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The Laplacian 
The Laplacian has, at first sight, a somewhat 
uninspiring formula: 
Laplacian ( u) =  uxx + uyy + u zz +…, 
 
It is not clear from looking at it, why this combination 
is so particular:  Why is the Laplacian rotational 
invariant, independent of the system of coordinates, 
and it represents diffusion ? 
 
This can be seen, though,  if we write the Laplacean  
as an infinitesimal limit of a gain-loss of  density  at 
the point x0 



The Laplacian is in fact: 
 
∆ u(x) =  limr→0    r--(n+2) ∫B(0)  u(x+y) – u(x) dy  
 
 A “gain –loss”  of particles jumping in the 
 position x minus those leaving x. 
 It is the infinitesimal limit of integral operators 
In that sense, the heat equation 
                                   ut  = ∆(u) 
reflects the fact that the density u at the point x 
 has compared itself with its infinitesimal  
neighborhood and it is trying to revert to its 
 surrounding average. 
 
 



The	other	extreme:The	master	equa/on	
The	equa/on	gives	a	general	se5ng	for	the	
	idea	of	par/cles	that	jump	randomly	at		
various	speeds	
:	
ut		(x,t)	=	∫∫	[u(y,s)-	u		(x,t)]		K(x,y,t,s)	dyds	
	
The	kernel	k	is	posi/ve,	supported	in	the	past	(s<t)	
and	symmetric	in	x		and	y		(divergence	related	to	
	enegry	considera/ons)	or	right	and	leG	,and	keeps	
Count	of	those	par/cles	reaching	and	leaving	(x,t)	



If	the	transport	is	instantaneous,	K	is	supported	in	the	
present,	i.e.	in	t=s	(K(x,y)	symmetric	in	x	and	y)	
	
a)		ut		(x,t)	=		∫	[u(y,t)-	u	(x,t)]		K(x,y)	dy	
or	
b)	ut		(x,t)	=		∫	[u(x+(y,t)-	u	(x,t)]		K(x,y)	dy	
	
If	K	becomes		concentrates	around	(x,t),	
	properly	scaled,	gives	rise	to	a	second	order	equa/on	
From	a)	ut		(x,t)	=	div	ai,j	grad	u		where	x	gives	y	the	same	
weight	that	y	gives	x	
or		from	b)		ut		(x,t)	=	ai,j	Di,j	u	where	x	gives	same	weoght	to	
the	right	than	the	leG	
a)	Is	associated	to	energy	condidera/ons,	while	b)	to		
random		processes	
	



Classical	infinitesimal	examples	:	
Viscous	flows	like	Navier	Stokes	
	
The	heat	equa/on	(	heat	flow)	
Irreversibility	,	smoothing	of	
the	flow,	and	decay	to	equilibrium	



“Infinitesimal”	equa/ons	cover	the	bulk	of	the	
theory	since	classical	mechanics	model	phenomena	
assuming	that	the	global	evolu/on	is	determined	by	
the	interac/on	of	adjacent	par/cles	
	
(Heat	,waves,	elas/city,magne/sm…)	
	
The	Laplacian	plays	a	central	role,	being	linear	and	
invariant	under	dila/ons,	rota/ons,	varia/onal	and	
non	variatonal,	that	lends	to	the	use	of	energy	
methods	and	Banach	space	approach	



The	nonlinear	theory	expanded	considerably	in	the	’50	
and		’60,	new	tools	were	develop	

Harmonic analysis  (singular integrals, pseudo 
differential operators, Sobolev spaces, H1, BMO)
The Di Giorgi, Nash, Moser theory , equations with
 degenerate  coefFicients 
Boundary behavior for non smooth  boundaries
( Calderon commutators, work of  Dahlberg, 
Widman, Kenig on Harmonic measure , boundary 
Harnack, trace theory from numerical analysis 
(Lions, Magenes)….




