre-Simon Laplace (IPSL) Laboratoire de Me'te'orologie Dynamique Zoomed version 4 (LMDZ4) atmospheric general circulation model (Sabin et al., 2013)	IPSL Coupled Model version 5 (IPSL-CM5-LR; Dufresne et al. 2013)	Centre for Climate Change Research (CCCR), Indian Institute of Tropical Meteorology (IITM), India			
RegCM4(LMDZ)	The Abdus Salam International Centre for Theoretical Physics (ICTP) Regional Climatic Model version 4 (RegCM4; Giorgi et al., 2012)	IPSL LMDZ4	CCCR, IITM			
RegCM4(GFDL)	ICTP RegCM4	Geophysical Fluid Dynamics Laboratory, USA, Earth System Model (GFDL- ESM2M-LR; Dunne et al. 2012)	CCCR, IITM			
REMO2009(MPI)	MPI Regional model 2009 (REMO2009; Weblink: http://cccr.tropmet.res.in/ cordex/docs/REMO- CORDEX-DATA-WAS- IITM 4.pdf	MPI-ESM-LR (Giorgetta et al 2013)	Climate Service Center, Hamburg, Germany			

http://cccr.tropmet.res.in/cordex/ docs/Table_CORDEX_Expts_all.doc

CORDEX South Asia data (50km) is available on the CCCR-IITM Climate Data Portal (non-ESG):

CORDEX-South Asia Multi Models Output http://cccr.tropmet.res.in/cordex/files/downloads.jsp Historical (1950 - 2005) | Evaluation Run (1989 - 2008) | RCP 4.5 | RCP 8.5 Historical runs is available to download.

Experiment Name	Rain fall (pr)	Surface Air Temp (tas)	Surface Air Temp. Maximum (tasmax)	Surface Air Temp. Minimum (tasmin)	Sea- level Pressure (psl)	Surface Specific Humidity (huss)	Surface Sonal Wind (uas)	Surface Meridonial Wind (vas)	Downward Shortwave Radiation (rsds)		
RCA4 (ICHEC)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			
RegCM4 (GFDL)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
RegCM4 (LMDS)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
CCLM4 (MPI)	\checkmark	\checkmark			\checkmark	\checkmark					
LMD24 (IPSL)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			
REMD2009 (MP1)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
CCAM (ACCESS)	\checkmark		\checkmark	\checkmark	\checkmark						
CCAM (CNRM)	\checkmark		\checkmark	\checkmark	\checkmark						
CCAM (CCSM)	\checkmark		\checkmark	\checkmark	\checkmark						
CCAM (GFDL)	\checkmark		\checkmark	\checkmark	\checkmark						
CCAM (MPI)	\checkmark		\checkmark	\checkmark	\checkmark						
CCAM (BCCR)	\checkmark		\checkmark	\checkmark	\checkmark						

Model experiment details please click here "List of Experiments" NEW

A.C.A.F

High Resolution Regional Climate Simulations for South Asia

CORDEX South Asia RCM historical simulations driven with CMIP5 AOGCMS

The biases in simulated annual mean precipitation (mm d⁻¹) for 1990-2004 against the CRU data

Model Label	Model Name & Version	Driving CMIP5 AOGCM
H1	COSMO CLM	MPI-ESM-LR
H2	ICTP RegCMv4.1	GFDL-ESM2M
НЗ	SMHI RCAv4	EC-EARTH
H4	IPSL LMDZv4	IPSL-CM5A-LR
H5	ICTP RegCMv4.1	LMDZ4

- The individual RCM bias vary from dry to wet over central India in the historical simulations: H1 (Fig. a) to H4 (Fig. d)
- The spatial distribution of the bias is similar for the two simulations H2 (Fig.b) & H5 (Fig.e) with the ICTP RegCM RCM driven with different global models (LMDZ4 & GFDL-ESM2M)

ICRC CORDEX 2013 (http://cordex2013.wcrp-climate.org/ posters/P3_27_Sanjay.pdf)

Spatial pattern correlations and Standardized deviations of the simulated annual mean precipitation and surface air temperature

Precipitation

Surface Air Temperature

climatology (1990-2004) with respect to the observed (CRU) data over the South Asia land region (60°E-100°E; 5°N-35°N)

Sanjay et al. (http://cordex2013.wcrp-climate.org/posters/P3_27_Sanjay.pdf)

CORDEX South Asia 1986-2005 Daily Probability Density Functions

CORDEX South Asia 1986-2005 Daily Precipitation Probability Density Functions over Central India

• A simple quantitative measure of how well each climate model can capture the observed PDFs (Perkins et a. 2007) for precipitation shows that over central India, 3 of the 6 RCMs improves than the driving CMIP5 AOGCMs.

