

Detecting Particles and Reconstructing Events

Leonid Serkin (ICTP)

with inputs by K. Shaw, S. Shrestha, J. Stelzer

What we Learned Already

Standard model: Elementary particles and forces

4 forces govern our life

First family is what we are made of

And the newly found Higgs to give us mass !

We all Heard about Accelerators

Particle beams to understand the structure of matter

... starting with Rutherford in 1909

Production of New Particles

3 quarks form a proton : 2 u + 1 d

... and a whole sea of quarks, anti-quarks and gluons – all bound by strong force

Many possible interactions between the components of two colliding protons.

Many ways to create particles

+ law about conservation of energy

How we Observe Small Things

Light is reflected of everything (visible) in our environment and detected by our eyes

^{5 mm} For smaller things we invented the microscope. Higher resolution with smaller wavelength

Optical microscope

200 1111

Electron microscope

Observing Particles

Can we build a super microscope ? Not really: particles too small, too fast, too many ! Different principle: look for traces of the particle when it goes through material

Charged particle through superheated fluid

Scintillating material

Charged particle through an ionizing gas

Which Particles can we Detect?

Particles with long lifetime

Electrons, muons, protons, photons, neutrinos, kaons, pions, neutrons

Can be observed

Quarks hadronize into jets

Can be observed

Short-lived particles

Can not be observed

Particle Data Group: sorts and publishes all the knowledge we collect in HEP

PHYSICAL REVIEW D.

PARTICLES, FIELDS, GRAVITATION, AND COSMOLOGY

> 1 JULY 2012 PART I

REVIEW OF PARTICLE PHYSICS

Third Series

Number 1

Building a Detector

What do we want to <u>discover</u>? Which theory do we want to <u>prove</u>?

Atomic structure (1909), structure of the proton (1967), top quark (1995), the CP violation (2001), the Higgs particle (2012)

What particles can we detect? Which technologies do I have?

Basic Detector designs are often similar. Always newest technologies

Early Detectors

Bubble chambers (50's – mid 80's)

Particles through superheated liquid produce bubbles \rightarrow stereo photographs

Gargamelle

Big European Bubble Chamber

Important principle: charged particle tracks in a magnetic field to measure momentum and mass. Many ideas and techniques born then are still valid

Fixed Target Detectors

Beam on fixed target \rightarrow detector on the other side of target

SLAC Endstation A: discovery of the quark structure (1967)

Colliding Beam Detectors

Detectors usually surround symmetrically the interaction point

But not always...

Physics happens in a small region

How Particle interaction with matter?

e^{-}/e^{+} interaction with matter

1. Ionization:

• Energy lost depends on energy:

y interaction with matter

1. Photoelectric

Measuring Momenta : Tracking

Lorentz Force bends charged particles when moving through a magnetic field *B*

$$\vec{F}_L = q\vec{v} \times \vec{B}$$

 $p_T = Bqr$

Figure 3

electron

helical motion

Opposite charge bend in opposite direction

Measuring Energy : Calorimetry

Calorie: old French energy unit (Latin: calor=heat)

A calorimeter consists of:

Dense material to <u>fully absorb</u> the particle Active material to produce an output signal ~ E

Absorber and active materials

The same → homogeneous calorimeter Different → sampling calorimeter Two slides, detail of showering, invasive procedu

CERN Map

The Large Hadron Collider (LHC)

- Largest particle accelerator.
- 27 km circumstance
- 100 m underground
- Four main experiments.
- Collide two proton beam with center of mass energy 13 Tev.

ATLAS: A Toroidal Lhc Apparatus

• General purpose detector, 44 m long, 25 m hight & weight about 7000 tons.

Different Designs, same Principle

Muon System (magnetic field)

> Hadronic Calorimeter

Electromagnetic Calorimeter

> Tracking (magnetic field)

Different particles have different properties and leave different signatures \rightarrow allows the identification of particles Which stable particle is leaving no trace ?

ATLAS components 1: Inner Detector

- Inner most detector
- Silicon based detector.
- Dedicated to high precision tracking (momentum measurement) of charged particle.
- composed of three subsystems: TRT, SCT and Pixel detectors.

What is pixel?

Pixel simply two pn junction stacked to each other.

• Once a particle passes through deposits enough energy to create electron-hole pairs. Charges drift under the effect of the electric field.

ATLAS components 2: Calorimeters

- measure energy loss of particle as it passes through the detector.
- Electromagnetic calorimeter (EM) measure the energy of electrons and photons as they interact with matter.
- Hadronic calorimeter sample the energy of hadrons (particles that contain quarks, such as protons and neutrons) as they interact with atomic nuclei.
- Calorimeters can stop most known particles except muons and neutrinos.

ATLAS components 3: Muon Spectrometer

• Outer Part of ATLAS, identifies and measures the momenta of muons.

ATLAS components 4: Magnets System

- Bends particles around the various layers of detector systems
- Central Solenoid Magnet 2T.
- Barrel and End-cap Toroids of about 0.5-1 T.

Particle Jets from Quarks

Quarks can not exist alone !

Quarks moving apart create new quark-pairs

Then these quarks form hadrons flying all in one direction (a jet of hadrons)

Two jets observed in the ATLAS hadronic calorimeter

Did we forget something ?

Quarks 🗸

Photons 🗸

Tau, Gluons, W, Z, H Short lifetime

Muons 🗸

How to find Neutrinos?

Neutrinos are invisible (they don't interact)

If you measure everything you can see, any imbalance you see must be from a neutrino!

The total (transverse) momentum must be 0!

Momentum conservation in a explosion !

$$\sum \vec{p}_{Ti} \neq 0$$

A neutrino escaped undetected !

Not possible to know how many neutrinos

ATLAS Shockwave animation

Becoming a Particle Detective

Most particles live very short. Have to deduce them from the final decay products.

Becoming a Particle Detective Part II

Knowledge of final decay products is not enough Higgs and π^0 both can decay into 2 photons

We must also determine the original mass of the $\gamma\gamma\text{-system}$

Becoming a Particle Detective Part II

Energy conservation + momentum conservation +

$$M_{inv} = \sqrt{\left(E_{\gamma 1} + E_{\gamma 2}\right)^2 - \left(\vec{p}_{\gamma 1} + \vec{p}_{\gamma 2}\right)^2} - \left(\vec{p}_{\gamma 1} + \vec{p}_{\gamma 2}\right)^2}$$

$$M_{inv} = \sqrt{\left(E_{\gamma 1} + E_{\gamma 2}\right)^2 - \left(\vec{p}_{\gamma 1} + \vec{p}_{\gamma 2}\right)^2} + \frac{1}{9} \frac{1}{$$

ڵۜM_{؆؆} [GeV]

Another Higgs Decay – The Golden Mode

Higgs \rightarrow 2 Z \rightarrow 4 leptons

ATLAS $H \rightarrow 4I$ with 2 years of data

QUESTIONS

