TOPOLOGICAL DYNAMICS OF PIECEWISE $\lambda\text{-}AFFINE$ MAPS OF THE INTERVAL

ARNALDO NOGUEIRA Institut de Mathématiques de Marseille

Abstract. Let 0 < a < 1, $0 \leq c < 1$ and I = [0,1). We call contracted rotation the interval map $\phi_{a,c} : x \in I \mapsto ax + c \mod 1$. Once a is fixed, we are interested in the dynamics of the one-parameter family $\phi_{a,c}$, where c runs on the interval interval [0,1). Any contracted rotation has a rotation number $\rho_{a,c}$ which describes the asymptotic behavior of $\phi_{a,c}$. In the first part of the talk, we analyze the numerical relation between the parameters a, c and $\rho_{a,c}$ and discuss some applications of this map. Next, we introduce a generalization of contracted rotations. Let $-1 < \lambda < 1$ and $f : [0,1) \to \mathbb{R}$ be a piecewise λ -affine contraction, that is, there exist points $0 = c_0 < c_1 < \cdots < c_{n-1} < c_n = 1$ and real numbers b_1, \ldots, b_n such that $f(x) = \lambda x + b_i$ for every $x \in [c_{i-1}, c_i)$. We prove that, for Lebesgue almost every $\delta \in \mathbb{R}$, the map $f_{\delta} = f + \delta \pmod{1}$ is asymptotically periodic. More precisely, f_{δ} has at most n + 1 periodic orbits and the ω -limit set of every $x \in [0, 1)$ is a periodic orbit.