Historical Runs Driven with CMIP5 AOGCMS June-September Daily 75th Percentile 2m Temperature Bias w.r.t APHRODITE 1986-2005

AV is positive where the RCM's squared error is smaller than the driving AOGCM's squared error

Sanjay et al. under revision

CORDEX South Asia multi-RCM ensemble mean projections

Annual average surface air temperature

The all India mean surface air temperature change for the near-term period is projected to be in the range of 1.08°C to 1.44°C,

Larger than the natural internal variability

The RCP2.6 scenario shows increase of less than 1°C over most of India except in some areas

The RCP4.5 and RCP8.5 scenarios for the near-term change show similar increase of less than 2°C uniformly over the Indian land.

Near-term (2016-2045) Mid-term (2036–2065) Long-term (2066–2095)

Sanjay et al., 2017

CORDEX South Asia multi-RCM ensemble mean projections

2m Temperature Anomaly

The all India averaged annual surface air temperature anomalies based on the IMD gridded data show steady long-term warming with interannual variations

A consistent and robust feature across the downscaled CORDEX South Asia RCMs is a continuation of warming over India in the 21st century for all the RCP scenarios

Sanjay et al., 2017

High Resolution Regional Climate Simulations for South Asia: A Variable Resolution (LMDZ) Approach

LMDZ grid setup for South Asia (shaded region has grid-size <

The resolution becomes gradually coarser outside the zoom domain.

Curtesy : Sabin, CCCR

Mean annual cycles of rainfall (mm day ⁻¹) and surface temperature (°C) over the Indian landmass from the zoom and nozoom runs

Zoom simulation able to capture finer details of the regional precipitation variability

Understanding regional climate change over South Asia

High resolution (~ 35 km) dynamical downscaling at CCCR, IITM

Historical (1886-2005):

Includes natural and anthropogenic (GHG, aerosols, land cover etc) climate forcing during the historical period (1886 – 2005) ~ 120 years

<u> Historical Natural (1886 – 2005):</u>

Includes only natural climate forcing during the historical period (1886–2005) ~ 120 years

RCP 4.5 scenario (2006-2100) ~ 95 years:

Future projection run which includes both natural and anthropogenic forcing based on the IPCC AR5 RCP4.5 climate scenario. The evolution of GHG and anthropogenic aerosols in RCP 4.5 scenario produces a global radiative forcing of + 4.5 W m⁻² by 2100

GHG only (1950-2005)

Natural and GHG-only forcings. Land use and aerosol fields set to 1886 values

Pre Industrial GHG (1950-2005)

Includes Natural variations, Aerosol forcing and Landuse change. The concentration of GHGs are set to 1886

5-year running mean of seasonal (JJAS) monsoon precipitation

Further, the HIST1 and HIST2 simulations show significant decrease of monsoon rainfall over the Indian land region during 1951-2005 by ~16% and ~9% respectively which are conspicuously absent in HISTNAT1 and HISTNAT2.

	Rainfall trend	Mean rain	% change	P value
IMD dataset HIST1	-0.55 (55 years) ⁻¹ -1.1 (55 years) ⁻¹	7.5 6.9	-7% -16%	P < 0.01 P < 0.01
HIST2	-0.55 (55 years)-1	6.3	-9%	P < 0.01
HISTNAT1	-0.03 (55 years)-1	8.3	-0.3%	P = 0.54
HISTNAT2	- 0.1 (55 years) ⁻¹	6.9	-1%	P = 0.2
RCP4.5	-1.1 (55 years)-1	6.6	-17%	P < 0.01
RCP4.5	-0.29 (90 years)-1	6.6	-5%	P < 0.01

Difference in JJAS rainfall and wind at 850 hPa

Widespread negative anomalies of rainfall over the IGP and mountainous west-coast. The simulations also depict anomalous precipitation enhancement over southeastern China and adjoining areas, which is again consistent with the observed pattern.

Time series of Extremes in precipitation (>100mm/day over MT reg

With rising surface temperatures, the simulated atmospheric moisture content over the subcontinent increased substantially by ~24% during 1886-2095. The vertical wind shear reduced nearly by the same amount. Such a weakly sheared environment with high humidity levels favors enhanced localized convection and leads to the increasing frequency of precipitation extremes.

> The LMDZ experiments realistically simulate the mean monsoon precipitation.

> The high resolution leads to a realistic representation of the heavy orographic precipitation of Western Ghats and north-eastern India.

> The zooming provides a key value-addition especially in terms of the observed coupling between wind and precipitation over the MT region.

> Recent trend in monsoon precipitaion and extremes events are also well simulated by the model.