	
There		are	roughly	two	(	interconnected)	branches	of	
the	non	linear	theory	for	diffusive	processes:	
Func/onal	analy/cal::	harmonic	maps,	Navier	Stokes,,	
cri/cal	Sobolev…	
In	these	equa/ons	the	highest	order	is	linear	but	there	
is	cri/cality	in	the	interac/on	with	non	linear	lower	
order	terms	
	



The	second	one	,	more	related	to	geometric	and	
	measure	theore/c	issues	corresponds	to:	
	Quasi	linear	varia/onal	problems	like	minimal	
	surfaces,	p	Laplacians.	
Generalized	minimal	surfaces	theory	
Equa/ons	from	geometry,	like	the	symmetric		
	func/ons	of	the	Hessian	(	Monge	Ampere	and	related	
	equa/ons)	or	fully	non	linear	equa/ons,	like	the	
	Extremal	Operators	
Domain	op/miza/on	,	phase	transi/on	probelms,		



Non	local	theory	(non	local	diffuson	processes)		
 
An important family is given by the (instantaneous) 
kernels 
a)		∫	[u(y)-	u	(x)]		K(x,y)	dy	
or	
b)	∫	[u(x+y)-	u	(x)]		K(x,y)	dy	
	
Natural	in	the	sta/onary	(	ellip/c)	theory	as	well	as	in	the	
evolu/onary	
Of	par/cular	interest	are	the	“frac/onal	Laplacians”	:	
	



The s- Laplacian:” Convolving” with the function 
 Vs= |x|- n-2s  dicreases differentiability by 2s for 0< s<1 
The inverse operation, convolving with: 
:        V-s(y) = |y|2s-n        ( s<1) 
Is the potential  that, by convolution, inverts the  
 s Laplacian , i.e. it is  the fundamental solution 
 of the s-Laplacian,  
It improves by “ 2s” derivatives  the  original function 
(invariant under dilations, rotations,”divergence” 
and “no divergence” 
They also set the order of differentiability 
(We consider kernels satisfying 
a|x-y|- n-2s  < K(x,y) < A|x-y|- n-2s 	



 
Fractional time derivatives are “ directed in time 
   
                   ∫t  (u(t)-u(s)) / (t-s)1+αds 
 
Here too, u(t) compares itlelf to the past, in a non 
infinitesimal way 
Memory equations appear for instance in reservoir 
modeling where the properties of the media are modified 
by the past flow and in many models from physiscs 
( see,for instance, G Zaslavski) 
	



Non linear evolution equations 
 
 
Energy methods, the quasigeostrophic  
 and other  quasilinear equations 
 
A fundamental technique :De Giorgi’s geome 
trical approach 



Apply  DG ideas to  
 
:The critical quasigeostrophic equation. 
        
 ut (x,t)=∆1/2+ R⊥u grad (u) 
 
(C-Vasseur) (related results by Kisselev et al) 
 
:Quasi linear, non local equations: 
 
(C-Chang Vasseur) 
 
Porous media with potential pressure 
 
C Soria Vazquez 
 



Equations with memory: 
 
The time derivative is  replaced by a fractional time derivative. 
 
The Caputo derivative is particularly  
appropriate : 

Dα
t u (x,t) = ∫t (u(x,t)-u(x,s)) (t-s)-(1+α) ds 

 
 since it naturally quantifies the influence 
 of the past “densities” into the current one. 
It is natural, in this context to prescribe initial data from -∞. 
 



	Uniformly	ellip/c	case	with	rough	kernels	:	
	
                Dα

t u (x,t)= ∫ [u(y,t) –u(x,t)] K(x,y) dx 
 
where		the	only	requirement	on	K	is		to	be	symmetric	and	
	
																						m		|x-y|-(n+s)				<	K(x,y)	<	M		|x-y|-(n+s)		
and	we	showed	existence	and	regularity	of	solu/ons.	
(Allen,	C,	Vasseur)	
	
The	main	issue	is	of	course	,	how	does	the	/me	deriva/ve		
contribu/on	to	an	energy	formula	looks	like?		
	
	
			



How does the time integral behaves  under multiplication by a 
monotone h(u), to attain an energy integral?  
For the uniformly elliptic case the quadratic energy case suffices:   

  multiply by  h(u)=u, to obtain 
 

∫Tu(t)   ∫t  (u(t)-u(s)) / (t-s)1+αdsdt =  * 
 How do we treat  the term   u(t)u(t) – u(t)u(s) ? 
We rewrite it as  

 1/2 u(t)2 +[1/2(u(t)2–u(t)u(s) + 1/2(u(s)2]-u(s)2,  then 
 

  * = ∫T∫t [½((u(t)-u(s))2  + u(t)2- u(s)2]/(t-s)1+α dtds = 
 

 =∫T∫t 1/2[(u(t)-u(s)]2/(t-s)1+α dtds + ∫u(t)2/(T-t)α dt 
 

We solve by implicit discretization in time that makes clear 
the natural cancelations in the integral 