Climate Data Evaluation Tools

CORDEX South Asia data (50km) is available on the CCCR-IITM Climate Data Portal (non-ESGF):

M. Mujum<mark>d</mark>ar

About Climate Data Portal http://cccr.tropmet.res.in/home/old_portals.jsp

The CCCR Climate Data Portal is designed to facilitate the dissemination of climate information using a publicly accessible FTP and web-based interface. click here

											_	1 C C																											
	1			1.1.1	Terre	100	1.00	(internet)	(married)	1	-	hi	111	Artes Artes Martin	an and a second	111	III	111		figuillant. Term	111	hh		1.11	111	IIII	in	Autors Balances Balances	H	I	135	1.11	factors da Taras Manteral Hannas	1.fill	111	111	ÌHI	Torino Barbald Barbald	
Farte	1	1.	or brog	1.	(resource)	-	100	Statistics (Shall) res	Restaure .	10.00	eren i	11	1	1	1	4.	4	1		10.0427471	2	1	1	1	1	1	1	1		manuti,									
		044	-	Bernard Barner		(Pune)	(best		(mm)	1	marga }	1. 1.	1	1	10	1	1	1	1	Pagement (),										Pag Statistics									
				100						1	HALMED	11	1	1	1	1.	1	1	1	Name and	18	2	1	10	1	1	1	1	1	Page Second ()									
- and the second	1	× .	K.	×	1	4	10	14		100.0	aparts 1	11			10	1				(1),100,0075	121	1			1	1				CO. HARRY									
log()-street	12	4	1	4	1	1	1	1	4	100	100	11	1	1	1	1	1	1		NUMBER OF	2	4	1	8	1	2	1	1	1	LHOWFILL									
CO. MICHAE										100	-	11	1	12	12	1	1	1	12	party.										ACCOUNT OF	1	1	1	1	1	1	1	1	13
Adapteria .										100										(active)																			
244										1000	10000	1.	10	1	1					CCARGE (TEND	1		4	1×	1						16		1	1000	×				
Wither Street										1.000	-	1	1	1	1					12 MILLION R	1		1	1	1					CuterChree	10		1	1	1				
Cales Street	12		12	1	11						-	1 -	1	1	1					COMPOSED INC.	1		1	1	1					distant the	1		1	1	1				
	1.							-			inter 1	1 -	1	1	11					COMMETTIC:	1		1	1	1					COMPRO-	12		1	1	1				
										1.000	and i	21.	120	12	2					LUBROW'S	23		1	12	1					Claiming .	14		1.	1	1				

Historical (1950-2005)

Experiment Name	Rain fall (pr)	Surface Air Temp (tas)	Surface Air Temp. Maximum (tasmax)	Surface Air Temp. Minimum (tasmin)	Sea-level Pressure (psl)	Surface Specific Humidity (huss)	Surface Zonal Wind (uas)	Surface Meridonial Wind (vas)	Downward Shortwave Radiation (rsds)	
RCA4(ICHEC)	1	1	1	1	1	1	1	~	-	
RegCM4(GFDL)	~	1	1	1	~	~	~	~	~	
RegCM4(LMDZ)	1	1	1	~	1	1	~	1	~	
CCLM4(MPI)	1	~	-		1	1	-	-		
LMDZ4(IPSL)	1	1	1	1	1	1	1	~		
REMO2009 (MPI)	~	1	1	~	~	~	1	~	~	
CCAM(ACCESS)	1		~	1	1	-	-	-	-	
CCAM(CNRM)	1		~	1	1	-	-		-	
CCAM(CCSM)	1	-	1	1	1	-	-		-	
CCAM(GFDL)	1		1	1	1	-	-		-	
CCAM(MPI)	1	-	1	1	1	-	-	-		
CCAM(BCCR)	~		1	1	~	-	-	-	-	