 
 
 



For monotone h(u),= H’(u)?, 
 H convex , we note that for  the energy formula 

 
∫ h(u(t))   ∫t  (u(t)-u(s)) / (t-s)1+αdsdt  

  
H’( u(t))(u(t) – u(s)) > H(u( t)) -H(u( s)) 
 (by convexity)  

 
We solve by implicit discretization in time that makes clear 

the natural cancelations in the integral 
 

 
 



	
“	Porous	media	with	memory”	
 
In the case of porous media flow, there are different 
reservoir models where the memory term is 
incorporated in different ways some times in the 
pressure others in  the density, or both ( see for 
instance the extensive work of Caputo) 
Also master equation type models 
	
“	



Back to  the beginning: 
 Master equation and Levy walks: 
 
A density u evolves in time taking into account 
input from the past and shredding into the 
 future according to the balance law: 



The instantaneous rate of change ut   satisfies then 
(gain – loss) 
 

 ut  = ∫∫ (u(y,t-s)-u(x,t)) K(x,y,t,s) dy ds 
 
If K is symmetric in x and y  the problem has 
variational structure (has associated a bilinear 
form and can be treated by energy methods)). 
If the equation has the form: 
 

 ut  = ∫∫ (u(y+x,t-s)-u(x,t))K(x,y,t,s)dy ds 
 
it has non divergence structure (master equation) 
	
	
	



For	the	non	divergence	master	equa/on	(with		
rough	kernels,	no	con/nuity	assump/ons)		we	can	
	show	existence	and	Holder	regularity.	(C.		Silvestre)	
This	implies	higher	regularity	for	“	quasilinear	“	
	master	equa/ons	



Some	non	local	geometric	and	op/mal	
	control	equa/ons	
	
Non	local	mean	curvature	and	phase	transi/on	
	problems	
(Chen	and	Fife)	
	
Non	local		fully	non	linear	equa/ons	
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Non-local	minimal	surfaces	
	
•  Non	local	models	of	phase	transi/on	in		
						solids			(Chen	and	Fife)	

•  A	discrete	way	of	genera/ng	movement		
					by	mean	curvature		
					(Merriman,	Bence,	Osher)	
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Frac/onal	minimal	surfaces	
	
For	s		bigger	than	½,	the	integral	
Diverges	even	for	a	smooth	surface	.	
For	an	angle,	the	integral	diverges	for	
	any	posi/ve	s	
In	par/cular,	for	s	bigger	than	½		a	
	further	rescale	gives	classical	movement	
	by	mean	curvature,	anf	for	s	less	than	½	
this	integral	seems	to	detect	some		
intermediate	regularity	



Phase	transi/ons	
	
Allen	Cahn	and	Chrn	Fife	















Thank	you	for	your	ajen/on	





Guided bythe ideas of the second order theory 
 solutions are locally C1+h surfaces, except 
 for a negligeable set 
Main steps follow the second order approach: 
Positive density, monotonicity formula, 
global cones, improvement of flatness 
For flat surfaces this area linearizes to 
 the corresponding fractional Laplacean,  
as in the second order case 



The obstacle problem for fractional Laplacian 
 
Some basic ideas to attack phase transition 
 problems : 
Search and exploit scaling invariance, classify 
global solutions 
Isolate degenerate configurations 
Classify singular points 
 
Final result: Optimal regularity of solutions, and 
regularity of the free boundary except at 
singular points 
Classification of singularities 



While the space term will read ( once on the left side) 
 

-∫∫ h(u)div u(x,t) ∇( ∫u(y) V(x-y) dy) dx dt = 
 

∫∫(∇h(u(x,t))u(x,t) ∇( ∫u(y,t) V(x-y) dy) dx dt . 
 
The choice  F’ (u) = h’(u)u,     yields the energy 
integral 
 

∫∫∇ F(u(x,t) ∇( ∫ u(y,t) V(x-y) dy)dx dt 
A good candidate is  h=log u  (F’=1) .  It linearizes 
the elliptic part 
                      ∫∫∇u(x,t) ∫ V(x-y) ∇u(y,t) dy dx dt 
	
	
	
	
		
	
	