Table: List of CORDEX South Asia Regional Climate Model (RCM) Experiments

Experiment Name	RCM Description	Driving GCM	Contributing Institute				
CCLM4(MPI)	COnsortium for Small- scale MOdelling (COSMO) model in CLimate Mode version 4.8 (CCLM; Dobler and Ahrens, 2008)	Max Planck Institute for Meteorology, Germany, Earth System Model (MPI-ESM- LR; Giorgetta et al 2013)	Institute for Atmospheric and Environmental Sciences (IAES), Goethe University, Frankfurt am Main (GUF), Germany				
RCA4(ICHEC)	Rossby Centre regional atmospheric model version 4 (RCA4; Samuelsson et al., 2011)	Irish Centre for High-End Computing (ICHEC), European Consortium ESM (EC-EARTH; Hazeleger et al. 2012)	Rosssy Centre, Swedish Meteorological and Hydrological Institute (SMHI), Sweden				
CCAM(ACCESS)		ACCESS1.0					
CCAM(CNRM)	and Industrial Research	CNRM-CM5					
CCAM(CCSM)	Organisation (CSIRO),	CCSM4	Atmospheric Research.				
CCAM(GFDL)	Conformal-Cubic Atmospheric Model	GFDL-CM3	Melbourne, Australia				
CCAM(MPI)	(CCAM; McGregor and	MPI-ESM-LR					
CCAM(BCCR)	Dix, 2001)	NorESM-M					
LMDZ4(IPSL)	Institut Pierre-Simon Laplace (IPSL) Laboratoire de Me'te'orologie Dynamique Zoomed version 4 (LMDZ4) atmospheric general circulation model (Sabin et al., 2013)	IPSL Coupled Model version 5 (IPSL-CM5-LR; Dufresne et al. 2013)	Centre for Climate Change Research (CCCR), Indian Institute of Tropical Meteorology (IITM), India				
RegCM4(LMDZ)	The Abdus Salam International Centre for Theoretical Physics (ICTP) Regional Climatic Model version 4 (RegCM4; Giorgi et al., 2012)	IPSL LMDZ4	CCCR, IITM				
RegCM4(GFDL)	ICTP RegCM4	Geophysical Fluid Dynamics Laboratory, USA, Earth System Model (GFDL- ESM2M-LR; Dunne et al. 2012)	CCCR, IITM				
REMO2009(MPI)	MPI Regional model 2009 (REMO2009; Weblink: http://cccr.tropmet.res.in/ cordex/docs/REMO- CORDEX-DATA-WAS- IITM_4.pdf	MPI-ESM-LR (Giorgetta et al 2013)	Climate Service Center, Hamburg, Germany				

http://cccr.tropmet.res.in/home/docs/cordex/Table_CORDEX_Expts_all.doc

http://esgf.llnl.gov/mission.html

The quality checked CORDEX-South Asia Data are published on the CCCR-IITM Earth System Grid Federation (ESGF) Data Node

The ESGF maintains a global system of federated data centers that allow access to the largest archive of climate data world-wide

http://cccr.tropmet.res.in/home/cordexsa_datasets.jsp

CORDEX South Asia RCM	RCM Description	Contributing CORDEX Modeling Center	Driving CMIP5 AOGCM (see details at https://verc.enes.org/data/enes- model-data/cmip5/resolution)	Contributing CMIP5 Modeling Center				
IITM- RegCM4 (6 ensemble members)			CCCma-CanESM2	Canadian Centre for Climate Modelling and Analysis (CCCma), Canada				
	The Abdus Salam International Centre for Theoretical Physics	Centre for Climate Change Research	NOAA-GFDL-GFDL- ESM2M	National Oceanic and Atmospheric Administration (NOAA), Geophysical Fluid Dynamics Laboratory (GFDL), USA				
	(ICTP) Regional Climatic	(CCCR), Indian	CR), Indian contractional de Recherches Me te orologiques					
	Model version 4 (RegCM4;	Meteorology (IITM),	MPI-ESM-MR	Max Planck Institute for Meteorology (MPI-M), Germany				
	Giorgi et al., 2012)	India	IPSL-CM5A-LR	Institut Pierre-Simon Laplace (IPSL), France				
			CSIRO-Mk3.6	Commonwealth Scientific and Industrial Research Organization (CSIRO), Australia				
			ICHEC-EC-EARTH	Irish Centre for High-End Computing (ICHEC), European Consortium (EC)				
SMHI-RCA4	Rossby Centre regional	Rosssy Centre, Swedish	MIROC-MIROC5	Model for Interdisciplinary Research On Climate (MIROC), Japan Agency for Marine-Earth Sci. & Tech., Japan				
(6 ensemble members)	(RCA4; Samuelsson et al.,	Meteorological and Hydrological Institute	NOAA-GFDL-GFDL- ESM2M	NOAA, GFDL, USA				
	2011)	(SMHI), Sweden	CNRM-CM5	CNRM, France				
		C SALESIN SECOND REPORT	MPI-ESM-LR	MPI-M, Germany				
			IPSL-CM5A-MR	IPSL, France				
MPI-CSC- REMO2009 (1 ensemble member)	MPI Regional model 2009 (REMO2009; Teichmann et al., 2013)	Climate Service Center (CSC), Germany	MPI-ESM-LR	MPI-M, Germany				

CORDEX South Asia Data Access and Analysis Tools

Institue

IITM ¥

UNCONT Gallery Installing Documentation - Central Releases -

http://uvcdat.llnl.gov/index.html

ESGF Password

ESGF OpenID

Project

CORDEX ~

ESGF Data Extraction Tool

http://cccr-dx.tropmet.res.in:8000/projection/

Thank You